add tests/ehrhart.README explaining origin of some of the ehrhart inputs
[barvinok.git] / zsolve / lattice.c
blobac88da82f1cd9e14d637c4f5463cba8711449c8b
1 /*
2 4ti2 -- A software package for algebraic, geometric and combinatorial
3 problems on linear spaces.
5 Copyright (C) 2006 4ti2 team.
6 Main author(s): Matthias Walter.
8 This program is free software; you can redistribute it and/or
9 modify it under the terms of the GNU General Public License
10 as published by the Free Software Foundation; either version 2
11 of the License, or (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
23 #include "lattice.h"
25 #include <assert.h>
26 #include <stdlib.h>
27 #include "defs.h"
29 // //
31 VectorArray generateLattice(LinearSystem system)
33 int i,j,k;
34 int n,e;
35 int currentindex, bestindex, currentvalue, bestvalue;
36 int identities;
37 int factor;
38 bool flag;
39 VectorArray array;
40 Matrix H,I,C;
41 Vector vec;
43 assert(system);
44 assert(normVector(system->b, system->Equations)==0);
46 n = system->Variables;
47 e = system->Equations;
49 array = createVectorArray(n);
50 for (i=0; i<n; i++)
51 array->Properties[i] = system->VarProperties[i];
53 // init H
54 H = createMatrix(n, e);
55 for (i=0; i<n; i++)
56 for (j=0; j<e; j++)
57 H->Data[i+n*j] = system->A[i][j];
59 // search for columns with norm 1 and use them to row-echelonize to lower right
60 identities = 0;
61 for (i=n-1; i>=0; i--)
63 flag = false;
64 for (j=0; j<identities; j++)
65 if (H->Data[i+(j+e-identities)*n]!=0)
66 flag = true;
67 if (flag)
68 continue;
69 k = -1;
70 for (j=0; j<e-identities; j++)
72 if (k==-1 && abs(H->Data[i+j*n])==1)
73 k = j;
74 else if (H->Data[i+j*n]!=0)
76 k = -2;
77 break;
80 if (k>=0)
82 swapMatrixRows(H, k, e-identities-1);
83 swapVariableProperties(array->Properties, i, n-identities-1);
84 swapMatrixColumns(H, i, n-identities-1);
85 identities++;
89 // copy H for later usage
90 C = copyMatrix(H);
92 n -= identities;
93 e -= identities;
95 if (n>0)
97 // init I
98 I = createIdentityMatrix(n);
100 // hermite the matrix H[identities .. n-1][identities .. e-1]
102 for (i=0; i<minm(n,e); i++)
104 // find gcd-minimal row
105 bestindex = i;
106 bestvalue = 0;
107 for (currentindex=i; currentindex<e; currentindex++)
109 currentvalue = gcdVector(H->Data+i+H->Width*currentindex, n-i);
110 if (currentvalue!=0 && (bestvalue==0 || currentvalue<bestvalue))
112 bestvalue = currentvalue;
113 bestindex = currentindex;
116 if (bestvalue==0)
117 break;
120 // swap this with i-th
121 swapMatrixRows(H, bestindex, i);
125 // find reducer
126 bestindex = i;
127 bestvalue = 0;
128 for (currentindex=i; currentindex<n; currentindex++)
130 currentvalue = abs(H->Data[currentindex+H->Width*i]);
131 if (currentvalue!=0 && (bestvalue<=0 || currentvalue<bestvalue))
133 bestindex = currentindex;
134 bestvalue = currentvalue;
137 assert(bestvalue!=0);
139 // if negative, change sign of column
140 if (H->Data[bestindex+H->Width*i]<0)
142 negateMatrixColumn(H, bestindex);
143 negateMatrixColumn(I, bestindex);
146 // reduce
147 flag = false;
148 for (j=0; j<n; j++)
150 if (j!=bestindex)
152 factor = H->Data[j+H->Width*i] / -bestvalue;
153 if (H->Data[j+H->Width*i] % bestvalue != 0 && j>i)
154 flag = true;
155 combineMatrixColumns(H, j, factor, bestindex);
156 combineMatrixColumns(I, j, factor, bestindex);
159 } while (flag);
161 if (bestindex!=i)
163 swapMatrixColumns(H, i, bestindex);
164 swapMatrixColumns(I, i, bestindex);
168 while (i<n)
170 vec = createVector(H->Width);
171 // fill from I
172 for (j=0; j<n; j++)
173 vec[j] = I->Data[i+j*n];
174 // fill identity part from system
175 for (j=0; j<identities; j++)
177 factor = 0;
178 for (k=0; k<n; k++)
179 factor -= vec[k]*C->Data[C->Width*(e+j)+k];
180 vec[n+j] = factor*H->Data[H->Width*(e+j)+n+j];
182 appendToVectorArray(array, vec);
183 i++;
185 deleteMatrix(I);
188 deleteMatrix(H);
189 deleteMatrix(C);
191 return array;
194 // //