1 \section{\protect\isl/ interface
}
5 The
\barvinok/ library currently supports only a few
6 functions that interface with the
\isl/ library.
7 In time, this interface will grow and is set to replace
8 the
\PolyLib/ interface.
9 For more information on the
\isl/ data structures, see
10 the
\isl/ user manual.
13 __isl_give isl_pw_qpolynomial *isl_set_card(__isl_take isl_set *set);
14 __isl_give isl_union_pw_qpolynomial *isl_union_set_card(
15 __isl_take isl_union_set *uset);
17 Compute the number of elements in an
\ai[\tt]{isl
\_set}
18 or
\ai[\tt]{isl
\_union\_set}.
19 The resulting
\ai[\tt]{isl
\_pw\_qpolynomial}
20 or
\ai[\tt]{isl
\_union\_pw\_qpolynomial} has purely parametric cells.
23 __isl_give isl_pw_qpolynomial *isl_map_card(__isl_take isl_map *map);
24 __isl_give isl_union_pw_qpolynomial *isl_union_map_card(
25 __isl_take isl_union_map *umap);
27 Compute a closed form expression for the number of image elements
28 associated to any element in the domain of the given
\ai[\tt]{isl
\_map}
29 or
\ai[\tt]{isl
\_union\_map}.
30 The union of the cells in the resulting
\ai[\tt]{isl
\_pw\_qpolynomial}
31 is equal to the domain of the input
\ai[\tt]{isl
\_map}.
34 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sum(
35 __isl_take isl_pw_qpolynomial *pwqp);
36 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sum(
37 __isl_take isl_union_pw_qpolynomial *upwqp);
39 Compute the sum of the given piecewise quasipolynomial over
40 all integer points in the domain. The result is a piecewise
41 quasipolynomial that only involves the parameters.
43 \subsection{Calculator
}
45 The
\ai[\tt]{iscc
} calculator offers an interface to some
46 of the functionality provided by the
\isl/ and
\barvinok/
48 The supported operations are shown in
\autoref{t:iscc
}.
49 Here are some examples:
51 P :=
[n, m
] ->
{ [i,j
] :
0 <= i <= n and i <= j <= m
};
54 f :=
[n,m
] ->
{ [i,j
] -> i*j + n*i*i*j : i,j >=
0 and
5i +
27j <= n+m
};
57 s @
[n,m
] ->
{ [] :
0 <= n,m <=
20 };
59 f :=
[n
] ->
{ [i
] ->
2*n*i - n*n +
3*n -
1/
2*i*i -
3/
2*i-
1 :
60 (exists j :
0 <= i <
4*n-
1 and
0 <= j < n and
61 2*n-
1 <= i+j <=
4*n-
2 and i <=
2*n-
1 )
};
64 u @
[n
] ->
{ [] :
0 <= n <=
10 };
66 m :=
[n
] ->
{ [i,j
] ->
[i+
1,j+
1] :
1 <= i,j < n;
67 [i,j
] ->
[i+
1,j-
1] :
1 <= i < n and
2 <= j <= n
};
71 codegen
[N
] ->
{ A
[i
] ->
[i,
0] :
0 <= i <= N; B
[i
] ->
[i,
1] :
1 <= i <= N
};
74 \bottomcaption{{\tt iscc
} operations. The variables
75 have the following types,
78 $q$: piecewise quasipolynomial,
79 $f$: piecewise quasipolynomial fold,
83 $o$: object of any type
93 \multicolumn{2}{r
}{\small\sl continued on next page
}
97 \begin{supertabular
}{lp
{0.7\textwidth}}
98 $s_2$ :=
\ai[\tt]{aff
} $s_1$ & affine hull of $s_1$
100 $m_2$ :=
\ai[\tt]{aff
} $m_1$ & affine hull of $m_1$
102 $q$ :=
\ai[\tt]{card
} $s$ &
103 number of elements in the set $s$
105 $q$ :=
\ai[\tt]{card
} $m$ &
106 number of elements in the image of a domain element
108 $s_2$ :=
\ai[\tt]{coalesce
} $s_1$ &
109 simplify the representation of set $s_1$ by trying
110 to combine pairs of basic sets into a single
113 $m_2$ :=
\ai[\tt]{coalesce
} $m_1$ &
114 simplify the representation of map $m_1$ by trying
115 to combine pairs of basic maps into a single
118 $q_2$ :=
\ai[\tt]{coalesce
} $q_1$ &
119 simplify the representation of $q_1$ by trying
120 to combine pairs of basic sets in the domain
121 of $q_1$ into a single basic set
123 $f_2$ :=
\ai[\tt]{coalesce
} $f_1$ &
124 simplify the representation of $f_1$ by trying
125 to combine pairs of basic sets in the domain
126 of $f_1$ into a single basic set
128 \ai[\tt]{codegen
} $m$ &
129 generate code for the given scattering function.
130 This operation is only available if
\ai[\tt]{CLooG
}
131 support was compiled in.
133 $s_3$ := $s_1$
\ai[\tt]{cross
} $s_2$ &
134 Cartesian product of $s_1$ and $s_2$
136 $m_3$ := $m_1$
\ai[\tt]{cross
} $m_2$ &
137 Cartesian product of $m_1$ and $m_2$
139 $s$ :=
\ai[\tt]{deltas
} $m$ &
140 the set $\
{\, y - x
\mid x
\to y
\in m \,\
}$
142 $s$ :=
\ai[\tt]{dom
} $m$ &
145 $s$ :=
\ai[\tt]{dom
} $q$ &
146 domain of piecewise quasipolynomial $q$
148 $s$ :=
\ai[\tt]{dom
} $f$ &
149 domain of piecewise quasipolynomial fold $f$
151 $s$ :=
\ai[\tt]{ran
} $m$ &
154 $s_2$ :=
\ai[\tt]{lexmin
} $s_1$ &
155 lexicographically minimal element of $s_1$
157 $m_2$ :=
\ai[\tt]{lexmin
} $m_1$ &
158 lexicographically minimal image element
160 $s_2$ :=
\ai[\tt]{lexmax
} $s_1$ &
161 lexicographically maximal element of $s_1$
163 $m_2$ :=
\ai[\tt]{lexmax
} $m_1$ &
164 lexicographically maximal image element
166 $o$ :=
\ai[\tt]{read
} {\tt "
}{\it filename
}{\tt"
} &
167 read object from file
169 $s_2$ :=
\ai[\tt]{sample
} $s_1$ &
170 a sample element of the set $s_1$
172 $m_2$ :=
\ai[\tt]{sample
} $m_1$ &
173 a sample element of the map $m_1$
175 $q_2$ :=
\ai[\tt]{sum
} $q_1$ &
176 sum $q_1$ over all integer points in the domain of $q_1$
178 $l$ :=
\ai[\tt]{ub
} $q$ &
180 upper bound on the piecewise quasipolynomial $q$ over
181 all integer points in the domain of $q$
182 and return a list containing the upper bound
183 and a boolean that is true if the upper bound
186 $l$ :=
\ai[\tt]{vertices
} $s$ &
187 a list of vertices of the rational polytope defined by the same constraints
190 $s_3$ := $s_1$
\ai{$+$
} $s_2$ & union
192 $m_3$ := $m_1$
\ai{$+$
} $m_2$ & union
194 $q_3$ := $q_1$
\ai{$+$
} $q_2$ & sum
196 $s_3$ := $s_1$
\ai{$-$
} $s_2$ & set difference
198 $m_3$ := $m_1$
\ai{$-$
} $m_2$ & set difference
200 $q_3$ := $q_1$
\ai{$-$
} $q_2$ & difference
202 $s_3$ := $s_1$
\ai{$*$
} $s_2$ & intersection
204 $m_3$ := $m_1$
\ai{$*$
} $m_2$ & intersection
206 $q_3$ := $q_1$
\ai{$*$
} $q_2$ & product
208 $m_2$ := $m_1$
\ai{$*$
} $s$ & intersect domain of $m_1$ with $s$
210 $q_2$ := $q_1$
\ai{$*$
} $s$ & intersect domain of $q_1$ with $s$
212 $f_2$ := $f_1$
\ai{$*$
} $s$ & intersect domain of $f_1$ with $s$
214 $s_2$ := $m$($s_1$) & apply map $m$ to set $s_1$
216 $m_3$ := $m_1$
\ai[\tt]{.
} $m_2$ & join of $m_1$ and $m_2$
218 $m_3$ := $m_2$($m_1)$ & join of $m_1$ and $m_2$
220 $m$ := $s_1$
\ai[\tt]{->
} $s_2$ & universal map with domain $s_1$
223 $q_2$ := $q_1$
\ai{@
} $s$ &
224 evaluate the piecewise quasipolynomial $q_1$ in each element
225 of the set $s$ and return a piecewise quasipolynomial
226 mapping each of the individual elements to the resulting
229 $q$ := $f$
\ai{@
} $s$ &
230 evaluate the piecewise quasipolynomial fold $f$ in each element
231 of the set $s$ and return a piecewise quasipolynomial
232 mapping each of the individual elements to the resulting
235 $s_3$ := $s_1$
\ai[\tt]{\%
} $s_2$ &
236 simplify $s_1$ in the context of $s_2$, i.e., compute
237 the gist of $s_1$ given $s_2$
239 $m_3$ := $m_1$
\ai[\tt]{\%
} $m_2$ &
240 simplify $m_1$ in the context of $m_2$, i.e., compute
241 the gist of $m_1$ given $m_2$
243 $q_2$ := $q_1$
\ai[\tt]{\%
} $s$ &
244 simplify $q_1$ in the context of the domain $s$, i.e., compute
245 the gist of $q_1$ given $s$
247 $f_2$ := $f_1$
\ai[\tt]{\%
} $s$ &
248 simplify $f_1$ in the context of the domain $s$, i.e., compute
249 the gist of $f_1$ given $s$
251 $m_2$ := $m_1$
\ai[\tt]{\^
{}-
1} & inverse of $m_1$
253 $l$ := $m$
\ai[\tt]{\^
{}+
} &
254 compute an overapproximation of the transitive closure
255 of $m$ and return a list containing the overapproximation
256 and a boolean that is true if the overapproximation
260 the element at position $i$ in the list $l$
262 $b$ := $s_1$
\ai[\tt]{=
} $s_2$ & is $s_1$ equal to $s_2$?
264 $b$ := $m_1$
\ai[\tt]{=
} $m_2$ & is $m_1$ equal to $m_2$?
266 $b$ := $s_1$
\ai[\tt]{<=
} $s_2$ & is $s_1$ a subset of $s_2$?
268 $b$ := $m_1$
\ai[\tt]{<=
} $m_2$ & is $m_1$ a subset of $m_2$?
270 $b$ := $s_1$
\ai[\tt]{<
} $s_2$ & is $s_1$ a proper subset of $s_2$?
272 $b$ := $m_1$
\ai[\tt]{<
} $m_2$ & is $m_1$ a proper subset of $m_2$?
274 $b$ := $s_1$
\ai[\tt]{>=
} $s_2$ & is $s_1$ a superset of $s_2$?
276 $b$ := $m_1$
\ai[\tt]{>=
} $m_2$ & is $m_1$ a superset of $m_2$?
278 $b$ := $s_1$
\ai[\tt]{>
} $s_2$ & is $s_1$ a proper superset of $s_2$?
280 $b$ := $m_1$
\ai[\tt]{>
} $m_2$ & is $m_1$ a proper superset of $m_2$?