8 #include <NTL/mat_ZZ.h>
11 #include <isl_set_polylib.h>
12 #include <barvinok/util.h>
13 #include <barvinok/evalue.h>
15 #include <barvinok/barvinok.h>
16 #include <barvinok/genfun.h>
17 #include <barvinok/options.h>
18 #include <barvinok/sample.h>
19 #include "bfcounter.h"
20 #include "conversion.h"
22 #include "decomposer.h"
24 #include "lattice_point.h"
26 #include "reduce_domain.h"
27 #include "remove_equalities.h"
30 #include "bernoulli.h"
31 #include "param_util.h"
43 using std::ostringstream
;
45 #define ALLOC(t,p) p = (t*)malloc(sizeof(*p))
58 coeff
= Matrix_Alloc(d
+1, d
+1+1);
59 value_set_si(coeff
->p
[0][0], 1);
60 value_set_si(coeff
->p
[0][d
+1], 1);
61 for (int i
= 1; i
<= d
; ++i
) {
62 value_multiply(coeff
->p
[i
][0], coeff
->p
[i
-1][0], d0
);
63 Vector_Combine(coeff
->p
[i
-1], coeff
->p
[i
-1]+1, coeff
->p
[i
]+1,
65 value_set_si(coeff
->p
[i
][d
+1], i
);
66 value_multiply(coeff
->p
[i
][d
+1], coeff
->p
[i
][d
+1], coeff
->p
[i
-1][d
+1]);
67 value_decrement(d0
, d0
);
72 void div(dpoly
& d
, Vector
*count
, int sign
) {
73 int len
= coeff
->NbRows
;
74 Matrix
* c
= Matrix_Alloc(coeff
->NbRows
, coeff
->NbColumns
);
77 for (int i
= 0; i
< len
; ++i
) {
78 Vector_Copy(coeff
->p
[i
], c
->p
[i
], len
+1);
79 for (int j
= 1; j
<= i
; ++j
) {
80 value_multiply(tmp
, d
.coeff
->p
[j
], c
->p
[i
][len
]);
81 value_oppose(tmp
, tmp
);
82 Vector_Combine(c
->p
[i
], c
->p
[i
-j
], c
->p
[i
],
83 c
->p
[i
-j
][len
], tmp
, len
);
84 value_multiply(c
->p
[i
][len
], c
->p
[i
][len
], c
->p
[i
-j
][len
]);
86 value_multiply(c
->p
[i
][len
], c
->p
[i
][len
], d
.coeff
->p
[0]);
89 value_set_si(tmp
, -1);
90 Vector_Scale(c
->p
[len
-1], count
->p
, tmp
, len
);
91 value_assign(count
->p
[len
], c
->p
[len
-1][len
]);
93 Vector_Copy(c
->p
[len
-1], count
->p
, len
+1);
94 Vector_Normalize(count
->p
, len
+1);
100 static void add_rays(mat_ZZ
& rays
, Polyhedron
*i
, int *r
, int nvar
= -1,
103 unsigned dim
= i
->Dimension
;
106 for (int k
= 0; k
< i
->NbRays
; ++k
) {
107 if (!value_zero_p(i
->Ray
[k
][dim
+1]))
109 if (!all
&& nvar
!= dim
&& First_Non_Zero(i
->Ray
[k
]+1, nvar
) == -1)
111 values2zz(i
->Ray
[k
]+1, rays
[(*r
)++], nvar
);
115 struct bfe_term
: public bfc_term_base
{
116 vector
<evalue
*> factors
;
118 bfe_term(int len
) : bfc_term_base(len
) {
122 for (int i
= 0; i
< factors
.size(); ++i
) {
125 free_evalue_refs(factors
[i
]);
131 static void print_int_vector(int *v
, int len
, const char *name
)
133 cerr
<< name
<< endl
;
134 for (int j
= 0; j
< len
; ++j
) {
140 static void print_bfc_terms(mat_ZZ
& factors
, bfc_vec
& v
)
143 cerr
<< "factors" << endl
;
144 cerr
<< factors
<< endl
;
145 for (int i
= 0; i
< v
.size(); ++i
) {
146 cerr
<< "term: " << i
<< endl
;
147 print_int_vector(v
[i
]->powers
, factors
.NumRows(), "powers");
148 cerr
<< "terms" << endl
;
149 cerr
<< v
[i
]->terms
<< endl
;
150 bfc_term
* bfct
= static_cast<bfc_term
*>(v
[i
]);
151 cerr
<< bfct
->c
<< endl
;
155 static void print_bfe_terms(mat_ZZ
& factors
, bfc_vec
& v
)
158 cerr
<< "factors" << endl
;
159 cerr
<< factors
<< endl
;
160 for (int i
= 0; i
< v
.size(); ++i
) {
161 cerr
<< "term: " << i
<< endl
;
162 print_int_vector(v
[i
]->powers
, factors
.NumRows(), "powers");
163 cerr
<< "terms" << endl
;
164 cerr
<< v
[i
]->terms
<< endl
;
165 bfe_term
* bfet
= static_cast<bfe_term
*>(v
[i
]);
166 for (int j
= 0; j
< v
[i
]->terms
.NumRows(); ++j
) {
167 const char * test
[] = {"a", "b"};
168 print_evalue(stderr
, bfet
->factors
[j
], test
);
169 fprintf(stderr
, "\n");
174 struct bfcounter
: public bfcounter_base
{
178 bfcounter(unsigned dim
) : bfcounter_base(dim
) {
187 virtual void base(mat_ZZ
& factors
, bfc_vec
& v
);
188 virtual void get_count(Value
*result
) {
189 assert(value_one_p(&count
[0]._mp_den
));
190 value_assign(*result
, &count
[0]._mp_num
);
194 void bfcounter::base(mat_ZZ
& factors
, bfc_vec
& v
)
196 unsigned nf
= factors
.NumRows();
198 for (int i
= 0; i
< v
.size(); ++i
) {
199 bfc_term
* bfct
= static_cast<bfc_term
*>(v
[i
]);
201 // factor is always positive, so we always
203 for (int k
= 0; k
< nf
; ++k
)
204 total_power
+= v
[i
]->powers
[k
];
207 for (j
= 0; j
< nf
; ++j
)
208 if (v
[i
]->powers
[j
] > 0)
211 zz2value(factors
[j
][0], tz
);
212 dpoly
D(total_power
, tz
, 1);
213 for (int k
= 1; k
< v
[i
]->powers
[j
]; ++k
) {
214 zz2value(factors
[j
][0], tz
);
215 dpoly
fact(total_power
, tz
, 1);
219 for (int k
= 0; k
< v
[i
]->powers
[j
]; ++k
) {
220 zz2value(factors
[j
][0], tz
);
221 dpoly
fact(total_power
, tz
, 1);
225 for (int k
= 0; k
< v
[i
]->terms
.NumRows(); ++k
) {
226 zz2value(v
[i
]->terms
[k
][0], tz
);
227 dpoly
n(total_power
, tz
);
228 mpq_set_si(tcount
, 0, 1);
231 bfct
->c
[k
].n
= -bfct
->c
[k
].n
;
232 zz2value(bfct
->c
[k
].n
, tn
);
233 zz2value(bfct
->c
[k
].d
, td
);
235 mpz_mul(mpq_numref(tcount
), mpq_numref(tcount
), tn
);
236 mpz_mul(mpq_denref(tcount
), mpq_denref(tcount
), td
);
237 mpq_canonicalize(tcount
);
238 mpq_add(count
, count
, tcount
);
245 /* Check whether the polyhedron is unbounded and if so,
246 * check whether it has any (and therefore an infinite number of)
248 * If one of the vertices is integer, then we are done.
249 * Otherwise, transform the polyhedron such that one of the rays
250 * is the first unit vector and cut it off at a height that ensures
251 * that if the whole polyhedron has any points, then the remaining part
252 * has integer points. In particular we add the largest coefficient
253 * of a ray to the highest vertex (rounded up).
255 static bool Polyhedron_is_infinite(Polyhedron
*P
, Value
* result
,
256 barvinok_options
*options
)
268 for (; r
< P
->NbRays
; ++r
)
269 if (value_zero_p(P
->Ray
[r
][P
->Dimension
+1]))
271 if (P
->NbBid
== 0 && r
== P
->NbRays
)
274 if (options
->count_sample_infinite
) {
277 sample
= Polyhedron_Sample(P
, options
);
279 value_set_si(*result
, 0);
281 value_set_si(*result
, -1);
287 for (int i
= 0; i
< P
->NbRays
; ++i
)
288 if (value_one_p(P
->Ray
[i
][1+P
->Dimension
])) {
289 value_set_si(*result
, -1);
294 M
= Matrix_Alloc(P
->Dimension
+1, P
->Dimension
+1);
295 Vector_Gcd(P
->Ray
[r
]+1, P
->Dimension
, &g
);
296 Vector_AntiScale(P
->Ray
[r
]+1, M
->p
[0], g
, P
->Dimension
+1);
297 int ok
= unimodular_complete(M
, 1);
299 value_set_si(M
->p
[P
->Dimension
][P
->Dimension
], 1);
302 P
= Polyhedron_Preimage(P
, M2
, 0);
310 value_set_si(size
, 0);
312 for (int i
= 0; i
< P
->NbBid
; ++i
) {
313 value_absolute(tmp
, P
->Ray
[i
][1]);
314 if (value_gt(tmp
, size
))
315 value_assign(size
, tmp
);
317 for (int i
= P
->NbBid
; i
< P
->NbRays
; ++i
) {
318 if (value_zero_p(P
->Ray
[i
][P
->Dimension
+1])) {
319 if (value_gt(P
->Ray
[i
][1], size
))
320 value_assign(size
, P
->Ray
[i
][1]);
323 mpz_cdiv_q(tmp
, P
->Ray
[i
][1], P
->Ray
[i
][P
->Dimension
+1]);
324 if (first
|| value_gt(tmp
, offset
)) {
325 value_assign(offset
, tmp
);
329 value_addto(offset
, offset
, size
);
333 v
= Vector_Alloc(P
->Dimension
+2);
334 value_set_si(v
->p
[0], 1);
335 value_set_si(v
->p
[1], -1);
336 value_assign(v
->p
[1+P
->Dimension
], offset
);
337 R
= AddConstraints(v
->p
, 1, P
, options
->MaxRays
);
345 barvinok_count_with_options(P
, &c
, options
);
348 value_set_si(*result
, 0);
350 value_set_si(*result
, -1);
356 static void evalue2value(evalue
*e
, Value
*v
)
358 if (EVALUE_IS_ZERO(*e
)) {
363 if (value_notzero_p(e
->d
)) {
364 assert(value_one_p(e
->d
));
365 value_assign(*v
, e
->x
.n
);
369 assert(e
->x
.p
->type
== partition
);
370 assert(e
->x
.p
->size
== 2);
371 assert(EVALUE_DOMAIN(e
->x
.p
->arr
[0])->Dimension
== 0);
372 evalue2value(&e
->x
.p
->arr
[1], v
);
375 static void barvinok_count_f(Polyhedron
*P
, Value
* result
,
376 barvinok_options
*options
);
378 void barvinok_count_with_options(Polyhedron
*P
, Value
* result
,
379 struct barvinok_options
*options
)
384 bool infinite
= false;
388 "barvinok_count: input is a union; only first polyhedron is counted\n");
391 value_set_si(*result
, 0);
397 P
= remove_equalities(P
, options
->MaxRays
);
399 P
= DomainConstraintSimplify(P
, options
->MaxRays
);
403 } while (P
&& !emptyQ(P
) && P
->NbEq
!= 0);
404 if (!P
|| emptyQ(P
)) {
406 value_set_si(*result
, 0);
411 if (Polyhedron_is_infinite(P
, result
, options
)) {
416 if (P
->Dimension
== 0) {
417 /* Test whether the constraints are satisfied */
418 POL_ENSURE_VERTICES(P
);
419 value_set_si(*result
, !emptyQ(P
));
424 if (options
->summation
== BV_SUM_BERNOULLI
) {
425 Polyhedron
*C
= Universe_Polyhedron(0);
426 evalue
*sum
= barvinok_summate_unweighted(P
, C
, options
);
428 evalue2value(sum
, result
);
432 Q
= Polyhedron_Factor(P
, 0, NULL
, options
->MaxRays
);
440 barvinok_count_f(P
, result
, options
);
441 if (value_neg_p(*result
))
443 if (Q
&& P
->next
&& value_notzero_p(*result
)) {
447 for (Q
= P
->next
; Q
; Q
= Q
->next
) {
448 barvinok_count_f(Q
, &factor
, options
);
449 if (value_neg_p(factor
)) {
452 } else if (Q
->next
&& value_zero_p(factor
)) {
453 value_set_si(*result
, 0);
456 value_multiply(*result
, *result
, factor
);
465 value_set_si(*result
, -1);
468 void barvinok_count(Polyhedron
*P
, Value
* result
, unsigned NbMaxCons
)
470 barvinok_options
*options
= barvinok_options_new_with_defaults();
471 options
->MaxRays
= NbMaxCons
;
472 barvinok_count_with_options(P
, result
, options
);
473 barvinok_options_free(options
);
476 static void barvinok_count_f(Polyhedron
*P
, Value
* result
,
477 barvinok_options
*options
)
480 value_set_si(*result
, 0);
484 if (P
->Dimension
== 1)
485 return Line_Length(P
, result
);
487 int c
= P
->NbConstraints
;
488 POL_ENSURE_FACETS(P
);
489 if (c
!= P
->NbConstraints
|| P
->NbEq
!= 0) {
490 Polyhedron
*next
= P
->next
;
492 barvinok_count_with_options(P
, result
, options
);
497 POL_ENSURE_VERTICES(P
);
499 if (Polyhedron_is_infinite(P
, result
, options
))
503 if (options
->incremental_specialization
== BV_SPECIALIZATION_BF
)
504 cnt
= new bfcounter(P
->Dimension
);
505 else if (options
->incremental_specialization
== BV_SPECIALIZATION_DF
)
506 cnt
= new icounter(P
->Dimension
);
507 else if (options
->incremental_specialization
== BV_SPECIALIZATION_TODD
)
508 cnt
= new tcounter(P
->Dimension
, options
->max_index
);
510 cnt
= new counter(P
->Dimension
, options
->max_index
);
511 cnt
->start(P
, options
);
513 cnt
->get_count(result
);
517 static void uni_polynom(int param
, Vector
*c
, evalue
*EP
)
519 unsigned dim
= c
->Size
-2;
521 value_set_si(EP
->d
,0);
522 EP
->x
.p
= new_enode(polynomial
, dim
+1, param
+1);
523 for (int j
= 0; j
<= dim
; ++j
)
524 evalue_set(&EP
->x
.p
->arr
[j
], c
->p
[j
], c
->p
[dim
+1]);
527 typedef evalue
* evalue_p
;
529 struct enumerator_base
{
533 vertex_decomposer
*vpd
;
535 enumerator_base(unsigned dim
, vertex_decomposer
*vpd
)
540 vE
= new evalue_p
[vpd
->PP
->nbV
];
541 for (int j
= 0; j
< vpd
->PP
->nbV
; ++j
)
545 evalue_set_si(&mone
, -1, 1);
548 void decompose_at(Param_Vertices
*V
, int _i
, barvinok_options
*options
) {
552 value_init(vE
[_i
]->d
);
553 evalue_set_si(vE
[_i
], 0, 1);
555 vpd
->decompose_at_vertex(V
, _i
, options
);
558 virtual ~enumerator_base() {
559 for (int j
= 0; j
< vpd
->PP
->nbV
; ++j
)
561 free_evalue_refs(vE
[j
]);
566 free_evalue_refs(&mone
);
569 static enumerator_base
*create(Polyhedron
*P
, unsigned dim
,
570 Param_Polyhedron
*PP
,
571 barvinok_options
*options
);
574 struct enumerator
: public signed_cone_consumer
, public vertex_decomposer
,
575 public enumerator_base
{
583 enumerator(Polyhedron
*P
, unsigned dim
, Param_Polyhedron
*PP
) :
584 vertex_decomposer(PP
, *this), enumerator_base(dim
, this) {
585 randomvector(P
, lambda
, dim
, 0);
587 c
= Vector_Alloc(dim
+2);
599 virtual void handle(const signed_cone
& sc
, barvinok_options
*options
);
602 void enumerator::handle(const signed_cone
& sc
, barvinok_options
*options
)
606 assert(sc
.rays
.NumRows() == dim
);
607 for (int k
= 0; k
< dim
; ++k
) {
608 if (lambda
* sc
.rays
[k
] == 0)
612 lattice_point(V
, sc
.rays
, lambda
, &num
, sc
.det
, options
);
613 den
= sc
.rays
* lambda
;
618 zz2value(den
[0], tz
);
620 for (int k
= 1; k
< dim
; ++k
) {
621 zz2value(den
[k
], tz
);
622 dpoly
fact(dim
, tz
, 1);
628 for (unsigned long i
= 0; i
< sc
.det
; ++i
) {
629 evalue
*EV
= evalue_polynomial(c
, num
.E
[i
]);
632 evalue_free(num
.E
[i
]);
636 mpq_set_si(count
, 0, 1);
637 if (num
.constant
.length() == 1) {
638 zz2value(num
.constant
[0], tz
);
640 d
.div(n
, count
, sign
);
647 for (unsigned long i
= 0; i
< sc
.det
; ++i
) {
648 value_assign(acc
, c
->p
[dim
]);
649 zz2value(num
.constant
[i
], x
);
650 for (int j
= dim
-1; j
>= 0; --j
) {
651 value_multiply(acc
, acc
, x
);
652 value_addto(acc
, acc
, c
->p
[j
]);
654 value_addto(mpq_numref(count
), mpq_numref(count
), acc
);
656 mpz_set(mpq_denref(count
), c
->p
[dim
+1]);
662 evalue_set(&EV
, &count
[0]._mp_num
, &count
[0]._mp_den
);
664 free_evalue_refs(&EV
);
668 struct ienumerator_base
: enumerator_base
{
671 ienumerator_base(unsigned dim
, vertex_decomposer
*vpd
) :
672 enumerator_base(dim
,vpd
) {
673 E_vertex
= new evalue_p
[dim
];
676 virtual ~ienumerator_base() {
680 evalue
*E_num(int i
, int d
) {
681 return E_vertex
[i
+ (dim
-d
)];
690 cumulator(evalue
*factor
, evalue
*v
, dpoly_r
*r
) :
691 factor(factor
), v(v
), r(r
) {}
693 void cumulate(barvinok_options
*options
);
695 virtual void add_term(const vector
<int>& powers
, evalue
*f2
) = 0;
696 virtual ~cumulator() {}
699 void cumulator::cumulate(barvinok_options
*options
)
701 evalue cum
; // factor * 1 * E_num[0]/1 * (E_num[0]-1)/2 *...
703 evalue t
; // E_num[0] - (m-1)
707 if (options
->lookup_table
) {
709 evalue_set_si(&mone
, -1, 1);
713 evalue_copy(&cum
, factor
);
716 value_set_si(f
.d
, 1);
717 value_set_si(f
.x
.n
, 1);
721 if (!options
->lookup_table
) {
722 for (cst
= &t
; value_zero_p(cst
->d
); ) {
723 if (cst
->x
.p
->type
== fractional
)
724 cst
= &cst
->x
.p
->arr
[1];
726 cst
= &cst
->x
.p
->arr
[0];
730 for (int m
= 0; m
< r
->len
; ++m
) {
733 value_set_si(f
.d
, m
);
735 if (!options
->lookup_table
)
736 value_subtract(cst
->x
.n
, cst
->x
.n
, cst
->d
);
742 dpoly_r_term_list
& current
= r
->c
[r
->len
-1-m
];
743 dpoly_r_term_list::iterator j
;
744 for (j
= current
.begin(); j
!= current
.end(); ++j
) {
745 if ((*j
)->coeff
== 0)
747 evalue
*f2
= new evalue
;
750 zz2value((*j
)->coeff
, f2
->x
.n
);
751 zz2value(r
->denom
, f2
->d
);
754 add_term((*j
)->powers
, f2
);
757 free_evalue_refs(&f
);
758 free_evalue_refs(&t
);
759 free_evalue_refs(&cum
);
760 if (options
->lookup_table
)
761 free_evalue_refs(&mone
);
769 struct ie_cum
: public cumulator
{
770 vector
<E_poly_term
*> terms
;
772 ie_cum(evalue
*factor
, evalue
*v
, dpoly_r
*r
) : cumulator(factor
, v
, r
) {}
774 virtual void add_term(const vector
<int>& powers
, evalue
*f2
);
777 void ie_cum::add_term(const vector
<int>& powers
, evalue
*f2
)
780 for (k
= 0; k
< terms
.size(); ++k
) {
781 if (terms
[k
]->powers
== powers
) {
782 eadd(f2
, terms
[k
]->E
);
783 free_evalue_refs(f2
);
788 if (k
>= terms
.size()) {
789 E_poly_term
*ET
= new E_poly_term
;
796 struct ienumerator
: public signed_cone_consumer
, public vertex_decomposer
,
797 public ienumerator_base
{
804 ienumerator(Polyhedron
*P
, unsigned dim
, Param_Polyhedron
*PP
) :
805 vertex_decomposer(PP
, *this), ienumerator_base(dim
, this) {
806 vertex
.SetDims(1, dim
);
808 den
.SetDims(dim
, dim
);
818 virtual void handle(const signed_cone
& sc
, barvinok_options
*options
);
819 void reduce(evalue
*factor
, const mat_ZZ
& num
, const mat_ZZ
& den_f
,
820 barvinok_options
*options
);
823 void ienumerator::reduce(evalue
*factor
, const mat_ZZ
& num
, const mat_ZZ
& den_f
,
824 barvinok_options
*options
)
826 unsigned len
= den_f
.NumRows(); // number of factors in den
827 unsigned dim
= num
.NumCols();
828 assert(num
.NumRows() == 1);
831 eadd(factor
, vE
[vert
]);
840 split_one(num
, num_s
, num_p
, den_f
, den_s
, den_r
);
843 den_p
.SetLength(len
);
847 normalize(one
, num_s
, num_p
, den_s
, den_p
, den_r
);
853 for (int k
= 0; k
< len
; ++k
) {
856 else if (den_s
[k
] == 0)
860 reduce(factor
, num_p
, den_r
, options
);
864 pden
.SetDims(only_param
, dim
-1);
866 for (k
= 0, l
= 0; k
< len
; ++k
)
868 pden
[l
++] = den_r
[k
];
870 for (k
= 0; k
< len
; ++k
)
874 zz2value(num_s
[0], tz
);
875 dpoly
n(no_param
, tz
);
876 zz2value(den_s
[k
], tz
);
877 dpoly
D(no_param
, tz
, 1);
880 zz2value(den_s
[k
], tz
);
881 dpoly
fact(no_param
, tz
, 1);
886 // if no_param + only_param == len then all powers
887 // below will be all zero
888 if (no_param
+ only_param
== len
) {
889 if (E_num(0, dim
) != 0)
890 r
= new dpoly_r(n
, len
);
892 mpq_set_si(tcount
, 0, 1);
896 if (value_notzero_p(mpq_numref(tcount
))) {
900 value_assign(f
.x
.n
, mpq_numref(tcount
));
901 value_assign(f
.d
, mpq_denref(tcount
));
903 reduce(factor
, num_p
, pden
, options
);
904 free_evalue_refs(&f
);
909 for (k
= 0; k
< len
; ++k
) {
910 if (den_s
[k
] == 0 || den_p
[k
] == 0)
913 zz2value(den_s
[k
], tz
);
914 dpoly
pd(no_param
-1, tz
, 1);
917 for (l
= 0; l
< k
; ++l
)
918 if (den_r
[l
] == den_r
[k
])
922 r
= new dpoly_r(n
, pd
, l
, len
);
924 dpoly_r
*nr
= new dpoly_r(r
, pd
, l
, len
);
930 dpoly_r
*rc
= r
->div(D
);
933 if (E_num(0, dim
) == 0) {
934 int common
= pden
.NumRows();
935 dpoly_r_term_list
& final
= r
->c
[r
->len
-1];
941 zz2value(r
->denom
, f
.d
);
942 dpoly_r_term_list::iterator j
;
943 for (j
= final
.begin(); j
!= final
.end(); ++j
) {
944 if ((*j
)->coeff
== 0)
947 for (int k
= 0; k
< r
->dim
; ++k
) {
948 int n
= (*j
)->powers
[k
];
951 pden
.SetDims(rows
+n
, pden
.NumCols());
952 for (int l
= 0; l
< n
; ++l
)
953 pden
[rows
+l
] = den_r
[k
];
957 evalue_copy(&t
, factor
);
958 zz2value((*j
)->coeff
, f
.x
.n
);
960 reduce(&t
, num_p
, pden
, options
);
961 free_evalue_refs(&t
);
963 free_evalue_refs(&f
);
965 ie_cum
cum(factor
, E_num(0, dim
), r
);
966 cum
.cumulate(options
);
968 int common
= pden
.NumRows();
970 for (int j
= 0; j
< cum
.terms
.size(); ++j
) {
972 pden
.SetDims(rows
, pden
.NumCols());
973 for (int k
= 0; k
< r
->dim
; ++k
) {
974 int n
= cum
.terms
[j
]->powers
[k
];
977 pden
.SetDims(rows
+n
, pden
.NumCols());
978 for (int l
= 0; l
< n
; ++l
)
979 pden
[rows
+l
] = den_r
[k
];
982 reduce(cum
.terms
[j
]->E
, num_p
, pden
, options
);
983 free_evalue_refs(cum
.terms
[j
]->E
);
984 delete cum
.terms
[j
]->E
;
992 static int type_offset(enode
*p
)
994 return p
->type
== fractional
? 1 :
995 p
->type
== flooring
? 1 : 0;
998 static int edegree(evalue
*e
)
1003 if (value_notzero_p(e
->d
))
1007 int i
= type_offset(p
);
1008 if (p
->size
-i
-1 > d
)
1009 d
= p
->size
- i
- 1;
1010 for (; i
< p
->size
; i
++) {
1011 int d2
= edegree(&p
->arr
[i
]);
1018 void ienumerator::handle(const signed_cone
& sc
, barvinok_options
*options
)
1020 assert(sc
.det
== 1);
1021 assert(sc
.rays
.NumRows() == dim
);
1023 lattice_point(V
, sc
.rays
, vertex
[0], E_vertex
, options
);
1029 evalue_set_si(&one
, sc
.sign
, 1);
1030 reduce(&one
, vertex
, den
, options
);
1031 free_evalue_refs(&one
);
1033 for (int i
= 0; i
< dim
; ++i
)
1035 evalue_free(E_vertex
[i
]);
1038 struct bfenumerator
: public vertex_decomposer
, public bf_base
,
1039 public ienumerator_base
{
1042 bfenumerator(Polyhedron
*P
, unsigned dim
, Param_Polyhedron
*PP
) :
1043 vertex_decomposer(PP
, *this),
1044 bf_base(dim
), ienumerator_base(dim
, this) {
1052 virtual void handle(const signed_cone
& sc
, barvinok_options
*options
);
1053 virtual void base(mat_ZZ
& factors
, bfc_vec
& v
);
1055 bfc_term_base
* new_bf_term(int len
) {
1056 bfe_term
* t
= new bfe_term(len
);
1060 virtual void set_factor(bfc_term_base
*t
, int k
, int change
) {
1061 bfe_term
* bfet
= static_cast<bfe_term
*>(t
);
1062 factor
= bfet
->factors
[k
];
1063 assert(factor
!= NULL
);
1064 bfet
->factors
[k
] = NULL
;
1066 emul(&mone
, factor
);
1069 virtual void set_factor(bfc_term_base
*t
, int k
, mpq_t
&q
, int change
) {
1070 bfe_term
* bfet
= static_cast<bfe_term
*>(t
);
1071 factor
= bfet
->factors
[k
];
1072 assert(factor
!= NULL
);
1073 bfet
->factors
[k
] = NULL
;
1079 value_oppose(f
.x
.n
, mpq_numref(q
));
1081 value_assign(f
.x
.n
, mpq_numref(q
));
1082 value_assign(f
.d
, mpq_denref(q
));
1084 free_evalue_refs(&f
);
1087 virtual void set_factor(bfc_term_base
*t
, int k
, const QQ
& c
, int change
) {
1088 bfe_term
* bfet
= static_cast<bfe_term
*>(t
);
1090 factor
= new evalue
;
1095 zz2value(c
.n
, f
.x
.n
);
1097 value_oppose(f
.x
.n
, f
.x
.n
);
1100 value_init(factor
->d
);
1101 evalue_copy(factor
, bfet
->factors
[k
]);
1103 free_evalue_refs(&f
);
1106 void set_factor(evalue
*f
, int change
) {
1112 virtual void insert_term(bfc_term_base
*t
, int i
) {
1113 bfe_term
* bfet
= static_cast<bfe_term
*>(t
);
1114 int len
= t
->terms
.NumRows()-1; // already increased by one
1116 bfet
->factors
.resize(len
+1);
1117 for (int j
= len
; j
> i
; --j
) {
1118 bfet
->factors
[j
] = bfet
->factors
[j
-1];
1119 t
->terms
[j
] = t
->terms
[j
-1];
1121 bfet
->factors
[i
] = factor
;
1125 virtual void update_term(bfc_term_base
*t
, int i
) {
1126 bfe_term
* bfet
= static_cast<bfe_term
*>(t
);
1128 eadd(factor
, bfet
->factors
[i
]);
1129 free_evalue_refs(factor
);
1133 virtual bool constant_vertex(int dim
) { return E_num(0, dim
) == 0; }
1135 virtual void cum(bf_reducer
*bfr
, bfc_term_base
*t
, int k
, dpoly_r
*r
,
1136 barvinok_options
*options
);
1139 enumerator_base
*enumerator_base::create(Polyhedron
*P
, unsigned dim
,
1140 Param_Polyhedron
*PP
,
1141 barvinok_options
*options
)
1143 enumerator_base
*eb
;
1145 if (options
->incremental_specialization
== BV_SPECIALIZATION_BF
)
1146 eb
= new bfenumerator(P
, dim
, PP
);
1147 else if (options
->incremental_specialization
== BV_SPECIALIZATION_DF
)
1148 eb
= new ienumerator(P
, dim
, PP
);
1150 eb
= new enumerator(P
, dim
, PP
);
1155 struct bfe_cum
: public cumulator
{
1157 bfc_term_base
*told
;
1161 bfe_cum(evalue
*factor
, evalue
*v
, dpoly_r
*r
, bf_reducer
*bfr
,
1162 bfc_term_base
*t
, int k
, bfenumerator
*e
) :
1163 cumulator(factor
, v
, r
), told(t
), k(k
),
1167 virtual void add_term(const vector
<int>& powers
, evalue
*f2
);
1170 void bfe_cum::add_term(const vector
<int>& powers
, evalue
*f2
)
1172 bfr
->update_powers(powers
);
1174 bfc_term_base
* t
= bfe
->find_bfc_term(bfr
->vn
, bfr
->npowers
, bfr
->nnf
);
1175 bfe
->set_factor(f2
, bfr
->l_changes
% 2);
1176 bfe
->add_term(t
, told
->terms
[k
], bfr
->l_extra_num
);
1179 void bfenumerator::cum(bf_reducer
*bfr
, bfc_term_base
*t
, int k
,
1180 dpoly_r
*r
, barvinok_options
*options
)
1182 bfe_term
* bfet
= static_cast<bfe_term
*>(t
);
1183 bfe_cum
cum(bfet
->factors
[k
], E_num(0, bfr
->d
), r
, bfr
, t
, k
, this);
1184 cum
.cumulate(options
);
1187 void bfenumerator::base(mat_ZZ
& factors
, bfc_vec
& v
)
1189 for (int i
= 0; i
< v
.size(); ++i
) {
1190 assert(v
[i
]->terms
.NumRows() == 1);
1191 evalue
*factor
= static_cast<bfe_term
*>(v
[i
])->factors
[0];
1192 eadd(factor
, vE
[vert
]);
1197 void bfenumerator::handle(const signed_cone
& sc
, barvinok_options
*options
)
1199 assert(sc
.det
== 1);
1200 assert(sc
.rays
.NumRows() == enumerator_base::dim
);
1202 bfe_term
* t
= new bfe_term(enumerator_base::dim
);
1203 vector
< bfc_term_base
* > v
;
1206 t
->factors
.resize(1);
1208 t
->terms
.SetDims(1, enumerator_base::dim
);
1209 lattice_point(V
, sc
.rays
, t
->terms
[0], E_vertex
, options
);
1211 // the elements of factors are always lexpositive
1213 int s
= setup_factors(sc
.rays
, factors
, t
, sc
.sign
);
1215 t
->factors
[0] = new evalue
;
1216 value_init(t
->factors
[0]->d
);
1217 evalue_set_si(t
->factors
[0], s
, 1);
1218 reduce(factors
, v
, options
);
1220 for (int i
= 0; i
< enumerator_base::dim
; ++i
)
1222 evalue_free(E_vertex
[i
]);
1225 static evalue
* barvinok_enumerate_ev_f(Polyhedron
*P
, Polyhedron
* C
,
1226 barvinok_options
*options
);
1229 static evalue
* barvinok_enumerate_cst(Polyhedron
*P
, Polyhedron
* C
,
1230 struct barvinok_options
*options
)
1236 return evalue_zero();
1239 ALLOC(evalue
, eres
);
1240 value_init(eres
->d
);
1241 value_set_si(eres
->d
, 0);
1242 eres
->x
.p
= new_enode(partition
, 2, C
->Dimension
);
1243 EVALUE_SET_DOMAIN(eres
->x
.p
->arr
[0],
1244 DomainConstraintSimplify(C
, options
->MaxRays
));
1245 value_set_si(eres
->x
.p
->arr
[1].d
, 1);
1246 value_init(eres
->x
.p
->arr
[1].x
.n
);
1248 value_set_si(eres
->x
.p
->arr
[1].x
.n
, 0);
1250 barvinok_count_with_options(P
, &eres
->x
.p
->arr
[1].x
.n
, options
);
1251 if (value_mone_p(eres
->x
.p
->arr
[1].x
.n
)) {
1252 value_clear(eres
->x
.p
->arr
[1].x
.n
);
1253 value_set_si(eres
->x
.p
->arr
[1].d
, -2); /* NaN */
1259 static evalue
* enumerate(Polyhedron
*P
, Polyhedron
* C
,
1260 struct barvinok_options
*options
)
1263 Polyhedron
*Porig
= P
;
1264 Polyhedron
*Corig
= C
;
1265 Polyhedron
*CEq
= NULL
, *rVD
;
1267 unsigned nparam
= C
->Dimension
;
1272 value_init(factor
.d
);
1273 evalue_set_si(&factor
, 1, 1);
1276 POL_ENSURE_FACETS(P
);
1277 POL_ENSURE_VERTICES(P
);
1278 POL_ENSURE_FACETS(C
);
1279 POL_ENSURE_VERTICES(C
);
1281 if (C
->Dimension
== 0 || emptyQ(P
) || emptyQ(C
)) {
1284 CEq
= Polyhedron_Copy(CEq
);
1285 eres
= barvinok_enumerate_cst(P
, CEq
? CEq
: Polyhedron_Copy(C
), options
);
1288 evalue_backsubstitute(eres
, CP
, options
->MaxRays
);
1292 emul(&factor
, eres
);
1293 if (options
->approx
->method
== BV_APPROX_DROP
) {
1294 if (options
->approx
->approximation
== BV_APPROX_SIGN_UPPER
)
1295 evalue_frac2polynomial(eres
, 1, options
->MaxRays
);
1296 if (options
->approx
->approximation
== BV_APPROX_SIGN_LOWER
)
1297 evalue_frac2polynomial(eres
, -1, options
->MaxRays
);
1298 if (options
->approx
->approximation
== BV_APPROX_SIGN_APPROX
)
1299 evalue_frac2polynomial(eres
, 0, options
->MaxRays
);
1301 reduce_evalue(eres
);
1302 free_evalue_refs(&factor
);
1310 if (Polyhedron_is_unbounded(P
, nparam
, options
->MaxRays
))
1313 if (P
->Dimension
== nparam
) {
1315 P
= Universe_Polyhedron(0);
1318 if (P
->NbEq
!= 0 || C
->NbEq
!= 0) {
1321 remove_all_equalities(&P
, &C
, &CP
, NULL
, nparam
, options
->MaxRays
);
1322 if (C
!= D
&& D
!= Corig
)
1324 if (P
!= Q
&& Q
!= Porig
)
1326 eres
= enumerate(P
, C
, options
);
1330 Polyhedron
*T
= Polyhedron_Factor(P
, nparam
, NULL
, options
->MaxRays
);
1331 if (T
|| (P
->Dimension
== nparam
+1)) {
1333 Polyhedron
*FC
= Factor_Context(T
? T
: P
, nparam
, options
->MaxRays
);
1334 C
= DomainIntersection(C
, FC
, options
->MaxRays
);
1336 Polyhedron_Free(C2
);
1337 Polyhedron_Free(FC
);
1343 if (T
->Dimension
== C
->Dimension
) {
1352 eres
= barvinok_enumerate_ev_f(P
, C
, options
);
1359 for (Q
= P
->next
; Q
; Q
= Q
->next
) {
1360 Polyhedron
*next
= Q
->next
;
1363 f
= barvinok_enumerate_ev_f(Q
, C
, options
);
1374 evalue
* barvinok_enumerate_with_options(Polyhedron
*P
, Polyhedron
* C
,
1375 struct barvinok_options
*options
)
1377 Polyhedron
*next
, *Cnext
, *C1
;
1378 Polyhedron
*Corig
= C
;
1383 "barvinok_enumerate: input is a union; only first polyhedron is enumerated\n");
1387 "barvinok_enumerate: context is a union; only first polyhedron is considered\n");
1391 C1
= Polyhedron_Project(P
, C
->Dimension
);
1392 C
= DomainIntersection(C
, C1
, options
->MaxRays
);
1393 Polyhedron_Free(C1
);
1397 if (options
->approx
->method
== BV_APPROX_BERNOULLI
||
1398 options
->summation
== BV_SUM_BERNOULLI
) {
1399 int summation
= options
->summation
;
1400 options
->summation
= BV_SUM_BERNOULLI
;
1401 eres
= barvinok_summate_unweighted(P
, C
, options
);
1402 options
->summation
= summation
;
1404 eres
= enumerate(P
, C
, options
);
1408 Corig
->next
= Cnext
;
1413 evalue
* barvinok_enumerate_ev(Polyhedron
*P
, Polyhedron
* C
, unsigned MaxRays
)
1416 barvinok_options
*options
= barvinok_options_new_with_defaults();
1417 options
->MaxRays
= MaxRays
;
1418 E
= barvinok_enumerate_with_options(P
, C
, options
);
1419 barvinok_options_free(options
);
1423 evalue
*Param_Polyhedron_Enumerate(Param_Polyhedron
*PP
, Polyhedron
*P
,
1425 struct barvinok_options
*options
)
1429 unsigned nparam
= C
->Dimension
;
1430 unsigned dim
= P
->Dimension
- nparam
;
1433 for (nd
= 0, D
=PP
->D
; D
; ++nd
, D
=D
->next
);
1434 evalue_section
*s
= new evalue_section
[nd
];
1436 enumerator_base
*et
= NULL
;
1441 et
= enumerator_base::create(P
, dim
, PP
, options
);
1443 Polyhedron
*TC
= true_context(P
, C
, options
->MaxRays
);
1444 FORALL_REDUCED_DOMAIN(PP
, TC
, nd
, options
, i
, D
, rVD
)
1447 s
[i
].E
= evalue_zero();
1450 FORALL_PVertex_in_ParamPolyhedron(V
,D
,PP
) // _i is internal counter
1453 et
->decompose_at(V
, _i
, options
);
1454 } catch (OrthogonalException
&e
) {
1455 FORALL_REDUCED_DOMAIN_RESET
;
1456 for (; i
>= 0; --i
) {
1457 evalue_free(s
[i
].E
);
1458 Domain_Free(s
[i
].D
);
1462 eadd(et
->vE
[_i
] , s
[i
].E
);
1463 END_FORALL_PVertex_in_ParamPolyhedron
;
1464 evalue_range_reduction_in_domain(s
[i
].E
, rVD
);
1465 END_FORALL_REDUCED_DOMAIN
1466 Polyhedron_Free(TC
);
1469 eres
= evalue_from_section_array(s
, nd
);
1475 static evalue
* barvinok_enumerate_ev_f(Polyhedron
*P
, Polyhedron
* C
,
1476 barvinok_options
*options
)
1478 unsigned nparam
= C
->Dimension
;
1479 bool do_scale
= options
->approx
->method
== BV_APPROX_SCALE
;
1481 if (options
->summation
== BV_SUM_EULER
)
1482 return barvinok_summate_unweighted(P
, C
, options
);
1484 if (options
->approx
->method
== BV_APPROX_VOLUME
)
1485 return Param_Polyhedron_Volume(P
, C
, options
);
1487 if (P
->Dimension
- nparam
== 1 && !do_scale
)
1488 return ParamLine_Length(P
, C
, options
);
1490 Param_Polyhedron
*PP
= NULL
;
1494 eres
= scale_bound(P
, C
, options
);
1499 PP
= Polyhedron2Param_Polyhedron(P
, C
, options
);
1502 eres
= scale(PP
, P
, C
, options
);
1504 eres
= Param_Polyhedron_Enumerate(PP
, P
, C
, options
);
1507 Param_Polyhedron_Free(PP
);
1512 Enumeration
* barvinok_enumerate(Polyhedron
*P
, Polyhedron
* C
, unsigned MaxRays
)
1514 evalue
*EP
= barvinok_enumerate_ev(P
, C
, MaxRays
);
1516 return partition2enumeration(EP
);
1519 evalue
* barvinok_enumerate_union(Polyhedron
*D
, Polyhedron
* C
, unsigned MaxRays
)
1522 gen_fun
*gf
= barvinok_enumerate_union_series(D
, C
, MaxRays
);
1528 static __isl_give isl_pw_qpolynomial
*basic_set_card(
1529 __isl_take isl_basic_set
*bset
)
1533 isl_pw_qpolynomial
*pwqp
;
1534 unsigned nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
1535 Polyhedron
*U
= Universe_Polyhedron(nparam
);
1538 barvinok_options
*options
;
1539 int options_allocated
= 0;
1541 ctx
= isl_basic_set_get_ctx(bset
);
1542 options
= isl_ctx_peek_barvinok_options(ctx
);
1544 options
= barvinok_options_new_with_defaults();
1545 options_allocated
= 1;
1548 dim
= isl_basic_set_get_dim(bset
);
1549 dim
= isl_dim_domain(dim
);
1551 P
= isl_basic_set_to_polylib(bset
);
1552 E
= enumerate(P
, U
, options
);
1554 pwqp
= isl_pw_qpolynomial_from_evalue(dim
, E
);
1555 isl_basic_set_free(bset
);
1560 if (options_allocated
)
1561 barvinok_options_free(options
);
1566 static int basic_map_card(__isl_take isl_basic_map
*bmap
, void *user
)
1568 isl_pw_qpolynomial
**sum
= (isl_pw_qpolynomial
**)user
;
1569 isl_pw_qpolynomial
*pwqp
;
1570 unsigned nparam
= isl_basic_map_dim(bmap
, isl_dim_param
);
1571 unsigned n_in
= isl_basic_map_dim(bmap
, isl_dim_in
);
1572 isl_dim
*target_dim
;
1573 isl_basic_set
*bset
;
1575 target_dim
= isl_basic_map_get_dim(bmap
);
1576 target_dim
= isl_dim_domain(target_dim
);
1578 bmap
= isl_basic_map_move_dims(bmap
, isl_dim_param
, nparam
,
1579 isl_dim_in
, 0, n_in
);
1581 bset
= isl_basic_map_range(bmap
);
1582 bset
= isl_basic_set_lift(bset
);
1583 pwqp
= isl_basic_set_multiplicative_call(bset
, &basic_set_card
);
1585 pwqp
= isl_pw_qpolynomial_move_dims(pwqp
, isl_dim_set
, 0,
1586 isl_dim_param
, nparam
, n_in
);
1587 pwqp
= isl_pw_qpolynomial_reset_dim(pwqp
, target_dim
);
1588 *sum
= isl_pw_qpolynomial_add(*sum
, pwqp
);
1593 static __isl_give isl_pw_qpolynomial
*card_as_sum(__isl_take isl_map
*map
,
1594 barvinok_options
*options
)
1599 isl_qpolynomial
*qp
;
1600 isl_pw_qpolynomial
*pwqp
;
1601 int summation
= options
->summation
;
1606 options
->summation
= BV_SUM_BERNOULLI
;
1608 set
= isl_map_wrap(map
);
1609 dim
= isl_set_get_dim(set
);
1611 isl_int_set_si(one
, 1);
1612 qp
= isl_qpolynomial_rat_cst(dim
, one
, one
);
1615 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
1616 pwqp
= isl_pw_qpolynomial_sum(pwqp
);
1618 options
->summation
= summation
;
1623 __isl_give isl_pw_qpolynomial
*isl_map_card(__isl_take isl_map
*map
)
1627 isl_pw_qpolynomial
*sum
;
1628 barvinok_options
*options
;
1630 ctx
= isl_map_get_ctx(map
);
1631 options
= isl_ctx_peek_barvinok_options(ctx
);
1633 (options
->approx
->method
== BV_APPROX_BERNOULLI
||
1634 options
->summation
== BV_SUM_BERNOULLI
))
1635 return card_as_sum(map
, options
);
1637 dim
= isl_map_get_dim(map
);
1638 dim
= isl_dim_domain(dim
);
1639 sum
= isl_pw_qpolynomial_zero(dim
);
1641 map
= isl_map_make_disjoint(map
);
1642 map
= isl_map_compute_divs(map
);
1644 if (isl_map_foreach_basic_map(map
, &basic_map_card
, &sum
) < 0)
1652 isl_pw_qpolynomial_free(sum
);
1656 __isl_give isl_pw_qpolynomial
*isl_set_card(__isl_take isl_set
*set
)
1658 return isl_map_card(isl_map_from_range(set
));
1661 __isl_give isl_pw_qpolynomial
*isl_basic_map_card(__isl_take isl_basic_map
*bmap
)
1663 return isl_map_card(isl_map_from_basic_map(bmap
));
1666 __isl_give isl_pw_qpolynomial
*isl_basic_set_card(__isl_take isl_basic_set
*bset
)
1668 return isl_basic_map_card(isl_basic_map_from_range(bset
));
1671 static int set_card(__isl_take isl_set
*set
, void *user
)
1673 isl_union_pw_qpolynomial
**res
= (isl_union_pw_qpolynomial
**)user
;
1674 isl_pw_qpolynomial
*pwqp
;
1676 pwqp
= isl_set_card(set
);
1677 *res
= isl_union_pw_qpolynomial_add_pw_qpolynomial(*res
, pwqp
);
1682 __isl_give isl_union_pw_qpolynomial
*isl_union_set_card(
1683 __isl_take isl_union_set
*uset
)
1686 isl_union_pw_qpolynomial
*res
;
1688 dim
= isl_union_set_get_dim(uset
);
1689 res
= isl_union_pw_qpolynomial_zero(dim
);
1690 if (isl_union_set_foreach_set(uset
, &set_card
, &res
) < 0)
1692 isl_union_set_free(uset
);
1696 isl_union_set_free(uset
);
1697 isl_union_pw_qpolynomial_free(res
);
1701 static int map_card(__isl_take isl_map
*map
, void *user
)
1703 isl_union_pw_qpolynomial
**res
= (isl_union_pw_qpolynomial
**)user
;
1704 isl_pw_qpolynomial
*pwqp
;
1706 pwqp
= isl_map_card(map
);
1707 *res
= isl_union_pw_qpolynomial_add_pw_qpolynomial(*res
, pwqp
);
1712 __isl_give isl_union_pw_qpolynomial
*isl_union_map_card(
1713 __isl_take isl_union_map
*umap
)
1716 isl_union_pw_qpolynomial
*res
;
1718 dim
= isl_union_map_get_dim(umap
);
1719 res
= isl_union_pw_qpolynomial_zero(dim
);
1720 if (isl_union_map_foreach_map(umap
, &map_card
, &res
) < 0)
1722 isl_union_map_free(umap
);
1726 isl_union_map_free(umap
);
1727 isl_union_pw_qpolynomial_free(res
);