4 #include <isl_set_polylib.h>
5 #include <barvinok/evalue.h>
6 #include <barvinok/util.h>
7 #include <barvinok/barvinok.h>
8 #include "barvinok_enumerate_options.h"
10 #include "verif_ehrhart.h"
11 #include "verify_series.h"
12 #include "remove_equalities.h"
13 #include "evalue_convert.h"
14 #include "conversion.h"
15 #include "skewed_genfun.h"
17 #undef CS /* for Solaris 10 */
22 /* The input of this example program is the same as that of testehrhart
23 * in the PolyLib distribution, i.e., a polytope in combined
24 * data and parameter space, a context polytope in parameter space
25 * and (optionally) the names of the parameters.
26 * Both polytopes are in PolyLib notation.
29 struct verify_point_enum
{
30 struct verify_point_data vpd
;
32 isl_pw_qpolynomial
*pwqp
;
35 static int verify_point(__isl_take isl_point
*pnt
, void *user
)
37 struct verify_point_enum
*vpe
= (struct verify_point_enum
*) user
;
42 isl_qpolynomial
*cnt
= NULL
;
43 int pa
= vpe
->vpd
.options
->barvinok
->approx
->approximation
;
46 FILE *out
= vpe
->vpd
.options
->print_all
? stdout
: stderr
;
53 set
= isl_set_copy(vpe
->set
);
54 nparam
= isl_set_dim(set
, isl_dim_param
);
55 for (i
= 0; i
< nparam
; ++i
) {
56 isl_point_get_coordinate(pnt
, isl_dim_param
, i
, &v
);
57 set
= isl_set_fix(set
, isl_dim_param
, i
, v
);
60 if (isl_set_count(set
, &v
) < 0)
63 cnt
= isl_pw_qpolynomial_eval(isl_pw_qpolynomial_copy(vpe
->pwqp
),
66 cst
= isl_qpolynomial_is_cst(cnt
, &n
, &d
);
70 if (pa
== BV_APPROX_SIGN_LOWER
)
71 isl_int_cdiv_q(n
, n
, d
);
72 else if (pa
== BV_APPROX_SIGN_UPPER
)
73 isl_int_fdiv_q(n
, n
, d
);
75 isl_int_tdiv_q(n
, n
, d
);
77 if (pa
== BV_APPROX_SIGN_APPROX
)
78 /* just accept everything */
80 else if (pa
== BV_APPROX_SIGN_LOWER
)
81 ok
= isl_int_le(n
, v
);
82 else if (pa
== BV_APPROX_SIGN_UPPER
)
83 ok
= isl_int_ge(n
, v
);
85 ok
= isl_int_eq(n
, v
);
87 if (vpe
->vpd
.options
->print_all
|| !ok
) {
89 for (i
= 0; i
< nparam
; ++i
) {
92 isl_point_get_coordinate(pnt
, isl_dim_param
, i
, &d
);
93 isl_int_print(out
, d
, 0);
96 isl_int_print(out
, n
, 0);
97 fprintf(out
, ", count = ");
98 isl_int_print(out
, v
, 0);
100 fprintf(out
, ". OK\n");
102 fprintf(out
, ". NOT OK\n");
103 } else if ((vpe
->vpd
.n
% vpe
->vpd
.s
) == 0) {
113 isl_qpolynomial_free(cnt
);
122 if (vpe
->vpd
.options
->continue_on_error
)
125 return (vpe
->vpd
.n
>= 1 && ok
) ? 0 : -1;
128 static int verify_isl(Polyhedron
*P
, Polyhedron
*C
,
129 evalue
*EP
, const struct verify_options
*options
)
131 struct verify_point_enum vpe
= { { options
} };
133 isl_ctx
*ctx
= isl_ctx_alloc();
139 dim
= isl_space_set_alloc(ctx
, C
->Dimension
, P
->Dimension
- C
->Dimension
);
140 for (i
= 0; i
< C
->Dimension
; ++i
)
141 dim
= isl_space_set_dim_name(dim
, isl_dim_param
, i
, options
->params
[i
]);
142 set
= isl_set_new_from_polylib(P
, isl_space_copy(dim
));
143 dim
= isl_space_drop_dims(dim
,
144 isl_dim_set
, 0, P
->Dimension
- C
->Dimension
);
145 set_C
= isl_set_new_from_polylib(C
, dim
);
146 set_C
= isl_set_intersect(isl_set_copy(set
), set_C
);
147 set_C
= isl_set_remove_dims(set_C
,
148 isl_dim_set
, 0, P
->Dimension
- C
->Dimension
);
150 set_C
= verify_context_set_bounds(set_C
, options
);
152 r
= verify_point_data_init(&vpe
.vpd
, set_C
);
155 vpe
.pwqp
= isl_pw_qpolynomial_from_evalue(isl_set_get_space(set_C
), EP
);
157 isl_set_foreach_point(set_C
, verify_point
, &vpe
);
161 isl_pw_qpolynomial_free(vpe
.pwqp
);
167 verify_point_data_fini(&vpe
.vpd
);
172 static int verify(Polyhedron
*P
, Polyhedron
*C
, evalue
*EP
, skewed_gen_fun
*gf
,
173 struct enumerate_options
*options
)
179 if (!options
->series
|| options
->function
)
180 return verify_isl(P
, C
, EP
, options
->verify
);
182 CS
= check_poly_context_scan(P
, &C
, C
->Dimension
, options
->verify
);
184 p
= Vector_Alloc(P
->Dimension
+2);
185 value_set_si(p
->p
[P
->Dimension
+1], 1);
187 /* S = scanning list of polyhedra */
188 S
= Polyhedron_Scan(P
, C
, options
->verify
->barvinok
->MaxRays
);
190 check_poly_init(C
, options
->verify
);
192 /******* CHECK NOW *********/
194 if (!options
->series
|| options
->function
) {
195 if (!check_poly_EP(S
, CS
, EP
, 0, C
->Dimension
, 0, p
->p
,
199 if (!check_poly_gf(S
, CS
, gf
, 0, C
->Dimension
, 0, p
->p
,
207 fprintf(stderr
,"Check failed !\n");
209 if (!options
->verify
->print_all
)
221 /* frees M and Minv */
222 static void apply_transformation(Polyhedron
**P
, Polyhedron
**C
,
223 bool free_P
, bool free_C
,
224 Matrix
*M
, Matrix
*Minv
, Matrix
**inv
,
225 barvinok_options
*options
)
230 M2
= align_matrix(M
, (*P
)->Dimension
+ 1);
232 *P
= Polyhedron_Preimage(*P
, M2
, options
->MaxRays
);
238 *C
= Polyhedron_Preimage(*C
, M
, options
->MaxRays
);
246 *inv
= Matrix_Alloc(Minv
->NbRows
, T
->NbColumns
);
247 Matrix_Product(Minv
, T
, *inv
);
254 /* Since we have "compressed" the parameters (in case there were
255 * any equalities), the result is independent of the coordinates in the
256 * coordinate subspace spanned by the lines. We can therefore assume
257 * these coordinates are zero and compute the inverse image of the map
258 * from a lower dimensional space that adds zeros in the appropriate
261 static void remove_lines(Polyhedron
*C
, Matrix
**M
, Matrix
**Minv
)
263 Matrix
*L
= Matrix_Alloc(C
->Dimension
+1, C
->Dimension
+1);
264 for (int r
= 0; r
< C
->NbBid
; ++r
)
265 Vector_Copy(C
->Ray
[r
]+1, L
->p
[r
], C
->Dimension
);
266 unimodular_complete(L
, C
->NbBid
);
267 assert(value_one_p(L
->p
[C
->Dimension
][C
->Dimension
]));
268 assert(First_Non_Zero(L
->p
[C
->Dimension
], C
->Dimension
) == -1);
269 Matrix_Transposition(L
);
270 assert(First_Non_Zero(L
->p
[C
->Dimension
], C
->Dimension
) == -1);
272 *M
= Matrix_Alloc(C
->Dimension
+1, C
->Dimension
-C
->NbBid
+1);
273 for (int i
= 0; i
< C
->Dimension
+1; ++i
)
274 Vector_Copy(L
->p
[i
]+C
->NbBid
, (*M
)->p
[i
], C
->Dimension
-C
->NbBid
+1);
276 Matrix
*Linv
= Matrix_Alloc(C
->Dimension
+1, C
->Dimension
+1);
277 int ok
= Matrix_Inverse(L
, Linv
);
281 *Minv
= Matrix_Alloc(C
->Dimension
-C
->NbBid
+1, C
->Dimension
+1);
282 for (int i
= C
->NbBid
; i
< C
->Dimension
+1; ++i
)
283 Vector_AntiScale(Linv
->p
[i
], (*Minv
)->p
[i
-C
->NbBid
],
284 Linv
->p
[C
->Dimension
][C
->Dimension
], C
->Dimension
+1);
288 static skewed_gen_fun
*series(Polyhedron
*P
, Polyhedron
* C
,
289 barvinok_options
*options
)
298 /* Compute true context */
299 C1
= Polyhedron_Project(P
, C
->Dimension
);
300 C2
= DomainIntersection(C
, C1
, options
->MaxRays
);
303 POL_ENSURE_VERTICES(C2
);
304 if (C2
->NbBid
!= 0) {
306 Matrix
*M
, *Minv
, *M2
;
308 if (C2
->NbEq
|| P
->NbEq
) {
309 /* We remove all equalities to be sure all lines are unit vectors */
311 remove_all_equalities(&PT
, &CT
, &CP
, NULL
, C2
->Dimension
,
318 inv
= left_inverse(CP
, &eq
);
324 div
= Matrix_Alloc(inv
->NbRows
-1, inv
->NbColumns
+1);
325 for (int i
= 0; i
< inv
->NbRows
-1; ++i
) {
326 Vector_Gcd(inv
->p
[i
], inv
->NbColumns
, &tmp
);
327 if (mpz_divisible_p(tmp
,
328 inv
->p
[inv
->NbRows
-1][inv
->NbColumns
-1]))
330 Vector_Copy(inv
->p
[i
], div
->p
[d
], inv
->NbColumns
);
331 value_assign(div
->p
[d
][inv
->NbColumns
],
332 inv
->p
[inv
->NbRows
-1][inv
->NbColumns
-1]);
344 POL_ENSURE_VERTICES(C2
);
348 remove_lines(C2
, &M
, &Minv
);
349 apply_transformation(&PT
, &C2
, PT
!= P
, C2
!= C
, M
, Minv
, &inv
,
353 POL_ENSURE_VERTICES(C2
);
354 if (!Polyhedron_has_revlex_positive_rays(C2
, C2
->Dimension
)) {
358 Constraints
= Matrix_Alloc(C2
->NbConstraints
, C2
->Dimension
+1);
359 for (int i
= 0; i
< C2
->NbConstraints
; ++i
)
360 Vector_Copy(C2
->Constraint
[i
]+1, Constraints
->p
[i
], C2
->Dimension
);
361 left_hermite(Constraints
, &H
, &Q
, &U
);
362 Matrix_Free(Constraints
);
364 for (int i
= 0; i
< C2
->Dimension
/2; ++i
)
365 Vector_Exchange(Q
->p
[i
], Q
->p
[C2
->Dimension
-1-i
], C2
->Dimension
);
368 Matrix
*M
= Matrix_Alloc(C2
->Dimension
+1, C2
->Dimension
+1);
370 int ok
= Matrix_Inverse(U
, M
);
374 apply_transformation(&PT
, &C2
, PT
!= P
, C2
!= C
, M
, Q
, &inv
, options
);
376 gf
= barvinok_series_with_options(PT
, C2
, options
);
380 return new skewed_gen_fun(gf
, inv
, eq
, div
);
383 int main(int argc
, char **argv
)
388 skewed_gen_fun
*gf
= NULL
;
389 const char **param_name
;
390 int print_solution
= 1;
392 struct enumerate_options
*options
= enumerate_options_new_with_defaults();
394 argc
= enumerate_options_parse(options
, argc
, argv
, ISL_ARG_ALL
);
398 A
= Constraints2Polyhedron(M
, options
->verify
->barvinok
->MaxRays
);
402 C
= Constraints2Polyhedron(M
, options
->verify
->barvinok
->MaxRays
);
404 assert(A
->Dimension
>= C
->Dimension
);
405 param_name
= Read_ParamNames(stdin
, C
->Dimension
);
407 if (options
->verify
->verify
) {
408 verify_options_set_range(options
->verify
, A
->Dimension
);
409 if (!options
->verify
->barvinok
->verbose
)
413 if (print_solution
&& options
->verify
->barvinok
->verbose
) {
414 Polyhedron_Print(stdout
, P_VALUE_FMT
, A
);
415 Polyhedron_Print(stdout
, P_VALUE_FMT
, C
);
418 if (options
->series
) {
419 gf
= series(A
, C
, options
->verify
->barvinok
);
420 if (print_solution
) {
421 gf
->print(cout
, C
->Dimension
, param_name
);
424 if (options
->function
) {
427 print_evalue(stdout
, EP
, param_name
);
430 EP
= barvinok_enumerate_with_options(A
, C
, options
->verify
->barvinok
);
432 if (evalue_convert(EP
, options
->convert
, options
->verify
->barvinok
->verbose
,
433 C
->Dimension
, param_name
))
436 printf("\nSize: %zd\n", evalue_size(EP
));
438 print_evalue(stdout
, EP
, param_name
);
441 if (options
->verify
->verify
) {
442 options
->verify
->params
= param_name
;
443 result
= verify(A
, C
, EP
, gf
, options
);
451 if (options
->verify
->barvinok
->print_stats
)
452 barvinok_stats_print(options
->verify
->barvinok
->stats
, stdout
);
454 Free_ParamNames(param_name
, C
->Dimension
);
457 enumerate_options_free(options
);