1 #include <isl_set_polylib.h>
2 #include <isl/constraint.h>
4 #include <barvinok/evalue.h>
6 static __isl_give isl_qpolynomial
*extract_base(__isl_take isl_space
*dim
,
13 isl_qpolynomial
*base
, *c
;
19 if (e
->x
.p
->type
== polynomial
)
20 return isl_qpolynomial_var(dim
, isl_dim_param
, e
->x
.p
->pos
- 1);
22 ctx
= isl_space_get_ctx(dim
);
23 nparam
= isl_space_dim(dim
, isl_dim_param
);
24 v
= isl_vec_alloc(ctx
, 2 + nparam
);
28 isl_seq_clr(v
->el
+ 2, nparam
);
29 evalue_extract_affine(&e
->x
.p
->arr
[0], v
->el
+ 2, &v
->el
[1], &v
->el
[0]);
31 div
= isl_div_alloc(isl_space_copy(dim
));
32 isl_div_set_constant(div
, v
->el
[1]);
33 isl_div_set_denominator(div
, v
->el
[0]);
35 for (i
= 0; i
< nparam
; ++i
)
36 isl_div_set_coefficient(div
, isl_dim_param
, i
, v
->el
[2 + i
]);
38 base
= isl_qpolynomial_div(div
);
40 if (e
->x
.p
->type
== fractional
) {
41 base
= isl_qpolynomial_neg(base
);
43 c
= isl_qpolynomial_rat_cst(isl_space_copy(dim
), v
->el
[1], v
->el
[0]);
44 base
= isl_qpolynomial_add(base
, c
);
46 for (i
= 0; i
< nparam
; ++i
) {
48 c
= isl_qpolynomial_rat_cst(isl_space_copy(dim
),
49 v
->el
[2 + i
], v
->el
[0]);
50 t
= isl_qpolynomial_var(isl_space_copy(dim
),
52 t
= isl_qpolynomial_mul(c
, t
);
53 base
= isl_qpolynomial_add(base
, t
);
66 static int type_offset(enode
*p
)
68 return p
->type
== fractional
? 1 :
69 p
->type
== flooring
? 1 : 0;
72 __isl_give isl_qpolynomial
*isl_qpolynomial_from_evalue(__isl_take isl_space
*dim
,
77 isl_qpolynomial
*base
;
80 if (EVALUE_IS_NAN(*e
))
81 return isl_qpolynomial_infty(dim
);
82 if (value_notzero_p(e
->d
))
83 return isl_qpolynomial_rat_cst(dim
, e
->x
.n
, e
->d
);
85 offset
= type_offset(e
->x
.p
);
87 assert(e
->x
.p
->type
== polynomial
||
88 e
->x
.p
->type
== flooring
||
89 e
->x
.p
->type
== fractional
);
90 assert(e
->x
.p
->size
>= 1 + offset
);
92 base
= extract_base(isl_space_copy(dim
), e
);
93 qp
= isl_qpolynomial_from_evalue(isl_space_copy(dim
),
94 &e
->x
.p
->arr
[e
->x
.p
->size
- 1]);
96 for (i
= e
->x
.p
->size
- 2; i
>= offset
; --i
) {
97 qp
= isl_qpolynomial_mul(qp
, isl_qpolynomial_copy(base
));
98 qp
= isl_qpolynomial_add(qp
,
99 isl_qpolynomial_from_evalue(isl_space_copy(dim
),
103 isl_qpolynomial_free(base
);
109 static __isl_give isl_pw_qpolynomial
*guarded_evalue2pwqp(__isl_take isl_set
*set
,
112 static __isl_give isl_pw_qpolynomial
*relation2pwqp(__isl_take isl_set
*set
,
120 isl_pw_qpolynomial
*pwqp
;
121 struct isl_constraint
*c
;
122 struct isl_basic_set
*bset
;
123 struct isl_set
*guard
;
129 if (e
->x
.p
->size
== 1) {
130 dim
= isl_set_get_space(set
);
132 return isl_pw_qpolynomial_zero(dim
);
135 ctx
= isl_set_get_ctx(set
);
136 isl_assert(ctx
, e
->x
.p
->size
> 0, goto error
);
137 isl_assert(ctx
, e
->x
.p
->size
<= 3, goto error
);
138 isl_assert(ctx
, value_zero_p(e
->x
.p
->arr
[0].d
), goto error
);
139 isl_assert(ctx
, e
->x
.p
->arr
[0].x
.p
->type
== fractional
, goto error
);
140 fract
= &e
->x
.p
->arr
[0];
142 nparam
= isl_set_dim(set
, isl_dim_param
);
143 vec
= isl_vec_alloc(ctx
, 2 + nparam
+ 1);
147 isl_seq_clr(vec
->el
+ 2, nparam
);
148 evalue_extract_affine(&fract
->x
.p
->arr
[0],
149 vec
->el
+ 2, &vec
->el
[1], &vec
->el
[0]);
151 dim
= isl_set_get_space(set
);
152 dim
= isl_space_add_dims(dim
, isl_dim_set
, 1);
154 bset
= isl_basic_set_universe(dim
);
155 c
= isl_equality_alloc(isl_space_copy(dim
));
156 isl_int_neg(vec
->el
[0], vec
->el
[0]);
157 isl_constraint_set_coefficient(c
, isl_dim_set
, 0, vec
->el
[0]);
158 isl_constraint_set_constant(c
, vec
->el
[1]);
159 for (i
= 0; i
< nparam
; ++i
)
160 isl_constraint_set_coefficient(c
, isl_dim_param
, i
, vec
->el
[2+i
]);
161 bset
= isl_basic_set_add_constraint(bset
, c
);
162 bset
= isl_basic_set_project_out(bset
, isl_dim_set
, 0, 1);
163 guard
= isl_set_from_basic_set(bset
);
166 pwqp
= guarded_evalue2pwqp(isl_set_intersect(isl_set_copy(set
),
167 isl_set_copy(guard
)),
170 if (e
->x
.p
->size
== 3) {
171 isl_pw_qpolynomial
*pwqpc
;
172 guard
= isl_set_complement(guard
);
173 pwqpc
= guarded_evalue2pwqp(isl_set_intersect(isl_set_copy(set
),
174 isl_set_copy(guard
)),
176 pwqp
= isl_pw_qpolynomial_add_disjoint(pwqp
, pwqpc
);
188 static __isl_give isl_pw_qpolynomial
*guarded_evalue2pwqp(__isl_take isl_set
*set
,
193 if (value_zero_p(e
->d
) && e
->x
.p
->type
== relation
)
194 return relation2pwqp(set
, e
);
196 qp
= isl_qpolynomial_from_evalue(isl_set_get_space(set
), e
);
198 return isl_pw_qpolynomial_alloc(set
, qp
);
201 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_from_evalue(__isl_take isl_space
*dim
, const evalue
*e
)
204 isl_pw_qpolynomial
*pwqp
;
208 if (EVALUE_IS_ZERO(*e
))
209 return isl_pw_qpolynomial_zero(dim
);
211 if (value_notzero_p(e
->d
)) {
212 isl_set
*set
= isl_set_universe(isl_space_copy(dim
));
213 isl_qpolynomial
*qp
= isl_qpolynomial_rat_cst(dim
, e
->x
.n
, e
->d
);
214 return isl_pw_qpolynomial_alloc(set
, qp
);
217 assert(!EVALUE_IS_NAN(*e
));
219 assert(e
->x
.p
->type
== partition
);
221 pwqp
= isl_pw_qpolynomial_zero(isl_space_copy(dim
));
223 for (i
= 0; i
< e
->x
.p
->size
/2; ++i
) {
224 Polyhedron
*D
= EVALUE_DOMAIN(e
->x
.p
->arr
[2 * i
]);
225 isl_set
*set
= isl_set_new_from_polylib(D
, isl_space_copy(dim
));
226 isl_pw_qpolynomial
*pwqp_i
;
228 pwqp_i
= guarded_evalue2pwqp(set
, &e
->x
.p
->arr
[2 * i
+ 1]);
230 pwqp
= isl_pw_qpolynomial_add_disjoint(pwqp
, pwqp_i
);
241 static evalue
*evalue_pow(evalue
*e
, int exp
)
257 static evalue
*div2evalue(__isl_take isl_div
*div
)
270 dim
= isl_div_dim(div
, isl_dim_set
);
271 nparam
= isl_div_dim(div
, isl_dim_param
);
273 ctx
= isl_div_get_ctx(div
);
274 vec
= isl_vec_alloc(ctx
, 1 + dim
+ nparam
+ 1);
277 for (i
= 0; i
< dim
; ++i
)
278 isl_div_get_coefficient(div
, isl_dim_set
, i
, &vec
->el
[1 + i
]);
279 for (i
= 0; i
< nparam
; ++i
)
280 isl_div_get_coefficient(div
, isl_dim_param
, i
,
281 &vec
->el
[1 + dim
+ i
]);
282 isl_div_get_denominator(div
, &vec
->el
[0]);
283 isl_div_get_constant(div
, &vec
->el
[1 + dim
+ nparam
]);
285 e
= isl_alloc_type(ctx
, evalue
);
289 value_set_si(e
->d
, 0);
290 e
->x
.p
= new_enode(flooring
, 3, -1);
291 evalue_set_si(&e
->x
.p
->arr
[1], 0, 1);
292 evalue_set_si(&e
->x
.p
->arr
[2], 1, 1);
293 value_clear(e
->x
.p
->arr
[0].d
);
294 aff
= affine2evalue(vec
->el
+ 1, vec
->el
[0], dim
+ nparam
);
295 e
->x
.p
->arr
[0] = *aff
;
306 static int add_term(__isl_take isl_term
*term
, void *user
)
309 evalue
*sum
= (evalue
*)user
;
320 nparam
= isl_term_dim(term
, isl_dim_param
);
321 dim
= isl_term_dim(term
, isl_dim_set
);
322 n_div
= isl_term_dim(term
, isl_dim_div
);
324 ctx
= isl_term_get_ctx(term
);
325 e
= isl_alloc_type(ctx
, evalue
);
332 isl_term_get_num(term
, &n
);
333 isl_term_get_den(term
, &d
);
337 for (i
= 0; i
< dim
; ++i
) {
339 int exp
= isl_term_get_exp(term
, isl_dim_set
, i
);
344 pow
= evalue_pow(evalue_var(i
), exp
);
349 for (i
= 0; i
< nparam
; ++i
) {
351 int exp
= isl_term_get_exp(term
, isl_dim_param
, i
);
356 pow
= evalue_pow(evalue_var(dim
+ i
), exp
);
361 for (i
= 0; i
< n_div
; ++i
) {
365 int exp
= isl_term_get_exp(term
, isl_dim_div
, i
);
370 div
= isl_term_get_div(term
, i
);
371 floor
= div2evalue(div
);
372 pow
= evalue_pow(floor
, exp
);
391 evalue
*isl_qpolynomial_to_evalue(__isl_keep isl_qpolynomial
*qp
)
399 if (isl_qpolynomial_foreach_term(qp
, add_term
, e
) < 0)
408 static int add_guarded_qp(__isl_take isl_set
*set
, __isl_take isl_qpolynomial
*qp
,
414 evalue
*sum
= (evalue
*)user
;
417 e
= isl_alloc_type(isl_set_get_ctx(set
), evalue
);
421 D
= isl_set_to_polylib(set
);
425 f
= isl_qpolynomial_to_evalue(qp
);
431 dim
= isl_set_dim(set
, isl_dim_param
) + isl_set_dim(set
, isl_dim_set
);
433 e
->x
.p
= new_enode(partition
, 2, D
->Dimension
);
434 EVALUE_SET_DOMAIN(e
->x
.p
->arr
[0], D
);
436 value_clear(e
->x
.p
->arr
[1].d
);
444 isl_qpolynomial_free(qp
);
450 isl_qpolynomial_free(qp
);
454 evalue
*isl_pw_qpolynomial_to_evalue(__isl_keep isl_pw_qpolynomial
*pwqp
)
462 if (isl_pw_qpolynomial_foreach_piece(pwqp
, add_guarded_qp
, e
))