barvinok 0.41.7
[barvinok.git] / doc / Internal.tex
blob911878d933e9e070f659a4df07f067279bc2396e
1 \section{\protect\PolyLib/ interface of the \protect\ai[\tt]{barvinok} library
2 (obsolescent)}
4 Although \barvinok/ currently still uses \PolyLib/ internally,
5 this is likely to change in the not too distant future.
6 Consider using \isl/ based alternatives for the functions in this section
7 as the latter are likely to be removed in future releases.
9 Our \barvinok/ library is built on top of \PolyLib/
10 \shortcite{Wilde1993,Loechner1999}.
11 In particular, it reuses the implementations
12 of the algorithm of
13 \shortciteN{Loechner97parameterized}
14 for computing parametric vertices
15 and the algorithm of
16 \shortciteN{Clauss1998parametric}
17 for computing chamber decompositions.
18 Initially, our library was meant to be a replacement
19 for the algorithm of \shortciteN{Clauss1998parametric},
20 also implemented in \PolyLib/, for computing quasi-polynomials.
21 To ease the transition of application programs we
22 tried to reuse the existing data structures as much as possible.
24 \subsection{Existing Data Structures}
25 \label{a:existing}
27 Inside \PolyLib/ integer values are represented by the
28 \ai[\tt]{Value} data type.
29 Depending on a configure option, the data type may
30 either by a 32-bit integer, a 64-bit integer
31 or an arbitrary precision integer using \ai[\tt]{GMP}.
32 The \barvinok/ library requires that \PolyLib/ is compiled
33 with support for arbitrary precision integers.
35 The basic structure for representing (unions of) polyhedra is a
36 \ai[\tt]{Polyhedron}.
37 \begin{verbatim}
38 typedef struct polyhedron {
39 unsigned Dimension, NbConstraints, NbRays, NbEq, NbBid;
40 Value **Constraint;
41 Value **Ray;
42 Value *p_Init;
43 int p_Init_size;
44 struct polyhedron *next;
45 } Polyhedron;
46 \end{verbatim}
47 The attribute \ai[\tt]{Dimension} is the dimension
48 of the ambient space, i.e., the number of variables.
49 The attributes \ai[\tt]{Constraint}
50 and \ai[\tt]{Ray} point to two-dimensional arrays
51 of constraints and generators, respectively.
52 The number of rows is stored in
53 \ai[\tt]{NbConstraints} and
54 \ai[\tt]{NbRays}, respectively.
55 The number of columns in both arrays is equal
56 to \verb!1+Dimension+1!.
57 The first column of \ai[\tt]{Constraint} is either
58 $0$ or $1$ depending on whether the constraint
59 is an equality ($0$) or an inequality ($1$).
60 The number of equalities is stored in \ai[\tt]{NbEq}.
61 If the constraint is $\sp a x + c \ge 0$, then
62 the next columns contain the coefficients $a_i$
63 and the final column contains the constant $c$.
64 The first column of \ai[\tt]{Ray} is either
65 $0$ or $1$ depending on whether the generator
66 is a line ($0$) or a vertex or ray ($1$).
67 The number of lines is stored in \ai[\tt]{NbBid}.
68 Let $d$ be the \ac{lcm} of the denominators of the coordinates
69 of a vertex $\vec v$, then the next columns contain
70 $d v_i$ and the final column contains $d$.
71 For a ray, the final column contains $0$.
72 The field \ai[\tt]{next} points to the next polyhedron in
73 the union of polyhedra.
74 It is \verb+0+ if this is the last (or only) polyhedron in the union.
75 For more information on this structure, we refer to \shortciteN{Wilde1993}.
77 Quasi-polynomials are represented using the
78 \ai[\tt]{evalue} and \ai[\tt]{enode} structures.
79 \begin{verbatim}
80 typedef enum { polynomial, periodic, evector } enode_type;
82 typedef struct _evalue {
83 Value d; /* denominator */
84 union {
85 Value n; /* numerator (if denominator != 0) */
86 struct _enode *p; /* pointer (if denominator == 0) */
87 } x;
88 } evalue;
90 typedef struct _enode {
91 enode_type type; /* polynomial or periodic or evector */
92 int size; /* number of attached pointers */
93 int pos; /* parameter position */
94 evalue arr[1]; /* array of rational/pointer */
95 } enode;
96 \end{verbatim}
97 If the field \ai[\tt]{d} of an \ai[\tt]{evalue} is zero, then
98 the \ai[\tt]{evalue} is a placeholder for a pointer to
99 an \ai[\tt]{enode}, stored in \ai[\tt]{x.p}.
100 Otherwise, the \ai[\tt]{evalue} is a rational number with
101 numerator \ai[\tt]{x.n} and denominator \ai[\tt]{d}.
102 An \ai[\tt]{enode} is either a \ai[\tt]{polynomial}
103 or a \ai[\tt]{periodic}, depending on the value
104 of \ai[\tt]{type}.
105 The length of the array \ai[\tt]{arr} is stored in \ai[\tt]{size}.
106 For a \ai[\tt]{polynomial}, \ai[\tt]{arr} contains the coefficients.
107 For a \ai[\tt]{periodic}, it contains the values for the different
108 residue classes modulo the parameter indicated by \ai[\tt]{pos}.
109 For a polynomial, \ai[\tt]{pos} refers to the variable
110 of the polynomial.
111 The value of \ai[\tt]{pos} is \verb+1+ for the first parameter.
112 That is, if the value of \ai[\tt]{pos} is \verb+1+ and the first
113 parameter is $p$, and if the length of the array is $l$,
114 then in case it is a polynomial, the
115 \ai[\tt]{enode} represents
117 \verb+arr[0]+ + \verb+arr[1]+ p + \verb+arr[2]+ p^2 + \cdots +
118 \verb+arr[l-1]+ p^{l-1}
121 If it is a periodic, then it represents
123 \left[
124 \verb+arr[0]+, \verb+arr[1]+, \verb+arr[2]+, \ldots,
125 \verb+arr[l-1]+
126 \right]_p
129 Note that the elements of a \ai[\tt]{periodic} may themselves
130 be other \ai[\tt]{periodic}s or even \ai[\tt]{polynomial}s.
131 In our library, we only allow the elements of a \ai[\tt]{periodic}
132 to be other \ai[\tt]{periodic}s or rational numbers.
133 The chambers and their corresponding quasi-polynomial are
134 stored in \ai[\tt]{Enumeration} structures.
135 \begin{verbatim}
136 typedef struct _enumeration {
137 Polyhedron *ValidityDomain; /* constraints on the parameters */
138 evalue EP; /* dimension = combined space */
139 struct _enumeration *next; /* Ehrhart Polynomial,
140 corresponding to parameter
141 values inside the domain
142 ValidityDomain above */
143 } Enumeration;
144 \end{verbatim}
145 For more information on these structures, we refer to \shortciteN{Loechner1999}.
147 \begin{example}
148 Figure~\ref{f:Loechner} is a skillful reconstruction
149 of Figure~2 from \shortciteN{Loechner1999}.
150 It shows the contents of the \ai[\tt]{enode} structures
151 representing the quasi-polynomial
153 [1,2]_p p^2 + 3 p + \frac 5 2
156 \begin{figure}
157 \begin{xy}
158 \POS(0,0)*!UL{\hbox{
160 \begin{tabular}{|c|c|c|}
161 \hline
162 \multicolumn{2}{|c|}{type} & polynomial \\
163 \hline
164 \multicolumn{2}{|c|}{size} & 3 \\
165 \hline
166 \multicolumn{2}{|c|}{pos} & 1 \\
167 \hline
168 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 2 \\
169 \cline{2-3}
170 & x.n & 5 \\
171 \hline
172 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 1 \\
173 \cline{2-3}
174 & x.n & 3 \\
175 \hline
176 \smash{\lower 6.25pt\hbox{arr[2]}} & d & 0 \\
177 \cline{2-3}
178 & x.p & \\
179 \hline
180 \end{tabular}
182 }="box1"
183 +DR*!DR\hbox{\strut\hskip 1.5\tabcolsep\phantom{\tt polynomial}\hskip 1.5\tabcolsep}+C="a"
184 \POS(60,-15)*!UL{\hbox{
186 \begin{tabular}{|c|c|c|}
187 \hline
188 \multicolumn{2}{|c|}{type} & periodic \\
189 \hline
190 \multicolumn{2}{|c|}{size} & 2 \\
191 \hline
192 \multicolumn{2}{|c|}{pos} & 1 \\
193 \hline
194 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 1 \\
195 \cline{2-3}
196 & x.n & 1 \\
197 \hline
198 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 1 \\
199 \cline{2-3}
200 & x.n & 2 \\
201 \hline
202 \end{tabular}
204 }="box2"
205 +UL+<0.5\tabcolsep,0pt>*!UL\hbox{\strut}+CL="b"
206 \POS"a"\ar@(r,l) "b"
207 \POS"box1"+UC*++!D\hbox{\tt enode}
208 \POS"box2"+UC*++!D\hbox{\tt enode}
209 \end{xy}
210 \caption{The quasi-polynomial $[1,2]_p p^2 + 3 p + \frac 5 2$.}
211 \label{f:Loechner}
212 \end{figure}
213 \end{example}
215 \subsection{Options}
216 \label{a:options}
218 The \ai[\tt]{barvinok\_options} structure contains various
219 options that influence the behavior of the library.
221 \begin{verbatim}
222 struct barvinok_options {
223 struct barvinok_stats *stats;
225 /* PolyLib options */
226 unsigned MaxRays;
228 /* NTL options */
229 /* LLL reduction parameter delta=LLL_a/LLL_b */
230 long LLL_a;
231 long LLL_b;
233 /* barvinok options */
234 #define BV_SPECIALIZATION_BF 2
235 #define BV_SPECIALIZATION_DF 1
236 #define BV_SPECIALIZATION_RANDOM 0
237 #define BV_SPECIALIZATION_TODD 3
238 int incremental_specialization;
240 unsigned long max_index;
241 int primal;
242 int lookup_table;
243 int count_sample_infinite;
245 int try_Delaunay_triangulation;
247 #define BV_APPROX_SIGN_NONE 0
248 #define BV_APPROX_SIGN_APPROX 1
249 #define BV_APPROX_SIGN_LOWER 2
250 #define BV_APPROX_SIGN_UPPER 3
251 int polynomial_approximation;
252 #define BV_APPROX_NONE 0
253 #define BV_APPROX_DROP 1
254 #define BV_APPROX_SCALE 2
255 #define BV_APPROX_VOLUME 3
256 #define BV_APPROX_BERNOULLI 4
257 int approximation_method;
258 #define BV_APPROX_SCALE_FAST (1 << 0)
259 #define BV_APPROX_SCALE_NARROW (1 << 1)
260 #define BV_APPROX_SCALE_NARROW2 (1 << 2)
261 #define BV_APPROX_SCALE_CHAMBER (1 << 3)
262 int scale_flags;
263 #define BV_VOL_LIFT 0
264 #define BV_VOL_VERTEX 1
265 #define BV_VOL_BARYCENTER 2
266 int volume_triangulate;
268 /* basis reduction options */
269 #define BV_GBR_GLPK 1
270 #define BV_GBR_CDD 2
271 int gbr_lp_solver;
273 #define BV_LP_POLYLIB 0
274 #define BV_LP_GLPK 1
275 #define BV_LP_CDD 2
276 #define BV_LP_CDDF 3
277 int lp_solver;
279 #define BV_HULL_GBR 0
280 #define BV_HULL_HILBERT 1
281 int integer_hull;
284 struct barvinok_options *barvinok_options_new_with_defaults();
285 \end{verbatim}
287 The function \ai[\tt]{barvinok\_options\_new\_with\_defaults}
288 can be used to create a \ai[\tt]{barvinok\_options} structure
289 with default values.
291 \begin{itemize}
292 \item \PolyLib/ options
294 \begin{itemize}
296 \item \ai[\tt]{MaxRays}
298 The value of \ai[\tt]{MaxRays} is passed to various \PolyLib/
299 functions and defines the
300 maximum size of a table used in the \ai{double description} computation
301 in the \PolyLib/ function \ai[\tt]{Chernikova}.
302 In earlier versions of \PolyLib/,
303 this parameter had to be conservatively set
304 to a high number to ensure successful operation,
305 resulting in significant memory overhead.
306 Our change to allow this table to grow
307 dynamically is available in recent versions of \PolyLib/.
308 In these versions, the value no longer indicates the maximal
309 table size, but rather the size of the initial allocation.
310 This value may be set to \verb+0+ or left as set
311 by \ai[\tt]{barvinok\_options\_new\_with\_defaults}.
313 \end{itemize}
315 \item \ai[\tt]{NTL} options
317 \begin{itemize}
319 \item \ai[\tt]{LLL\_a}
320 \item \ai[\tt]{LLL\_b}
322 The values used for the \ai{reduction parameter}
323 in the call to \ai[\tt]{NTL}'s implementation of \indac{LLL}.
325 \end{itemize}
327 \item \ai[\tt]{barvinok} specific options
329 \begin{itemize}
331 \item \ai[\tt]{incremental\_specialization}
333 Selects the \ai{specialization} algorithm to be used.
334 If set to {\tt 0} then a direct specialization is performed
335 using a random vector.
336 Value {\tt 1} selects a depth first incremental specialization,
337 while value {\tt 2} selects a breadth first incremental specialization.
338 The default is selected by the \ai[\tt]{--enable-incremental}
339 \ai[\tt]{configure} option.
340 For more information we refer to~\citeN[Section~4.4.3]{Verdoolaege2005PhD}.
342 \end{itemize}
344 \end{itemize}
346 \subsection{Data Structures for Quasi-polynomials}
347 \label{a:data}
349 Internally, we do not represent our \ai{quasi-polynomial}s
350 as step-polynomials, but instead as polynomials of
351 fractional parts of degree-$1$ polynomials.
352 However, we also allow our quasi-polynomials to be represented
353 as polynomials with periodic numbers for coefficients,
354 similarly to \shortciteN{Loechner1999}.
355 By default, the current version of \barvinok/ uses
356 \ai[\tt]{fractional}s, but this can be changed through
357 the \ai[\tt]{--disable-fractional} configure option.
358 When this option is specified, the periodic numbers
359 are represented as
360 an explicit enumeration using the \ai[\tt]{periodic} type.
361 A quasi-polynomial based on fractional
362 parts can also be converted to an actual step-polynomial
363 using \ai[\tt]{evalue\_frac2floor}, but this is not fully
364 supported yet.
366 For reasons of compatibility,%
367 \footnote{Also known as laziness.}
368 we shoehorned our representations for piecewise quasi-polynomials
369 into the existing data structures.
370 To this effect, we introduced four new types,
371 \ai[\tt]{fractional}, \ai[\tt]{relation},
372 \ai[\tt]{partition} and \ai[\tt]{flooring}.
373 \begin{verbatim}
374 typedef enum { polynomial, periodic, evector, fractional,
375 relation, partition, flooring } enode_type;
376 \end{verbatim}
377 The field \ai[\tt]{pos} is not used in most of these
378 additional types and is therefore set to \verb+-1+.
380 The types \ai[\tt]{fractional} and \ai[\tt]{flooring}
381 represent polynomial expressions in a fractional part or a floor respectively.
382 The generator is stored in \verb+arr[0]+, while the
383 coefficients are stored in the remaining array elements.
384 That is, an \ai[\tt]{enode} of type \ai[\tt]{fractional}
385 represents
387 \verb+arr[1]+ + \verb+arr[2]+ \{\verb+arr[0]+\} +
388 \verb+arr[3]+ \{\verb+arr[0]+\}^2 + \cdots +
389 \verb+arr[l-1]+ \{\verb+arr[0]+\}^{l-2}
392 An \ai[\tt]{enode} of type \ai[\tt]{flooring}
393 represents
395 \verb+arr[1]+ + \verb+arr[2]+ \lfloor\verb+arr[0]+\rfloor +
396 \verb+arr[3]+ \lfloor\verb+arr[0]+\rfloor^2 + \cdots +
397 \verb+arr[l-1]+ \lfloor\verb+arr[0]+\rfloor^{l-2}
401 \begin{example}
402 The internal representation of the quasi-polynomial
403 $$\left(1+2 \left\{\frac p 2\right\}\right) p^2 + 3 p + \frac 5 2$$
404 is shown in Figure~\ref{f:fractional}.
406 \begin{figure}
407 \begin{xy}
408 \POS(0,0)*!UL{\hbox{
410 \begin{tabular}{|c|c|c|}
411 \hline
412 \multicolumn{2}{|c|}{type} & polynomial \\
413 \hline
414 \multicolumn{2}{|c|}{size} & 3 \\
415 \hline
416 \multicolumn{2}{|c|}{pos} & 1 \\
417 \hline
418 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 2 \\
419 \cline{2-3}
420 & x.n & 5 \\
421 \hline
422 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 1 \\
423 \cline{2-3}
424 & x.n & 3 \\
425 \hline
426 \smash{\lower 6.25pt\hbox{arr[2]}} & d & 0 \\
427 \cline{2-3}
428 & x.p & \\
429 \hline
430 \end{tabular}
432 }="box1"
433 +DR*!DR\hbox{\strut\hskip 1.5\tabcolsep\phantom{\tt polynomial}\hskip 1.5\tabcolsep}+C="a"
434 \POS(60,0)*!UL{\hbox{
436 \begin{tabular}{|c|c|c|}
437 \hline
438 \multicolumn{2}{|c|}{type} & fractional \\
439 \hline
440 \multicolumn{2}{|c|}{size} & 3 \\
441 \hline
442 \multicolumn{2}{|c|}{pos} & -1 \\
443 \hline
444 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 0 \\
445 \cline{2-3}
446 & x.p & \\
447 \hline
448 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 1 \\
449 \cline{2-3}
450 & x.n & 1 \\
451 \hline
452 \smash{\lower 6.25pt\hbox{arr[2]}} & d & 1 \\
453 \cline{2-3}
454 & x.n & 2 \\
455 \hline
456 \end{tabular}
458 }="box2"
459 +UL+<0.5\tabcolsep,0pt>*!UL\hbox{\strut}+CL="b"
460 \POS"a"\ar@(r,l) "b"
461 \POS"box2"+UR*!UR{\hbox{
463 \begin{tabular}{|c|}
464 \hline
465 fractional \\
466 \hline
467 3 \\
468 \hline
469 -1 \\
470 \hline
471 0 \\
472 \hline
473 \end{tabular}
475 }+CD*!U{\strut}+C="c"
476 \POS(60,-50)*!UL{\hbox{
478 \begin{tabular}{|c|c|c|}
479 \hline
480 \multicolumn{2}{|c|}{type} & polynomial \\
481 \hline
482 \multicolumn{2}{|c|}{size} & 2 \\
483 \hline
484 \multicolumn{2}{|c|}{pos} & 1 \\
485 \hline
486 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 1 \\
487 \cline{2-3}
488 & x.n & 0 \\
489 \hline
490 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 2 \\
491 \cline{2-3}
492 & x.n & 1 \\
493 \hline
494 \end{tabular}
496 }="box3"
497 +UR-<0.8\tabcolsep,0pt>*!UR\hbox{\strut}+CR="d"
498 \POS"c"\ar@(r,r) "d"
499 \POS"box1"+UC*++!D\hbox{\tt enode}
500 \POS"box2"+UC*++!D\hbox{\tt enode}
501 \POS"box3"+UC*++!D\hbox{\tt enode}
502 \end{xy}
503 \caption{The quasi-polynomial
504 $\left(1+2 \left\{\frac p 2\right\}\right) p^2 + 3 p + \frac 5 2$.}
505 \label{f:fractional}
506 \end{figure}
508 \end{example}
510 The \ai[\tt]{relation} type is used to represent \ai{stride}s.
511 In particular, if the value of \ai[\tt]{size} is 2, then
512 the value of a \ai[\tt]{relation} is (in pseudo-code):
513 \begin{verbatim}
514 (value(arr[0]) == 0) ? value(arr[1]) : 0
515 \end{verbatim}
516 If the size is 3, then the value is:
517 \begin{verbatim}
518 (value(arr[0]) == 0) ? value(arr[1]) : value(arr[2])
519 \end{verbatim}
520 The type of \verb+arr[0]+ is typically \ai[\tt]{fractional}.
522 Finally, the \ai[\tt]{partition} type is used to
523 represent piecewise quasi-polynomials.
524 We prefer to encode this information inside \ai[\tt]{evalue}s
525 themselves
526 rather than using \ai[\tt]{Enumeration}s since we want
527 to perform the same kinds of operations on both quasi-polynomials
528 and piecewise quasi-polynomials.
529 An \ai[\tt]{enode} of type \ai[\tt]{partition} may not be nested
530 inside another \ai[\tt]{enode}.
531 The size of the array is twice the number of ``chambers''.
532 Pointers to chambers are stored in the even slots,
533 whereas pointer to the associated quasi-polynomials
534 are stored in the odd slots.
535 To be able to store pointers to chambers, the
536 definition of \ai[\tt]{evalue} was changed as follows.
537 \begin{verbatim}
538 typedef struct _evalue {
539 Value d; /* denominator */
540 union {
541 Value n; /* numerator (if denominator > 0) */
542 struct _enode *p; /* pointer (if denominator == 0) */
543 Polyhedron *D; /* domain (if denominator == -1) */
544 } x;
545 } evalue;
546 \end{verbatim}
547 Note that we allow a ``chamber'' to be a union of polyhedra
548 as discussed in \citeN[Section~4.5.1]{Verdoolaege2005PhD}.
549 Chambers with extra variables, i.e., those of
550 \citeN[Section~4.6.5]{Verdoolaege2005PhD},
551 are only partially supported.
552 The field \ai[\tt]{pos} is set to the actual dimension,
553 i.e., the number of parameters.
555 \subsection{Operations on Quasi-polynomials}
556 \label{a:operations}
558 In this section we discuss some of the more important
559 operations on \ai[\tt]{evalue}s provided by the
560 \barvinok/ library.
561 Some of these operations are extensions
562 of the functions from \PolyLib/ with the same name.
564 Most of these operation are also provided by \isl/ on
565 \ai[\tt]{isl\_pw\_qpolynomial}s, which are set to replace
566 \ai[\tt]{evalue}s. Use \ai[\tt]{isl\_pw\_qpolynomial\_from\_evalue} to convert
567 from \ai[\tt]{evalue}s to \ai[\tt]{isl\_pw\_qpolynomial}s.
568 \begin{verbatim}
569 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_evalue(
570 __isl_take isl_space *dim, const evalue *e);
571 \end{verbatim}
573 \begin{verbatim}
574 void eadd(const evalue *e1,evalue *res);
575 void emul(const evalue *e1, evalue *res);
576 \end{verbatim}
577 The functions \ai[\tt]{eadd} and \ai[\tt]{emul} takes
578 two (pointers to) \ai[\tt]{evalue}s \verb+e1+ and \verb+res+
579 and computes their sum and product respectively.
580 The result is stored in \verb+res+, overwriting (and deallocating)
581 the original value of \verb+res+.
582 It is an error if exactly one of
583 the arguments of \ai[\tt]{eadd} is of type \ai[\tt]{partition}
584 (unless the other argument is \verb+0+).
585 The addition and multiplication operations are described
586 in \citeN[Section~4.5.1]{Verdoolaege2005PhD}
587 and~\citeN[Section~4.5.2]{Verdoolaege2005PhD}
588 respectively.
590 The function \ai[\tt]{eadd} is an extension of the function
591 \ai[\tt]{new\_eadd} from \shortciteN{Seghir2002}.
592 Apart from supporting the additional types from Section~\ref{a:data},
593 the new version also additionally imposes an order on the nesting of
594 different \ai[\tt]{enode}s.
595 Without such an ordering, \ai[\tt]{evalue}s could be constructed
596 representing for example
598 (0 y^ 0 + ( 0 x^0 + 1 x^1 ) y^1 ) x^0 + (0 y^0 - 1 y^1) x^1
601 which is just a funny way of saying $0$.
603 \begin{verbatim}
604 void eor(evalue *e1, evalue *res);
605 \end{verbatim}
606 The function \ai[\tt]{eor} implements the \ai{union}
607 operation from \citeN[Section~4.5.3]{Verdoolaege2005PhD}. Both arguments
608 are assumed to correspond to indicator functions.
610 \begin{verbatim}
611 evalue *esum(evalue *E, int nvar);
612 evalue *evalue_sum(evalue *E, int nvar, unsigned MaxRays);
613 \end{verbatim}
614 The function \ai[\tt]{esum} has been superseded by
615 \ai[\tt]{evalue\_sum}.
616 The function \ai[\tt]{evalue\_sum} performs the summation
617 operation from \citeN[Section~4.5.4]{Verdoolaege2005PhD}.
618 The piecewise step-polynomial represented by \verb+E+ is summated
619 over its first \verb+nvar+ variables.
620 Note that \verb+E+ must be zero or of type \ai[\tt]{partition}.
621 The function returns the result in a newly allocated
622 \ai[\tt]{evalue}.
623 Note also that \verb+E+ needs to have been converted
624 from \ai[\tt]{fractional}s to \ai[\tt]{flooring}s using
625 the function \ai[\tt]{evalue\_frac2floor}.
626 \begin{verbatim}
627 void evalue_frac2floor(evalue *e);
628 \end{verbatim}
629 This function also ensures that the arguments of the
630 \ai[\tt]{flooring}s are positive in the relevant chambers.
631 It currently assumes that the argument of each
632 \ai[\tt]{fractional} in the original \ai[\tt]{evalue}
633 has a minimum in the corresponding chamber.
635 \begin{verbatim}
636 double compute_evalue(const evalue *e, Value *list_args);
637 Value *compute_poly(Enumeration *en,Value *list_args);
638 evalue *evalue_eval(const evalue *e, Value *values);
639 \end{verbatim}
640 The functions \ai[\tt]{compute\_evalue},
641 \ai[\tt]{compute\_poly} and
642 \ai[\tt]{evalue\_eval}
643 evaluate a (piecewise) quasi-polynomial
644 at a certain point. The argument \verb+list_args+
645 points to an array of \ai[\tt]{Value}s that is assumed
646 to be long enough.
647 The \verb+double+ return value of \ai[\tt]{compute\_evalue}
648 is inherited from \PolyLib/.
650 \begin{verbatim}
651 void print_evalue(FILE *DST, const evalue *e, char **pname);
652 \end{verbatim}
653 The function \ai[\tt]{print\_evalue} dumps a human-readable
654 representation to the stream pointed to by \verb+DST+.
655 The argument \verb+pname+ points
656 to an array of character strings representing the parameter names.
657 The array is assumed to be long enough.
659 \begin{verbatim}
660 int eequal(const evalue *e1, const evalue *e2);
661 \end{verbatim}
662 The function \ai[\tt]{eequal} return true (\verb+1+) if its
663 two arguments are structurally identical.
664 I.e., it does {\em not\/} check whether the two
665 (piecewise) quasi-polynomial represent the same function.
667 \begin{verbatim}
668 void reduce_evalue (evalue *e);
669 \end{verbatim}
670 The function \ai[\tt]{reduce\_evalue} performs some
671 simplifications on \ai[\tt]{evalue}s.
672 Here, we only describe the simplifications that are directly
673 related to the internal representation.
674 Some other simplifications are explained in
675 \citeN[Section~4.7.2]{Verdoolaege2005PhD}.
676 If the highest order coefficients of a \ai[\tt]{polynomial},
677 \ai[\tt]{fractional} or \ai[\tt]{flooring} are zero (possibly
678 after some other simplifications), then the size of the array
679 is reduced. If only the constant term remains, i.e.,
680 the size is reduced to $1$ for \ai[\tt]{polynomial} or to $2$
681 for the other types, then the whole node is replaced by
682 the constant term.
683 Additionally, if the argument of a \ai[\tt]{fractional}
684 has been reduced to a constant, then the whole node
685 is replaced by its partial evaluation.
686 A \ai[\tt]{relation} is similarly reduced if its second
687 branch or both its branches are zero.
688 Chambers with zero associated quasi-polynomials are
689 discarded from a \ai[\tt]{partition}.
691 \subsection{Generating Functions}
693 The representation of \rgf/s uses
694 some basic types from the \ai[\tt]{NTL} library \shortcite{NTL}
695 for representing arbitrary precision integers
696 (\ai[\tt]{ZZ})
697 as well as vectors (\ai[\tt]{vec\_ZZ}) and matrices (\ai[\tt]{mat\_ZZ})
698 of such integers.
699 We further introduces a type \ai[\tt]{QQ} for representing a rational
700 number and use vectors (\ai[\tt]{vec\_QQ}) of such numbers.
701 \begin{verbatim}
702 struct QQ {
703 ZZ n;
704 ZZ d;
707 NTL_vector_decl(QQ,vec_QQ);
708 \end{verbatim}
710 Each term in a \rgf/ is represented by a \ai[\tt]{short\_rat}
711 structure.
712 \begin{verbatim}
713 struct short_rat {
714 struct {
715 /* rows: terms in numerator */
716 vec_QQ coeff;
717 mat_ZZ power;
718 } n;
719 struct {
720 /* rows: factors in denominator */
721 mat_ZZ power;
722 } d;
724 \end{verbatim}
725 The fields \ai[\tt]{n} and \ai[\tt]{d} represent the
726 numerator and the denominator respectively.
727 Note that in our implementation we combine terms
728 with the same denominator.
729 In the numerator, each element of \ai[\tt]{coeff} and each row of \ai[\tt]{power}
730 represents a single such term.
731 The vector \ai[\tt]{coeff} contains the rational coefficients
732 $\alpha_i$ of each term.
733 The columns of \ai[\tt]{power} correspond to the powers
734 of the variables.
735 In the denominator, each row of \ai[\tt]{power}
736 corresponds to the power $\vec b_{ij}$ of a
737 factor in the denominator.
739 \begin{example}
740 Figure~\ref{fig:rat}
741 shows the internal representation of
743 \frac{\frac 3 2 \, x_0^2 x_1^3 + 2 \, x_0^5 x_1^{-7}}
744 { (1 - x_0 x_1^{-3}) (1 - x_1^2)}
748 \begin{figure}
749 \begin{center}
750 \begin{minipage}{0cm}
751 \begin{xy}
752 *\hbox{
754 \begin{tabular}{|c|c|c|}
755 \hline
756 n.coeff & 3 & 2 \\
757 \cline{2-3}
758 & 2 & 1 \\
759 \hline
760 n.power & 2 & 3 \\
761 \cline{2-3}
762 & 5 & -7 \\
763 \hline
764 d.power & 1 & -3 \\
765 \cline{2-3}
766 & 0 & 2 \\
767 \hline
768 \end{tabular}
769 }+UC*++!D\hbox{\tt short\_rat}
770 \end{xy}
771 \end{minipage}
772 \end{center}
773 \caption{Representation of
775 \left(\frac 3 2 \, x_0^2 x_1^3 + 2 \, x_0^5 x_1^{-7}\right)
776 / \left( (1 - x_0 x_1^{-3}) (1 - x_1^2)\right)
778 \label{fig:rat}
779 \end{figure}
781 \end{example}
783 The whole \rgf/ is represented by a \ai[\tt]{gen\_fun}
784 structure.
785 \begin{verbatim}
786 typedef std::set<short_rat *,
787 short_rat_lex_smaller_denominator > short_rat_list;
789 struct gen_fun {
790 short_rat_list term;
791 Polyhedron *context;
793 void add(const QQ& c, const vec_ZZ& num, const mat_ZZ& den);
794 void add(short_rat *r);
795 void add(const QQ& c, const gen_fun *gf,
796 barvinok_options *options);
797 void substitute(Matrix *CP);
798 gen_fun *Hadamard_product(const gen_fun *gf,
799 barvinok_options *options);
800 void print(std::ostream& os,
801 unsigned int nparam, char **param_name) const;
802 operator evalue *() const;
803 ZZ coefficient(Value* params, barvinok_options *options) const;
804 void coefficient(Value* params, Value* c) const;
806 gen_fun(Polyhedron *C);
807 gen_fun(Value c);
808 gen_fun(const gen_fun *gf);
809 ~gen_fun();
811 \end{verbatim}
812 A new \ai[\tt]{gen\_fun} can be constructed either as empty \rgf/ (possibly
813 with a given context \verb+C+), as a copy of an existing \rgf/ \verb+gf+, or as
814 constant \rgf/ with value for the constant term specified by \verb+c+.
816 The first \ai[\tt]{gen\_fun::add} method adds a new term to the \rgf/,
817 described by the coefficient \verb+c+, the numerator \verb+num+ and the
818 denominator \verb+den+.
819 It makes all powers in the denominator lexico-positive,
820 orders them in lexicographical order and inserts the new
821 term in \ai[\tt]{term} according to the lexicographical
822 order of the combined powers in the denominator.
823 The second \ai[\tt]{gen\_fun::add} method adds \verb+c+ times \verb+gf+
824 to the \rgf/.
826 The method \ai[\tt]{gen\_fun::operator evalue *} performs
827 the conversion from \rgf/ to \psp/ explained in
828 \citeN[Section~4.5.5]{Verdoolaege2005PhD}.
829 The \ai[\tt]{Polyhedron} \ai[\tt]{context} is the superset
830 of all points where the enumerator is non-zero used during this conversion,
831 i.e., it is the set $Q$ from \citeN[Equation~4.31]{Verdoolaege2005PhD}.
832 If \ai[\tt]{context} is \verb+NULL+ the maximal
833 allowed context is assumed, i.e., the maximal
834 region with lexico-positive rays.
836 The method \ai[\tt]{gen\_fun::coefficient} computes the coefficient
837 of the term with power given by \verb+params+ and stores the result
838 in \verb+c+.
839 This method performs essentially the same computations as
840 \ai[\tt]{gen\_fun::operator evalue *}, except that it adds extra
841 equality constraints based on the specified values for the power.
843 The method \ai[\tt]{gen\_fun::substitute} performs the
844 \ai{monomial substitution} specified by the homogeneous matrix \verb+CP+
845 that maps a set of ``\ai{compressed parameter}s'' \shortcite{Meister2004PhD}
846 to the original set of parameters.
847 That is, if we are given a \rgf/ $G(\vec z)$ that encodes the
848 explicit function $g(\vec i')$, where $\vec i'$ are the coordinates of
849 the transformed space, and \verb+CP+ represents the map
850 $\vec i = A \vec i' + \vec a$ back to the original space with coordinates $\vec i$,
851 then this method transforms the \rgf/ to $F(\vec x)$ encoding the
852 same explicit function $f(\vec i)$, i.e.,
853 $$f(\vec i) = f(A \vec i' + \vec a) = g(\vec i ').$$
854 This means that the coefficient of the term
855 $\vec x^{\vec i} = \vec x^{A \vec i' + \vec a}$ in $F(\vec x)$ should be equal to the
856 coefficient of the term $\vec z^{\vec i'}$ in $G(\vec z)$.
857 In other words, if
859 G(\vec z) =
860 \sum_i \epsilon_i \frac{\vec z^{\vec v_i}}{\prod_j (1-\vec z^{\vec b_{ij}})}
862 then
864 F(\vec x) =
865 \sum_i \epsilon_i \frac{\vec x^{A \vec v_i + \vec a}}
866 {\prod_j (1-\vec x^{A \vec b_{ij}})}
870 The method \ai[\tt]{gen\_fun::Hadamard\_product} computes the
871 \ai{Hadamard product} of the current \rgf/ with the \rgf/ \verb+gf+,
872 as explained in \citeN[Section~4.5.2]{Verdoolaege2005PhD}.
874 \subsection{Counting Functions}
875 \label{a:counting:functions}
877 Our library provides essentially three different counting functions:
878 one for non-parametric polytopes, one for parametric polytopes
879 and one for parametric sets with existential variables.
880 The old versions of these functions have a ``\ai[\tt]{MaxRays}''
881 argument, while the new versions have a more general
882 \ai[\tt]{barvinok\_options} argument.
883 For more information on \ai[\tt]{barvinok\_options}, see Section~\ref{a:options}.
885 \begin{verbatim}
886 void barvinok_count(Polyhedron *P, Value* result,
887 unsigned NbMaxCons);
888 void barvinok_count_with_options(Polyhedron *P, Value* result,
889 struct barvinok_options *options);
890 \end{verbatim}
891 The function \ai[\tt]{barvinok\_count} or
892 \ai[\tt]{barvinok\_count\_with\_options} enumerates the non-parametric
893 polytope \verb+P+ and returns the result in the \ai[\tt]{Value}
894 pointed to by \verb+result+, which needs to have been allocated
895 and initialized.
896 If \verb+P+ is a union, then only the first set in the union will
897 be taken into account.
898 For the meaning of the argument \verb+NbMaxCons+, see
899 the discussion on \ai[\tt]{MaxRays} in Section~\ref{a:options}.
901 The function \ai[\tt]{barvinok\_enumerate} for enumerating
902 parametric polytopes was meant to be
903 a drop-in replacement of \PolyLib/'s \ai[\tt]{Polyhedron\_Enumerate}
904 function.
905 Unfortunately, the latter has been changed to
906 accept an extra argument in recent versions of \PolyLib/ as shown below.
907 \begin{verbatim}
908 Enumeration* barvinok_enumerate(Polyhedron *P, Polyhedron* C,
909 unsigned MaxRays);
910 extern Enumeration *Polyhedron_Enumerate(Polyhedron *P,
911 Polyhedron *C, unsigned MAXRAYS, char **pname);
912 \end{verbatim}
913 The argument \verb+MaxRays+ has the same meaning as the argument
914 \verb+NbMaxCons+ above.
915 The argument \verb+P+ refers to the $(d+n)$-dimensional
916 polyhedron defining the parametric polytope.
917 The argument \verb+C+ is an $n$-dimensional polyhedron containing
918 extra constraints on the parameter space.
919 Its primary use is to indicate how many of the dimensions
920 in \verb+P+ refer to parameters as any constraint in \verb+C+
921 could equally well have been added to \verb+P+ itself.
922 Note that the dimensions referring to the parameters should
923 appear {\em last}.
924 If either \verb+P+ or \verb+C+ is a union,
925 then only the first set in the union will be taken into account.
926 The result is a newly allocated \ai[\tt]{Enumeration}.
927 As an alternative we also provide a function
928 (\ai[\tt]{barvinok\_enumerate\_ev} or
929 \ai[\tt]{barvinok\_enumerate\_with\_options}) that returns
930 an \ai[\tt]{evalue}.
931 \begin{verbatim}
932 evalue* barvinok_enumerate_ev(Polyhedron *P, Polyhedron* C,
933 unsigned MaxRays);
934 evalue* barvinok_enumerate_with_options(Polyhedron *P,
935 Polyhedron* C, struct barvinok_options *options);
936 \end{verbatim}
938 For enumerating parametric sets with existentially quantified variables,
939 we provide two functions:
940 \ai[\tt]{barvinok\_enumerate\_e},
942 \ai[\tt]{barvinok\_enumerate\_isl}.
943 \begin{verbatim}
944 evalue* barvinok_enumerate_e(Polyhedron *P,
945 unsigned exist, unsigned nparam, unsigned MaxRays);
946 evalue* barvinok_enumerate_e_with_options(Polyhedron *P,
947 unsigned exist, unsigned nparam,
948 struct barvinok_options *options);
949 evalue *barvinok_enumerate_isl(Polyhedron *P,
950 unsigned exist, unsigned nparam,
951 struct barvinok_options *options);
952 evalue *barvinok_enumerate_scarf(Polyhedron *P,
953 unsigned exist, unsigned nparam,
954 struct barvinok_options *options);
955 \end{verbatim}
956 The first function tries the simplification rules from
957 \citeN[Section~4.6.2]{Verdoolaege2005PhD} before resorting to the method
958 based on \indac{PIP} from \citeN[Section~4.6.3]{Verdoolaege2005PhD}.
959 The second function immediately applies the technique from
960 \citeN[Section~4.6.3]{Verdoolaege2005PhD}.
961 The argument \verb+exist+ refers to the number of existential variables,
962 whereas
963 the argument \verb+nparam+ refers to the number of parameters.
964 The order of the dimensions in \verb+P+ is:
965 counted variables first, then existential variables and finally
966 the parameters.
967 The function \ai[\tt]{barvinok\_enumerate\_scarf} performs the same
968 computation as the function \ai[\tt]{barvinok\_enumerate\_scarf\_series}
969 below, but produces an explicit representation instead of a generating function.
971 \begin{verbatim}
972 gen_fun * barvinok_series(Polyhedron *P, Polyhedron* C,
973 unsigned MaxRays);
974 gen_fun * barvinok_series_with_options(Polyhedron *P,
975 Polyhedron* C, barvinok_options *options);
976 gen_fun *barvinok_enumerate_e_series(Polyhedron *P,
977 unsigned exist, unsigned nparam,
978 barvinok_options *options);
979 gen_fun *barvinok_enumerate_scarf_series(Polyhedron *P,
980 unsigned exist, unsigned nparam,
981 barvinok_options *options);
982 \end{verbatim}
983 The function
984 \ai[\tt]{barvinok\_series} or
985 \ai[\tt]{barvinok\_series\_with\_options} enumerates parametric polytopes
986 in the form of a \rgf/.
987 The polyhedron \verb+P+ is assumed to have only
988 revlex-positive rays.
990 The function \ai[\tt]{barvinok\_enumerate\_e\_series} computes a
991 generating function for the number of point in the parametric set
992 defined by \verb+P+ with \verb+exist+ existentially quantified
993 variables using the \ai{projection theorem}, as explained
994 in \autoref{s:projection}.
995 The function \ai[\tt]{barvinok\_enumerate\_scarf\_series} computes a
996 generating function for the number of point in the parametric set
997 defined by \verb+P+ with \verb+exist+ existentially quantified
998 variables, which is assumed to be 2.
999 This function implements the technique of
1000 \shortciteN{Scarf2006Neighborhood} using the \ai{neighborhood complex}
1001 description of \shortciteN{Scarf1981indivisibilities:II}.
1002 It is currently restricted to problems with 3 or 4 constraints involving
1003 the existentially quantified variables.
1005 \subsection{Auxiliary Functions}
1007 In this section we briefly mention some auxiliary functions
1008 available in the \barvinok/ library.
1010 \begin{verbatim}
1011 void Polyhedron_Polarize(Polyhedron *P);
1012 \end{verbatim}
1013 The function \ai[\tt]{Polyhedron\_Polarize}
1014 polarizes its argument and is explained
1015 in \citeN[Section~4.4.2]{Verdoolaege2005PhD}.
1017 \begin{verbatim}
1018 int unimodular_complete(Matrix *M, int row);
1019 \end{verbatim}
1020 The function \ai[\tt]{unimodular\_complete} extends
1021 the first \verb+row+ rows of
1022 \verb+M+ with an integral basis of the orthogonal complement
1023 as explained in Section~\ref{s:completion}.
1024 Returns non-zero
1025 if the resulting matrix is unimodular\index{unimodular matrix}.
1027 \begin{verbatim}
1028 int DomainIncludes(Polyhedron *D1, Polyhedron *D2);
1029 \end{verbatim}
1030 The function \ai[\tt]{DomainIncludes} extends
1031 the function \ai[\tt]{PolyhedronIncludes}
1032 provided by \PolyLib/
1033 to unions of polyhedra.
1034 It checks whether every polyhedron in the union {\tt D2}
1035 is included in some polyhedron of {\tt D1}.
1037 \begin{verbatim}
1038 Polyhedron *DomainConstraintSimplify(Polyhedron *P,
1039 unsigned MaxRays);
1040 \end{verbatim}
1041 The value returned by
1042 \ai[\tt]{DomainConstraintSimplify} is a pointer to
1043 a newly allocated \ai[\tt]{Polyhedron} that contains the
1044 same integer points as its first argument but possibly
1045 has simpler constraints.
1046 Each constraint $ g \sp a x \ge c $
1047 is replaced by $ \sp a x \ge \ceil{ \frac c g } $,
1048 where $g$ is the \ac{gcd} of the coefficients in the original
1049 constraint.
1050 The \ai[\tt]{Polyhedron} pointed to by \verb+P+ is destroyed.
1052 \begin{verbatim}
1053 Polyhedron* Polyhedron_Project(Polyhedron *P, int dim);
1054 \end{verbatim}
1055 The function \ai[\tt]{Polyhedron\_Project} projects
1056 \verb+P+ onto its last \verb+dim+ dimensions.
1058 \begin{verbatim}
1059 Matrix *left_inverse(Matrix *M, Matrix **Eq);
1060 \end{verbatim}
1061 The \ai[\tt]{left\_inverse} function computes the left inverse
1062 of \verb+M+ as explained in Section~\ref{s:inverse}.
1064 \sindex{reduced}{basis}
1065 \sindex{generalized}{reduced basis}
1066 \begin{verbatim}
1067 Matrix *Polyhedron_Reduced_Basis(Polyhedron *P,
1068 struct barvinok_options *options);
1069 \end{verbatim}
1070 \ai[\tt]{Polyhedron\_Reduced\_Basis} computes
1071 a \ai{generalized reduced basis} of {\tt P}, which
1072 is assumed to be a polytope, using the algorithm
1073 of~\shortciteN{Cook1993implementation}.
1074 See \autoref{s:feasibility} for more information.
1075 The basis vectors are stored in the rows of the matrix returned.
1077 \begin{verbatim}
1078 Vector *Polyhedron_Sample(Polyhedron *P,
1079 struct barvinok_options *options);
1080 \end{verbatim}
1081 \ai[\tt]{Polyhedron\_Sample} returns an \ai{integer point} of {\tt P}
1082 or {\tt NULL} if {\tt P} contains no integer points.
1083 The integer point is found using the algorithm
1084 of~\shortciteN{Cook1993implementation} and uses
1085 \ai[\tt]{Polyhedron\_Reduced\_Basis} to compute the reduced bases.
1086 See \autoref{s:feasibility} for more information.