summate.c: sum_base: check equality constraints in Param_Polyhedron
[barvinok.git] / conversion.cc
blobe9844983dec31d5440373c50d42d71b445b9afde
1 #include <assert.h>
2 #include <gmp.h>
3 #include <NTL/ZZ.h>
4 #include <NTL/vec_ZZ.h>
5 #include <NTL/mat_ZZ.h>
6 #include <barvinok/polylib.h>
7 #include <barvinok/util.h>
8 #include "conversion.h"
10 #define SIZE(p) (((long *) (p))[1])
11 #define DATA(p) ((mp_limb_t *) (((long *) (p)) + 2))
13 /* Access the internal representation of a ZZ.
14 * In newer versions of NTL (since 8.0.0), the internal representation
15 * is wrapped inside a WrappedPtr, but it has an address-of operator
16 * that returns the address of the actual internal representation.
18 #define REP(z) (*&(z).rep)
20 void value2zz(Value v, ZZ& z)
22 int sa = v[0]._mp_size;
23 int abs_sa = sa < 0 ? -sa : sa;
25 _ntl_gsetlength(&z.rep, abs_sa);
26 mp_limb_t * adata = DATA(REP(z));
27 for (int i = 0; i < abs_sa; ++i)
28 adata[i] = v[0]._mp_d[i];
29 SIZE(REP(z)) = sa;
32 void zz2value(const ZZ& z, Value& v)
34 if (!z.rep) {
35 value_set_si(v, 0);
36 return;
39 int sa = SIZE(REP(z));
40 int abs_sa = sa < 0 ? -sa : sa;
42 mp_limb_t * adata = DATA(REP(z));
43 _mpz_realloc(v, abs_sa);
44 for (int i = 0; i < abs_sa; ++i)
45 v[0]._mp_d[i] = adata[i];
46 v[0]._mp_size = sa;
49 void values2zz(Value *p, vec_ZZ& v, int len)
51 v.SetLength(len);
53 for (int i = 0; i < len; ++i) {
54 value2zz(p[i], v[i]);
60 void zz2values(const vec_ZZ& v, Value *p)
62 for (int i = 0; i < v.length(); ++i)
63 zz2value(v[i], p[i]);
67 * We just ignore the last column and row
68 * If the final element is not equal to one
69 * then the result will actually be a multiple of the input
71 void matrix2zz(Matrix *M, mat_ZZ& m, unsigned nr, unsigned nc)
73 m.SetDims(nr, nc);
75 for (int i = 0; i < nr; ++i) {
76 // assert(value_one_p(M->p[i][M->NbColumns - 1]));
77 for (int j = 0; j < nc; ++j) {
78 value2zz(M->p[i][j], m[i][j]);
83 Matrix *zz2matrix(const mat_ZZ& mat)
85 Matrix *M = Matrix_Alloc(mat.NumRows(), mat.NumCols());
86 assert(M);
88 for (int i = 0; i < mat.NumRows(); ++i)
89 zz2values(mat[i], M->p[i]);
90 return M;
93 Matrix *rays(Polyhedron *C)
95 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
96 assert(C->NbRays - 1 == C->Dimension);
98 Matrix *M = Matrix_Alloc(dim+1, dim+1);
99 assert(M);
101 int i, c;
102 for (i = 0, c = 0; i <= dim && c < dim; ++i)
103 if (value_zero_p(C->Ray[i][dim+1])) {
104 Vector_Copy(C->Ray[i] + 1, M->p[c], dim);
105 value_set_si(M->p[c++][dim], 0);
107 assert(c == dim);
108 value_set_si(M->p[dim][dim], 1);
110 return M;
113 Matrix *rays2(Polyhedron *C)
115 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
116 assert(C->NbRays - 1 == C->Dimension);
118 Matrix *M = Matrix_Alloc(dim, dim);
119 assert(M);
121 int i, c;
122 for (i = 0, c = 0; i <= dim && c < dim; ++i)
123 if (value_zero_p(C->Ray[i][dim+1]))
124 Vector_Copy(C->Ray[i] + 1, M->p[c++], dim);
125 assert(c == dim);
127 return M;
130 void rays(Polyhedron *C, mat_ZZ& rays)
132 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
133 assert(C->NbRays - 1 == C->Dimension);
134 rays.SetDims(dim, dim);
136 int i, j;
137 for (i = 0, j = 0; i < C->NbRays; ++i) {
138 if (value_notzero_p(C->Ray[i][dim+1]))
139 continue;
140 values2zz(C->Ray[i]+1, rays[j], dim);
141 ++j;
145 void randomvector(Polyhedron *P, vec_ZZ& lambda, int nvar, int n_try)
147 Value tmp;
148 int max = 5 * 16;
149 unsigned int dim = P->Dimension;
150 value_init(tmp);
152 for (int i = 0; i < P->NbRays; ++i) {
153 for (int j = 1; j <= dim; ++j) {
154 value_absolute(tmp, P->Ray[i][j]);
155 int t = VALUE_TO_LONG(tmp) * 16;
156 if (t > max)
157 max = t;
160 for (int i = 0; i < P->NbConstraints; ++i) {
161 for (int j = 1; j <= dim; ++j) {
162 value_absolute(tmp, P->Constraint[i][j]);
163 int t = VALUE_TO_LONG(tmp) * 16;
164 if (t > max)
165 max = t;
168 value_clear(tmp);
170 max += max << n_try;
172 lambda.SetLength(nvar);
173 for (int k = 0; k < nvar; ++k) {
174 int r = random_int(max*dim)+2;
175 int v = (2*(r%2)-1) * (max/2*dim + (r >> 1));
176 lambda[k] = v;