evalue.c: esum_over_domain_cst: pass down options to barvinok_enumerate_e
[barvinok.git] / lattice_point.cc
blob6b89806b9fcf03fc2c932438e51a5b478d0ced82
1 #include <assert.h>
2 #include <NTL/mat_ZZ.h>
3 #include <NTL/vec_ZZ.h>
4 #include <barvinok/polylib.h>
5 #include <barvinok/options.h>
6 #include <barvinok/evalue.h>
7 #include <barvinok/util.h>
8 #include "config.h"
9 #include "conversion.h"
10 #include "lattice_point.h"
11 #include "param_util.h"
13 using std::cerr;
14 using std::endl;
16 #define ALLOC(type) (type*)malloc(sizeof(type))
18 /* returns an evalue that corresponds to
20 * c/(*den) x_param
22 static evalue *term(int param, ZZ& c, Value *den = NULL)
24 evalue *EP = new evalue();
25 value_init(EP->d);
26 value_set_si(EP->d,0);
27 EP->x.p = new_enode(polynomial, 2, param + 1);
28 evalue_set_si(&EP->x.p->arr[0], 0, 1);
29 value_init(EP->x.p->arr[1].x.n);
30 if (den == NULL)
31 value_set_si(EP->x.p->arr[1].d, 1);
32 else
33 value_assign(EP->x.p->arr[1].d, *den);
34 zz2value(c, EP->x.p->arr[1].x.n);
35 return EP;
38 /* returns an evalue that corresponds to
40 * sum_i p[i] * x_i
42 evalue *multi_monom(vec_ZZ& p)
44 evalue *X = ALLOC(evalue);
45 value_init(X->d);
46 value_init(X->x.n);
47 unsigned nparam = p.length()-1;
48 zz2value(p[nparam], X->x.n);
49 value_set_si(X->d, 1);
50 for (int i = 0; i < nparam; ++i) {
51 if (p[i] == 0)
52 continue;
53 evalue *T = term(i, p[i]);
54 eadd(T, X);
55 free_evalue_refs(T);
56 delete T;
58 return X;
62 * Check whether mapping polyhedron P on the affine combination
63 * num yields a range that has a fixed quotient on integer
64 * division by d
65 * If zero is true, then we are only interested in the quotient
66 * for the cases where the remainder is zero.
67 * Returns NULL if false and a newly allocated value if true.
69 static Value *fixed_quotient(Polyhedron *P, vec_ZZ& num, Value d, bool zero)
71 Value* ret = NULL;
72 int len = num.length();
73 Matrix *T = Matrix_Alloc(2, len);
74 zz2values(num, T->p[0]);
75 value_set_si(T->p[1][len-1], 1);
76 Polyhedron *I = Polyhedron_Image(P, T, P->NbConstraints);
77 Matrix_Free(T);
79 int i;
80 for (i = 0; i < I->NbRays; ++i)
81 if (value_zero_p(I->Ray[i][2])) {
82 Polyhedron_Free(I);
83 return NULL;
86 Value min, max;
87 value_init(min);
88 value_init(max);
89 int bounded = line_minmax(I, &min, &max);
90 assert(bounded);
92 if (zero)
93 mpz_cdiv_q(min, min, d);
94 else
95 mpz_fdiv_q(min, min, d);
96 mpz_fdiv_q(max, max, d);
98 if (value_eq(min, max)) {
99 ret = ALLOC(Value);
100 value_init(*ret);
101 value_assign(*ret, min);
103 value_clear(min);
104 value_clear(max);
105 return ret;
109 * Normalize linear expression coef modulo m
110 * Removes common factor and reduces coefficients
111 * Returns index of first non-zero coefficient or len
113 int normal_mod(Value *coef, int len, Value *m)
115 Value gcd;
116 value_init(gcd);
118 Vector_Gcd(coef, len, &gcd);
119 value_gcd(gcd, gcd, *m);
120 Vector_AntiScale(coef, coef, gcd, len);
122 value_division(*m, *m, gcd);
123 value_clear(gcd);
125 if (value_one_p(*m))
126 return len;
128 int j;
129 for (j = 0; j < len; ++j)
130 mpz_fdiv_r(coef[j], coef[j], *m);
131 for (j = 0; j < len; ++j)
132 if (value_notzero_p(coef[j]))
133 break;
135 return j;
138 static bool mod_needed(Polyhedron *PD, vec_ZZ& num, Value d, evalue *E)
140 Value *q = fixed_quotient(PD, num, d, false);
142 if (!q)
143 return true;
145 value_oppose(*q, *q);
146 evalue EV;
147 value_init(EV.d);
148 value_set_si(EV.d, 1);
149 value_init(EV.x.n);
150 value_multiply(EV.x.n, *q, d);
151 eadd(&EV, E);
152 free_evalue_refs(&EV);
153 value_clear(*q);
154 free(q);
155 return false;
158 /* Computes the fractional part of the affine expression specified
159 * by coef (of length nvar+1) and the denominator denom.
160 * If PD is not NULL, then it specifies additional constraints
161 * on the variables that may be used to simplify the resulting
162 * fractional part expression.
164 * Modifies coef argument !
166 evalue *fractional_part(Value *coef, Value denom, int nvar, Polyhedron *PD)
168 Value m;
169 value_init(m);
170 evalue *EP = evalue_zero();
171 int sign = 1;
173 value_assign(m, denom);
174 int j = normal_mod(coef, nvar+1, &m);
176 if (j == nvar+1) {
177 value_clear(m);
178 return EP;
181 vec_ZZ num;
182 values2zz(coef, num, nvar+1);
184 ZZ g;
185 value2zz(m, g);
187 evalue tmp;
188 value_init(tmp.d);
189 evalue_set_si(&tmp, 0, 1);
191 int p = j;
192 if (g % 2 == 0)
193 while (j < nvar && (num[j] == g/2 || num[j] == 0))
194 ++j;
195 if ((j < nvar && num[j] > g/2) || (j == nvar && num[j] >= (g+1)/2)) {
196 for (int k = j; k < nvar; ++k)
197 if (num[k] != 0)
198 num[k] = g - num[k];
199 num[nvar] = g - 1 - num[nvar];
200 value_assign(tmp.d, m);
201 ZZ t = sign*(g-1);
202 zz2value(t, tmp.x.n);
203 eadd(&tmp, EP);
204 sign = -sign;
207 if (p >= nvar) {
208 ZZ t = num[nvar] * sign;
209 zz2value(t, tmp.x.n);
210 value_assign(tmp.d, m);
211 eadd(&tmp, EP);
212 } else {
213 evalue *E = multi_monom(num);
214 evalue EV;
215 value_init(EV.d);
217 if (PD && !mod_needed(PD, num, m, E)) {
218 value_init(EV.x.n);
219 value_set_si(EV.x.n, sign);
220 value_assign(EV.d, m);
221 emul(&EV, E);
222 eadd(E, EP);
223 } else {
224 value_init(EV.x.n);
225 value_set_si(EV.x.n, 1);
226 value_assign(EV.d, m);
227 emul(&EV, E);
228 value_clear(EV.x.n);
229 value_set_si(EV.d, 0);
230 EV.x.p = new_enode(fractional, 3, -1);
231 evalue_copy(&EV.x.p->arr[0], E);
232 evalue_set_si(&EV.x.p->arr[1], 0, 1);
233 value_init(EV.x.p->arr[2].x.n);
234 value_set_si(EV.x.p->arr[2].x.n, sign);
235 value_set_si(EV.x.p->arr[2].d, 1);
237 eadd(&EV, EP);
240 free_evalue_refs(&EV);
241 evalue_free(E);
244 free_evalue_refs(&tmp);
246 value_clear(m);
248 return EP;
251 /* Computes the ceil of the affine expression specified
252 * by coef (of length nvar+1) and the denominator denom.
253 * If PD is not NULL, then it specifies additional constraints
254 * on the variables that may be used to simplify the resulting
255 * ceil expression.
257 * Modifies coef argument !
259 evalue *ceiling(Value *coef, Value denom, int nvar, Polyhedron *PD)
261 evalue *EP, *f;
262 EP = affine2evalue(coef, denom, nvar);
263 Vector_Oppose(coef, coef, nvar+1);
264 f = fractional_part(coef, denom, nvar, PD);
265 eadd(f, EP);
266 evalue_free(f);
267 return EP;
270 static evalue *ceil(Value *coef, int len, Value d,
271 barvinok_options *options)
273 evalue *c;
275 Vector_Oppose(coef, coef, len);
276 c = fractional_part(coef, d, len-1, NULL);
277 if (options->lookup_table)
278 evalue_mod2table(c, len-1);
279 return c;
282 void lattice_point_fixed(Value *vertex, Value *vertex_res,
283 Matrix *Rays, Matrix *Rays_res,
284 Value *point)
286 unsigned dim = Rays->NbRows;
287 if (value_one_p(vertex[dim]))
288 Vector_Copy(vertex_res, point, Rays_res->NbColumns);
289 else {
290 Matrix *R2 = Matrix_Copy(Rays);
291 Matrix *inv = Matrix_Alloc(Rays->NbRows, Rays->NbColumns);
292 int ok = Matrix_Inverse(R2, inv);
293 assert(ok);
294 Matrix_Free(R2);
295 Vector *lambda = Vector_Alloc(dim);
296 Vector_Matrix_Product(vertex, inv, lambda->p);
297 Matrix_Free(inv);
298 for (int j = 0; j < dim; ++j)
299 mpz_cdiv_q(lambda->p[j], lambda->p[j], vertex[dim]);
300 Vector_Matrix_Product(lambda->p, Rays_res, point);
301 Vector_Free(lambda);
305 static Matrix *Matrix_AddRowColumn(Matrix *M)
307 Matrix *M2 = Matrix_Alloc(M->NbRows+1, M->NbColumns+1);
308 for (int i = 0; i < M->NbRows; ++i)
309 Vector_Copy(M->p[i], M2->p[i], M->NbColumns);
310 value_set_si(M2->p[M->NbRows][M->NbColumns], 1);
311 return M2;
314 #define FORALL_COSETS(det,D,i,k) \
315 do { \
316 Vector *k = Vector_Alloc(D->NbRows+1); \
317 value_set_si(k->p[D->NbRows], 1); \
318 for (unsigned long i = 0; i < det; ++i) { \
319 if (i) \
320 for (int j = D->NbRows-1; j >= 0; --j) { \
321 value_increment(k->p[j], k->p[j]); \
322 if (value_eq(k->p[j], D->p[j][j])) \
323 value_set_si(k->p[j], 0); \
324 else \
325 break; \
328 #define END_FORALL_COSETS \
331 Vector_Free(k); \
332 } while(0);
334 /* Compute the lattice points in the vertex cone at "values" with rays "rays".
335 * The lattice points are returned in "vertex".
337 * Rays has the generators as rows and so does W.
338 * We first compute { m-v, u_i^* } with m = k W, where k runs through
339 * the cosets.
340 * We compute
341 * [k 1] [ d1*W 0 ] [ U' 0 ] = [k 1] T2
342 * [ -v d1 ] [ 0 d2 ]
343 * where d1 and d2 are the denominators of v and U^{-1}=U'/d2.
344 * Then lambda = { k } (componentwise)
345 * We compute x - floor(x) = {x} = { a/b } as fdiv_r(a,b)/b
346 * For open rays/facets, we need values in (0,1] rather than [0,1),
347 * so we compute {{x}} = x - ceil(x-1) = a/b - ceil((a-b)/b)
348 * = (a - b cdiv_q(a-b,b) - b + b)/b
349 * = (cdiv_r(a,b)+b)/b
350 * Finally, we compute v + lambda * U
351 * The denominator of lambda can be d1*d2, that of lambda2 = lambda*U
352 * can be at most d1, since it is integer if v = 0.
353 * The denominator of v + lambda2 is 1.
355 * The _res variants of the input variables may have been multiplied with
356 * a (list of) nonorthogonal vector(s) and may therefore have fewer columns
357 * than their original counterparts.
359 void lattice_points_fixed(Value *vertex, Value *vertex_res,
360 Matrix *Rays, Matrix *Rays_res, Matrix *points,
361 unsigned long det)
363 unsigned dim = Rays->NbRows;
364 if (det == 1) {
365 lattice_point_fixed(vertex, vertex_res, Rays, Rays_res,
366 points->p[0]);
367 return;
369 Matrix *U, *W, *D;
370 Smith(Rays, &U, &W, &D);
371 Matrix_Free(U);
373 /* Sanity check */
374 unsigned long det2 = 1;
375 for (int i = 0 ; i < D->NbRows; ++i)
376 det2 *= mpz_get_ui(D->p[i][i]);
377 assert(det == det2);
379 Matrix *T = Matrix_Alloc(W->NbRows+1, W->NbColumns+1);
380 for (int i = 0; i < W->NbRows; ++i)
381 Vector_Scale(W->p[i], T->p[i], vertex[dim], W->NbColumns);
382 Matrix_Free(W);
383 Vector_Oppose(vertex, T->p[dim], dim);
384 value_assign(T->p[dim][dim], vertex[dim]);
386 Matrix *R2 = Matrix_AddRowColumn(Rays);
387 Matrix *inv = Matrix_Alloc(R2->NbRows, R2->NbColumns);
388 int ok = Matrix_Inverse(R2, inv);
389 assert(ok);
390 Matrix_Free(R2);
392 Matrix *T2 = Matrix_Alloc(dim+1, dim+1);
393 Matrix_Product(T, inv, T2);
394 Matrix_Free(T);
396 Vector *lambda = Vector_Alloc(dim+1);
397 Vector *lambda2 = Vector_Alloc(Rays_res->NbColumns);
398 FORALL_COSETS(det, D, i, k)
399 Vector_Matrix_Product(k->p, T2, lambda->p);
400 for (int j = 0; j < dim; ++j)
401 mpz_fdiv_r(lambda->p[j], lambda->p[j], lambda->p[dim]);
402 Vector_Matrix_Product(lambda->p, Rays_res, lambda2->p);
403 for (int j = 0; j < lambda2->Size; ++j)
404 assert(mpz_divisible_p(lambda2->p[j], inv->p[dim][dim]));
405 Vector_AntiScale(lambda2->p, lambda2->p, inv->p[dim][dim], lambda2->Size);
406 Vector_Add(lambda2->p, vertex_res, lambda2->p, lambda2->Size);
407 for (int j = 0; j < lambda2->Size; ++j)
408 assert(mpz_divisible_p(lambda2->p[j], vertex[dim]));
409 Vector_AntiScale(lambda2->p, points->p[i], vertex[dim], lambda2->Size);
410 END_FORALL_COSETS
411 Vector_Free(lambda);
412 Vector_Free(lambda2);
413 Matrix_Free(D);
414 Matrix_Free(inv);
416 Matrix_Free(T2);
419 /* Returns the power of (t+1) in the term of a rational generating function,
420 * i.e., the scalar product of the actual lattice point and lambda.
421 * The lattice point is the unique lattice point in the fundamental parallelepiped
422 * of the unimodular cone i shifted to the parametric vertex W/lcm.
424 * The rows of W refer to the coordinates of the vertex
425 * The first nparam columns are the coefficients of the parameters
426 * and the final column is the constant term.
427 * lcm is the common denominator of all coefficients.
429 static evalue **lattice_point_fractional(const mat_ZZ& rays, vec_ZZ& lambda,
430 Matrix *V,
431 unsigned long det)
433 unsigned nparam = V->NbColumns-2;
434 evalue **E = new evalue *[det];
436 Matrix* Rays = zz2matrix(rays);
437 Matrix *T = Transpose(Rays);
438 Matrix *T2 = Matrix_Copy(T);
439 Matrix *inv = Matrix_Alloc(T2->NbRows, T2->NbColumns);
440 int ok = Matrix_Inverse(T2, inv);
441 assert(ok);
442 Matrix_Free(T2);
443 mat_ZZ vertex;
444 matrix2zz(V, vertex, V->NbRows, V->NbColumns-1);
446 vec_ZZ num;
447 num = lambda * vertex;
449 evalue *EP = multi_monom(num);
451 evalue_div(EP, V->p[0][nparam+1]);
453 Matrix *L = Matrix_Alloc(inv->NbRows, V->NbColumns);
454 Matrix_Product(inv, V, L);
456 mat_ZZ RT;
457 matrix2zz(T, RT, T->NbRows, T->NbColumns);
458 Matrix_Free(T);
460 vec_ZZ p = lambda * RT;
462 Value tmp;
463 value_init(tmp);
465 if (det == 1) {
466 for (int i = 0; i < L->NbRows; ++i) {
467 evalue *f;
468 Vector_Oppose(L->p[i], L->p[i], nparam+1);
469 f = fractional_part(L->p[i], V->p[i][nparam+1], nparam, NULL);
470 zz2value(p[i], tmp);
471 evalue_mul(f, tmp);
472 eadd(f, EP);
473 evalue_free(f);
475 E[0] = EP;
476 } else {
477 for (int i = 0; i < L->NbRows; ++i)
478 value_assign(L->p[i][nparam+1], V->p[i][nparam+1]);
480 Value denom;
481 value_init(denom);
482 mpz_set_ui(denom, det);
483 value_multiply(denom, L->p[0][nparam+1], denom);
485 Matrix *U, *W, *D;
486 Smith(Rays, &U, &W, &D);
487 Matrix_Free(U);
489 /* Sanity check */
490 unsigned long det2 = 1;
491 for (int i = 0 ; i < D->NbRows; ++i)
492 det2 *= mpz_get_ui(D->p[i][i]);
493 assert(det == det2);
495 Matrix_Transposition(inv);
496 Matrix *T2 = Matrix_Alloc(W->NbRows, inv->NbColumns);
497 Matrix_Product(W, inv, T2);
498 Matrix_Free(W);
500 unsigned dim = D->NbRows;
501 Vector *lambda = Vector_Alloc(dim);
503 Vector *row = Vector_Alloc(nparam+1);
504 FORALL_COSETS(det, D, i, k)
505 Vector_Matrix_Product(k->p, T2, lambda->p);
506 E[i] = ALLOC(evalue);
507 value_init(E[i]->d);
508 evalue_copy(E[i], EP);
509 for (int j = 0; j < L->NbRows; ++j) {
510 evalue *f;
511 Vector_Oppose(L->p[j], row->p, nparam+1);
512 value_addmul(row->p[nparam], L->p[j][nparam+1], lambda->p[j]);
513 f = fractional_part(row->p, denom, nparam, NULL);
514 zz2value(p[j], tmp);
515 evalue_mul(f, tmp);
516 eadd(f, E[i]);
517 evalue_free(f);
519 END_FORALL_COSETS
520 Vector_Free(row);
522 Vector_Free(lambda);
523 Matrix_Free(T2);
524 Matrix_Free(D);
526 value_clear(denom);
527 evalue_free(EP);
529 value_clear(tmp);
531 Matrix_Free(Rays);
532 Matrix_Free(L);
533 Matrix_Free(inv);
535 return E;
538 static evalue **lattice_point(const mat_ZZ& rays, vec_ZZ& lambda,
539 Param_Vertices *V,
540 unsigned long det,
541 barvinok_options *options)
543 evalue **lp = lattice_point_fractional(rays, lambda, V->Vertex, det);
544 if (options->lookup_table) {
545 for (int i = 0; i < det; ++i)
546 evalue_mod2table(lp[i], V->Vertex->NbColumns-2);
548 return lp;
551 Matrix *relative_coordinates(Param_Vertices *V, Matrix *basis)
553 Matrix *T = Matrix_Copy(basis);
554 Matrix *inv = Matrix_Alloc(T->NbRows, T->NbColumns);
555 int ok = Matrix_Inverse(T, inv);
556 assert(ok);
557 Matrix_Free(T);
559 Param_Vertex_Common_Denominator(V);
560 /* temporarily ignore (common) denominator */
561 V->Vertex->NbColumns--;
562 Matrix *L = Matrix_Alloc(inv->NbRows, V->Vertex->NbColumns);
563 Matrix_Product(inv, V->Vertex, L);
564 V->Vertex->NbColumns++;
565 Matrix_Free(inv);
567 return L;
570 /* returns the unique lattice point in the fundamental parallelepiped
571 * of the unimodular cone C shifted to the parametric vertex V.
573 * The return values num and E_vertex are such that
574 * coordinate i of this lattice point is equal to
576 * num[i] + E_vertex[i]
578 void lattice_point(Param_Vertices *V, const mat_ZZ& rays, vec_ZZ& num,
579 evalue **E_vertex, barvinok_options *options)
581 unsigned nparam = V->Vertex->NbColumns - 2;
582 unsigned dim = rays.NumCols();
584 /* It doesn't really make sense to call lattice_point when dim == 0,
585 * but apparently it happens from indicator_constructor in lexmin.
587 if (!dim)
588 return;
590 vec_ZZ vertex;
591 vertex.SetLength(nparam+1);
593 assert(V->Vertex->NbRows > 0);
594 Param_Vertex_Common_Denominator(V);
596 if (value_notone_p(V->Vertex->p[0][nparam+1])) {
597 Matrix* Rays = zz2matrix(rays);
598 Matrix *T = Transpose(Rays);
599 Matrix_Free(Rays);
600 Matrix *L = relative_coordinates(V, T);
602 evalue f;
603 value_init(f.d);
604 value_init(f.x.n);
606 evalue **remainders = new evalue *[dim];
607 for (int i = 0; i < dim; ++i)
608 remainders[i] = ceil(L->p[i], nparam+1, V->Vertex->p[0][nparam+1],
609 options);
610 Matrix_Free(L);
613 for (int i = 0; i < V->Vertex->NbRows; ++i) {
614 values2zz(V->Vertex->p[i], vertex, nparam+1);
615 E_vertex[i] = multi_monom(vertex);
616 num[i] = 0;
618 value_set_si(f.x.n, 1);
619 value_assign(f.d, V->Vertex->p[0][nparam+1]);
621 emul(&f, E_vertex[i]);
623 for (int j = 0; j < dim; ++j) {
624 if (value_zero_p(T->p[i][j]))
625 continue;
626 evalue cp;
627 value_init(cp.d);
628 evalue_copy(&cp, remainders[j]);
629 if (value_notone_p(T->p[i][j])) {
630 value_set_si(f.d, 1);
631 value_assign(f.x.n, T->p[i][j]);
632 emul(&f, &cp);
634 eadd(&cp, E_vertex[i]);
635 free_evalue_refs(&cp);
638 for (int i = 0; i < dim; ++i)
639 evalue_free(remainders[i]);
640 delete [] remainders;
642 free_evalue_refs(&f);
644 Matrix_Free(T);
645 return;
648 for (int i = 0; i < V->Vertex->NbRows; ++i) {
649 /* fixed value */
650 if (First_Non_Zero(V->Vertex->p[i], nparam) == -1) {
651 E_vertex[i] = 0;
652 value2zz(V->Vertex->p[i][nparam], num[i]);
653 } else {
654 values2zz(V->Vertex->p[i], vertex, nparam+1);
655 E_vertex[i] = multi_monom(vertex);
656 num[i] = 0;
661 static int lattice_point_fixed(Param_Vertices* V, const mat_ZZ& rays,
662 vec_ZZ& lambda, term_info* term, unsigned long det)
664 unsigned nparam = V->Vertex->NbColumns - 2;
665 unsigned dim = rays.NumCols();
667 for (int i = 0; i < dim; ++i)
668 if (First_Non_Zero(V->Vertex->p[i], nparam) != -1)
669 return 0;
671 Vector *fixed = Vector_Alloc(dim+1);
672 for (int i = 0; i < dim; ++i)
673 value_assign(fixed->p[i], V->Vertex->p[i][nparam]);
674 value_assign(fixed->p[dim], V->Vertex->p[0][nparam+1]);
676 mat_ZZ vertex;
677 Matrix *points = Matrix_Alloc(det, dim);
678 Matrix* Rays = zz2matrix(rays);
679 lattice_points_fixed(fixed->p, fixed->p, Rays, Rays, points, det);
680 Matrix_Free(Rays);
681 matrix2zz(points, vertex, points->NbRows, points->NbColumns);
682 Matrix_Free(points);
683 term->E = NULL;
684 term->constant = vertex * lambda;
685 Vector_Free(fixed);
687 return 1;
690 /* Returns the power of (t+1) in the term of a rational generating function,
691 * i.e., the scalar product of the actual lattice point and lambda.
692 * The lattice point is the unique lattice point in the fundamental parallelepiped
693 * of the unimodular cone i shifted to the parametric vertex V.
695 * The result is returned in term.
697 void lattice_point(Param_Vertices* V, const mat_ZZ& rays, vec_ZZ& lambda,
698 term_info* term, unsigned long det,
699 barvinok_options *options)
701 unsigned nparam = V->Vertex->NbColumns - 2;
702 mat_ZZ vertex;
703 vertex.SetDims(V->Vertex->NbRows, nparam+1);
705 Param_Vertex_Common_Denominator(V);
707 if (lattice_point_fixed(V, rays, lambda, term, det))
708 return;
710 if (det != 1 || value_notone_p(V->Vertex->p[0][nparam+1])) {
711 term->E = lattice_point(rays, lambda, V, det, options);
712 return;
714 for (int i = 0; i < V->Vertex->NbRows; ++i) {
715 assert(value_one_p(V->Vertex->p[i][nparam+1])); // for now
716 values2zz(V->Vertex->p[i], vertex[i], nparam+1);
719 vec_ZZ num;
720 num = lambda * vertex;
722 int nn = 0;
723 for (int j = 0; j < nparam; ++j)
724 if (num[j] != 0)
725 ++nn;
726 if (nn >= 1) {
727 term->E = new evalue *[1];
728 term->E[0] = multi_monom(num);
729 } else {
730 term->E = NULL;
731 term->constant.SetLength(1);
732 term->constant[0] = num[nparam];