barvinok.cc: ienumerator::ienumerator: drop redundant argument
[barvinok.git] / conversion.cc
blob5fb912f6935ac888c5a30e13b921c9f5dc6a98c0
1 #include <assert.h>
2 #include <gmp.h>
3 #include <NTL/mat_ZZ.h>
4 #include <barvinok/util.h>
5 #include "conversion.h"
7 #define SIZE(p) (((long *) (p))[1])
8 #define DATA(p) ((mp_limb_t *) (((long *) (p)) + 2))
10 /* Access the internal representation of a ZZ.
11 * In newer versions of NTL (since 8.0.0), the internal representation
12 * is wrapped inside a WrappedPtr, but it has an address-of operator
13 * that returns the address of the actual internal representation.
15 #define REP(z) (*&(z).rep)
17 void value2zz(Value v, ZZ& z)
19 int sa = v[0]._mp_size;
20 int abs_sa = sa < 0 ? -sa : sa;
22 _ntl_gsetlength(&z.rep, abs_sa);
23 mp_limb_t * adata = DATA(REP(z));
24 for (int i = 0; i < abs_sa; ++i)
25 adata[i] = v[0]._mp_d[i];
26 SIZE(REP(z)) = sa;
29 void zz2value(const ZZ& z, Value& v)
31 if (!z.rep) {
32 value_set_si(v, 0);
33 return;
36 int sa = SIZE(REP(z));
37 int abs_sa = sa < 0 ? -sa : sa;
39 mp_limb_t * adata = DATA(REP(z));
40 _mpz_realloc(v, abs_sa);
41 for (int i = 0; i < abs_sa; ++i)
42 v[0]._mp_d[i] = adata[i];
43 v[0]._mp_size = sa;
46 void values2zz(Value *p, vec_ZZ& v, int len)
48 v.SetLength(len);
50 for (int i = 0; i < len; ++i) {
51 value2zz(p[i], v[i]);
57 void zz2values(const vec_ZZ& v, Value *p)
59 for (int i = 0; i < v.length(); ++i)
60 zz2value(v[i], p[i]);
64 * We just ignore the last column and row
65 * If the final element is not equal to one
66 * then the result will actually be a multiple of the input
68 void matrix2zz(Matrix *M, mat_ZZ& m, unsigned nr, unsigned nc)
70 m.SetDims(nr, nc);
72 for (int i = 0; i < nr; ++i) {
73 // assert(value_one_p(M->p[i][M->NbColumns - 1]));
74 for (int j = 0; j < nc; ++j) {
75 value2zz(M->p[i][j], m[i][j]);
80 Matrix *zz2matrix(const mat_ZZ& mat)
82 Matrix *M = Matrix_Alloc(mat.NumRows(), mat.NumCols());
83 assert(M);
85 for (int i = 0; i < mat.NumRows(); ++i)
86 zz2values(mat[i], M->p[i]);
87 return M;
90 Matrix *rays(Polyhedron *C)
92 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
93 assert(C->NbRays - 1 == C->Dimension);
95 Matrix *M = Matrix_Alloc(dim+1, dim+1);
96 assert(M);
98 int i, c;
99 for (i = 0, c = 0; i <= dim && c < dim; ++i)
100 if (value_zero_p(C->Ray[i][dim+1])) {
101 Vector_Copy(C->Ray[i] + 1, M->p[c], dim);
102 value_set_si(M->p[c++][dim], 0);
104 assert(c == dim);
105 value_set_si(M->p[dim][dim], 1);
107 return M;
110 Matrix *rays2(Polyhedron *C)
112 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
113 assert(C->NbRays - 1 == C->Dimension);
115 Matrix *M = Matrix_Alloc(dim, dim);
116 assert(M);
118 int i, c;
119 for (i = 0, c = 0; i <= dim && c < dim; ++i)
120 if (value_zero_p(C->Ray[i][dim+1]))
121 Vector_Copy(C->Ray[i] + 1, M->p[c++], dim);
122 assert(c == dim);
124 return M;
127 void rays(Polyhedron *C, mat_ZZ& rays)
129 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
130 assert(C->NbRays - 1 == C->Dimension);
131 rays.SetDims(dim, dim);
133 int i, j;
134 for (i = 0, j = 0; i < C->NbRays; ++i) {
135 if (value_notzero_p(C->Ray[i][dim+1]))
136 continue;
137 values2zz(C->Ray[i]+1, rays[j], dim);
138 ++j;
142 void randomvector(Polyhedron *P, vec_ZZ& lambda, int nvar, int n_try)
144 Value tmp;
145 int max = 5 * 16;
146 unsigned int dim = P->Dimension;
147 value_init(tmp);
149 for (int i = 0; i < P->NbRays; ++i) {
150 for (int j = 1; j <= dim; ++j) {
151 value_absolute(tmp, P->Ray[i][j]);
152 int t = VALUE_TO_LONG(tmp) * 16;
153 if (t > max)
154 max = t;
157 for (int i = 0; i < P->NbConstraints; ++i) {
158 for (int j = 1; j <= dim; ++j) {
159 value_absolute(tmp, P->Constraint[i][j]);
160 int t = VALUE_TO_LONG(tmp) * 16;
161 if (t > max)
162 max = t;
165 value_clear(tmp);
167 max += max << n_try;
169 lambda.SetLength(nvar);
170 for (int k = 0; k < nvar; ++k) {
171 int r = random_int(max*dim)+2;
172 int v = (2*(r%2)-1) * (max/2*dim + (r >> 1));
173 lambda[k] = v;