1 \section{\protect\PolyLib/ interface of the
\protect\ai[\tt]{barvinok
} library
4 Although
\barvinok/ currently still uses
\PolyLib/ internally,
5 this is likely to change in the not too distant future.
6 Consider using
\isl/ based alternatives for the functions in this section
7 as the latter are likely to be removed in future releases.
9 Our
\barvinok/ library is built on top of
\PolyLib/
10 \shortcite{Wilde1993,Loechner1999
}.
11 In particular, it reuses the implementations
13 \shortciteN{Loechner97parameterized
}
14 for computing parametric vertices
16 \shortciteN{Clauss1998parametric
}
17 for computing chamber decompositions.
18 Initially, our library was meant to be a replacement
19 for the algorithm of
\shortciteN{Clauss1998parametric
},
20 also implemented in
\PolyLib/, for computing quasi-polynomials.
21 To ease the transition of application programs we
22 tried to reuse the existing data structures as much as possible.
24 \subsection{Existing Data Structures
}
27 Inside
\PolyLib/ integer values are represented by the
28 \ai[\tt]{Value
} data type.
29 Depending on a configure option, the data type may
30 either by a
32-bit integer, a
64-bit integer
31 or an arbitrary precision integer using
\ai[\tt]{GMP
}.
32 The
\barvinok/ library requires that
\PolyLib/ is compiled
33 with support for arbitrary precision integers.
35 The basic structure for representing (unions of) polyhedra is a
38 typedef struct polyhedron
{
39 unsigned Dimension, NbConstraints, NbRays, NbEq, NbBid;
44 struct polyhedron *next;
47 The attribute
\ai[\tt]{Dimension
} is the dimension
48 of the ambient space, i.e., the number of variables.
49 The attributes
\ai[\tt]{Constraint
}
50 and
\ai[\tt]{Ray
} point to two-dimensional arrays
51 of constraints and generators, respectively.
52 The number of rows is stored in
53 \ai[\tt]{NbConstraints
} and
54 \ai[\tt]{NbRays
}, respectively.
55 The number of columns in both arrays is equal
56 to
\verb!
1+Dimension+
1!.
57 The first column of
\ai[\tt]{Constraint
} is either
58 $
0$ or $
1$ depending on whether the constraint
59 is an equality ($
0$) or an inequality ($
1$).
60 The number of equalities is stored in
\ai[\tt]{NbEq
}.
61 If the constraint is $
\sp a x + c
\ge 0$, then
62 the next columns contain the coefficients $a_i$
63 and the final column contains the constant $c$.
64 The first column of
\ai[\tt]{Ray
} is either
65 $
0$ or $
1$ depending on whether the generator
66 is a line ($
0$) or a vertex or ray ($
1$).
67 The number of lines is stored in
\ai[\tt]{NbBid
}.
68 Let $d$ be the
\ac{lcm
} of the denominators of the coordinates
69 of a vertex $
\vec v$, then the next columns contain
70 $d v_i$ and the final column contains $d$.
71 For a ray, the final column contains $
0$.
72 The field
\ai[\tt]{next
} points to the next polyhedron in
73 the union of polyhedra.
74 It is
\verb+
0+ if this is the last (or only) polyhedron in the union.
75 For more information on this structure, we refer to
\shortciteN{Wilde1993
}.
77 Quasi-polynomials are represented using the
78 \ai[\tt]{evalue
} and
\ai[\tt]{enode
} structures.
80 typedef enum
{ polynomial, periodic, evector
} enode_type;
82 typedef struct _evalue
{
83 Value d; /* denominator */
85 Value n; /* numerator (if denominator !=
0) */
86 struct _enode *p; /* pointer (if denominator ==
0) */
90 typedef struct _enode
{
91 enode_type type; /* polynomial or periodic or evector */
92 int size; /* number of attached pointers */
93 int pos; /* parameter position */
94 evalue arr
[1]; /* array of rational/pointer */
97 If the field
\ai[\tt]{d
} of an
\ai[\tt]{evalue
} is zero, then
98 the
\ai[\tt]{evalue
} is a placeholder for a pointer to
99 an
\ai[\tt]{enode
}, stored in
\ai[\tt]{x.p
}.
100 Otherwise, the
\ai[\tt]{evalue
} is a rational number with
101 numerator
\ai[\tt]{x.n
} and denominator
\ai[\tt]{d
}.
102 An
\ai[\tt]{enode
} is either a
\ai[\tt]{polynomial
}
103 or a
\ai[\tt]{periodic
}, depending on the value
105 The length of the array
\ai[\tt]{arr
} is stored in
\ai[\tt]{size
}.
106 For a
\ai[\tt]{polynomial
},
\ai[\tt]{arr
} contains the coefficients.
107 For a
\ai[\tt]{periodic
}, it contains the values for the different
108 residue classes modulo the parameter indicated by
\ai[\tt]{pos
}.
109 For a polynomial,
\ai[\tt]{pos
} refers to the variable
111 The value of
\ai[\tt]{pos
} is
\verb+
1+ for the first parameter.
112 That is, if the value of
\ai[\tt]{pos
} is
\verb+
1+ and the first
113 parameter is $p$, and if the length of the array is $l$,
114 then in case it is a polynomial, the
115 \ai[\tt]{enode
} represents
117 \verb+arr
[0]+ +
\verb+arr
[1]+ p +
\verb+arr
[2]+ p^
2 +
\cdots +
118 \verb+arr
[l-
1]+ p^
{l-
1}
121 If it is a periodic, then it represents
124 \verb+arr
[0]+,
\verb+arr
[1]+,
\verb+arr
[2]+,
\ldots,
129 Note that the elements of a
\ai[\tt]{periodic
} may themselves
130 be other
\ai[\tt]{periodic
}s or even
\ai[\tt]{polynomial
}s.
131 In our library, we only allow the elements of a
\ai[\tt]{periodic
}
132 to be other
\ai[\tt]{periodic
}s or rational numbers.
133 The chambers and their corresponding quasi-polynomial are
134 stored in
\ai[\tt]{Enumeration
} structures.
136 typedef struct _enumeration
{
137 Polyhedron *ValidityDomain; /* constraints on the parameters */
138 evalue EP; /* dimension = combined space */
139 struct _enumeration *next; /* Ehrhart Polynomial,
140 corresponding to parameter
141 values inside the domain
142 ValidityDomain above */
145 For more information on these structures, we refer to
\shortciteN{Loechner1999
}.
148 Figure~
\ref{f:Loechner
} is a skillful reconstruction
149 of Figure~
2 from
\shortciteN{Loechner1999
}.
150 It shows the contents of the
\ai[\tt]{enode
} structures
151 representing the quasi-polynomial
153 [1,
2]_p p^
2 +
3 p +
\frac 5 2
160 \begin{tabular
}{|c|c|c|
}
162 \multicolumn{2}{|c|
}{type
} & polynomial \\
164 \multicolumn{2}{|c|
}{size
} &
3 \\
166 \multicolumn{2}{|c|
}{pos
} &
1 \\
168 \smash{\lower 6.25pt
\hbox{arr
[0]}} & d &
2 \\
172 \smash{\lower 6.25pt
\hbox{arr
[1]}} & d &
1 \\
176 \smash{\lower 6.25pt
\hbox{arr
[2]}} & d &
0 \\
183 +DR*!DR
\hbox{\strut\hskip 1.5\tabcolsep\phantom{\tt polynomial
}\hskip 1.5\tabcolsep}+C="a"
184 \POS(
60,-
15)*!UL
{\hbox{
186 \begin{tabular
}{|c|c|c|
}
188 \multicolumn{2}{|c|
}{type
} & periodic \\
190 \multicolumn{2}{|c|
}{size
} &
2 \\
192 \multicolumn{2}{|c|
}{pos
} &
1 \\
194 \smash{\lower 6.25pt
\hbox{arr
[0]}} & d &
1 \\
198 \smash{\lower 6.25pt
\hbox{arr
[1]}} & d &
1 \\
205 +UL+<
0.5\tabcolsep,
0pt>*!UL
\hbox{\strut}+CL="b"
207 \POS"box1"+UC*++!D
\hbox{\tt enode
}
208 \POS"box2"+UC*++!D
\hbox{\tt enode
}
210 \caption{The quasi-polynomial $
[1,
2]_p p^
2 +
3 p +
\frac 5 2$.
}
218 The
\ai[\tt]{barvinok
\_options} structure contains various
219 options that influence the behavior of the library.
222 struct barvinok_options
{
223 struct barvinok_stats *stats;
225 /* PolyLib options */
229 /* LLL reduction parameter delta=LLL_a/LLL_b */
233 /* barvinok options */
234 #define BV_SPECIALIZATION_BF
2
235 #define BV_SPECIALIZATION_DF
1
236 #define BV_SPECIALIZATION_RANDOM
0
237 #define BV_SPECIALIZATION_TODD
3
238 int incremental_specialization;
240 unsigned long max_index;
243 int count_sample_infinite;
245 int try_Delaunay_triangulation;
247 #define BV_APPROX_SIGN_NONE
0
248 #define BV_APPROX_SIGN_APPROX
1
249 #define BV_APPROX_SIGN_LOWER
2
250 #define BV_APPROX_SIGN_UPPER
3
251 int polynomial_approximation;
252 #define BV_APPROX_NONE
0
253 #define BV_APPROX_DROP
1
254 #define BV_APPROX_SCALE
2
255 #define BV_APPROX_VOLUME
3
256 #define BV_APPROX_BERNOULLI
4
257 int approximation_method;
258 #define BV_APPROX_SCALE_FAST (
1 <<
0)
259 #define BV_APPROX_SCALE_NARROW (
1 <<
1)
260 #define BV_APPROX_SCALE_NARROW2 (
1 <<
2)
261 #define BV_APPROX_SCALE_CHAMBER (
1 <<
3)
263 #define BV_VOL_LIFT
0
264 #define BV_VOL_VERTEX
1
265 #define BV_VOL_BARYCENTER
2
266 int volume_triangulate;
268 /* basis reduction options */
269 #define BV_GBR_NONE
0
270 #define BV_GBR_GLPK
1
274 #define BV_LP_POLYLIB
0
280 #define BV_HULL_GBR
0
281 #define BV_HULL_HILBERT
1
285 struct barvinok_options *barvinok_options_new_with_defaults();
288 The function
\ai[\tt]{barvinok
\_options\_new\_with\_defaults}
289 can be used to create a
\ai[\tt]{barvinok
\_options} structure
293 \item \PolyLib/ options
297 \item \ai[\tt]{MaxRays
}
299 The value of
\ai[\tt]{MaxRays
} is passed to various
\PolyLib/
300 functions and defines the
301 maximum size of a table used in the
\ai{double description
} computation
302 in the
\PolyLib/ function
\ai[\tt]{Chernikova
}.
303 In earlier versions of
\PolyLib/,
304 this parameter had to be conservatively set
305 to a high number to ensure successful operation,
306 resulting in significant memory overhead.
307 Our change to allow this table to grow
308 dynamically is available in recent versions of
\PolyLib/.
309 In these versions, the value no longer indicates the maximal
310 table size, but rather the size of the initial allocation.
311 This value may be set to
\verb+
0+ or left as set
312 by
\ai[\tt]{barvinok
\_options\_new\_with\_defaults}.
316 \item \ai[\tt]{NTL
} options
320 \item \ai[\tt]{LLL
\_a}
321 \item \ai[\tt]{LLL
\_b}
323 The values used for the
\ai{reduction parameter
}
324 in the call to
\ai[\tt]{NTL
}'s implementation of
\indac{LLL
}.
328 \item \ai[\tt]{barvinok
} specific options
332 \item \ai[\tt]{incremental
\_specialization}
334 Selects the
\ai{specialization
} algorithm to be used.
335 If set to
{\tt 0} then a direct specialization is performed
336 using a random vector.
337 Value
{\tt 1} selects a depth first incremental specialization,
338 while value
{\tt 2} selects a breadth first incremental specialization.
339 The default is selected by the
\ai[\tt]{--enable-incremental
}
340 \ai[\tt]{configure
} option.
341 For more information we refer to~
\citeN[Section~
4.4.3]{Verdoolaege2005PhD
}.
347 \subsection{Data Structures for Quasi-polynomials
}
350 Internally, we do not represent our
\ai{quasi-polynomial
}s
351 as step-polynomials, but instead as polynomials of
352 fractional parts of degree-$
1$ polynomials.
353 However, we also allow our quasi-polynomials to be represented
354 as polynomials with periodic numbers for coefficients,
355 similarly to
\shortciteN{Loechner1999
}.
356 By default, the current version of
\barvinok/ uses
357 \ai[\tt]{fractional
}s, but this can be changed through
358 the
\ai[\tt]{--disable-fractional
} configure option.
359 When this option is specified, the periodic numbers
361 an explicit enumeration using the
\ai[\tt]{periodic
} type.
362 A quasi-polynomial based on fractional
363 parts can also be converted to an actual step-polynomial
364 using
\ai[\tt]{evalue
\_frac2floor}, but this is not fully
367 For reasons of compatibility,
%
368 \footnote{Also known as laziness.
}
369 we shoehorned our representations for piecewise quasi-polynomials
370 into the existing data structures.
371 To this effect, we introduced four new types,
372 \ai[\tt]{fractional
},
\ai[\tt]{relation
},
373 \ai[\tt]{partition
} and
\ai[\tt]{flooring
}.
375 typedef enum
{ polynomial, periodic, evector, fractional,
376 relation, partition, flooring
} enode_type;
378 The field
\ai[\tt]{pos
} is not used in most of these
379 additional types and is therefore set to
\verb+-
1+.
381 The types
\ai[\tt]{fractional
} and
\ai[\tt]{flooring
}
382 represent polynomial expressions in a fractional part or a floor respectively.
383 The generator is stored in
\verb+arr
[0]+, while the
384 coefficients are stored in the remaining array elements.
385 That is, an
\ai[\tt]{enode
} of type
\ai[\tt]{fractional
}
388 \verb+arr
[1]+ +
\verb+arr
[2]+ \
{\verb+arr
[0]+\
} +
389 \verb+arr
[3]+ \
{\verb+arr
[0]+\
}^
2 +
\cdots +
390 \verb+arr
[l-
1]+ \
{\verb+arr
[0]+\
}^
{l-
2}
393 An
\ai[\tt]{enode
} of type
\ai[\tt]{flooring
}
396 \verb+arr
[1]+ +
\verb+arr
[2]+
\lfloor\verb+arr
[0]+
\rfloor +
397 \verb+arr
[3]+
\lfloor\verb+arr
[0]+
\rfloor^
2 +
\cdots +
398 \verb+arr
[l-
1]+
\lfloor\verb+arr
[0]+
\rfloor^
{l-
2}
403 The internal representation of the quasi-polynomial
404 $$
\left(
1+
2 \left\
{\frac p
2\right\
}\right) p^
2 +
3 p +
\frac 5 2$$
405 is shown in Figure~
\ref{f:fractional
}.
411 \begin{tabular
}{|c|c|c|
}
413 \multicolumn{2}{|c|
}{type
} & polynomial \\
415 \multicolumn{2}{|c|
}{size
} &
3 \\
417 \multicolumn{2}{|c|
}{pos
} &
1 \\
419 \smash{\lower 6.25pt
\hbox{arr
[0]}} & d &
2 \\
423 \smash{\lower 6.25pt
\hbox{arr
[1]}} & d &
1 \\
427 \smash{\lower 6.25pt
\hbox{arr
[2]}} & d &
0 \\
434 +DR*!DR
\hbox{\strut\hskip 1.5\tabcolsep\phantom{\tt polynomial
}\hskip 1.5\tabcolsep}+C="a"
435 \POS(
60,
0)*!UL
{\hbox{
437 \begin{tabular
}{|c|c|c|
}
439 \multicolumn{2}{|c|
}{type
} & fractional \\
441 \multicolumn{2}{|c|
}{size
} &
3 \\
443 \multicolumn{2}{|c|
}{pos
} & -
1 \\
445 \smash{\lower 6.25pt
\hbox{arr
[0]}} & d &
0 \\
449 \smash{\lower 6.25pt
\hbox{arr
[1]}} & d &
1 \\
453 \smash{\lower 6.25pt
\hbox{arr
[2]}} & d &
1 \\
460 +UL+<
0.5\tabcolsep,
0pt>*!UL
\hbox{\strut}+CL="b"
462 \POS"box2"+UR*!UR
{\hbox{
476 }+CD*!U
{\strut}+C="c"
477 \POS(
60,-
50)*!UL
{\hbox{
479 \begin{tabular
}{|c|c|c|
}
481 \multicolumn{2}{|c|
}{type
} & polynomial \\
483 \multicolumn{2}{|c|
}{size
} &
2 \\
485 \multicolumn{2}{|c|
}{pos
} &
1 \\
487 \smash{\lower 6.25pt
\hbox{arr
[0]}} & d &
1 \\
491 \smash{\lower 6.25pt
\hbox{arr
[1]}} & d &
2 \\
498 +UR-<
0.8\tabcolsep,
0pt>*!UR
\hbox{\strut}+CR="d"
500 \POS"box1"+UC*++!D
\hbox{\tt enode
}
501 \POS"box2"+UC*++!D
\hbox{\tt enode
}
502 \POS"box3"+UC*++!D
\hbox{\tt enode
}
504 \caption{The quasi-polynomial
505 $
\left(
1+
2 \left\
{\frac p
2\right\
}\right) p^
2 +
3 p +
\frac 5 2$.
}
511 The
\ai[\tt]{relation
} type is used to represent
\ai{stride
}s.
512 In particular, if the value of
\ai[\tt]{size
} is
2, then
513 the value of a
\ai[\tt]{relation
} is (in pseudo-code):
515 (value(arr
[0]) ==
0) ? value(arr
[1]) :
0
517 If the size is
3, then the value is:
519 (value(arr
[0]) ==
0) ? value(arr
[1]) : value(arr
[2])
521 The type of
\verb+arr
[0]+ is typically
\ai[\tt]{fractional
}.
523 Finally, the
\ai[\tt]{partition
} type is used to
524 represent piecewise quasi-polynomials.
525 We prefer to encode this information inside
\ai[\tt]{evalue
}s
527 rather than using
\ai[\tt]{Enumeration
}s since we want
528 to perform the same kinds of operations on both quasi-polynomials
529 and piecewise quasi-polynomials.
530 An
\ai[\tt]{enode
} of type
\ai[\tt]{partition
} may not be nested
531 inside another
\ai[\tt]{enode
}.
532 The size of the array is twice the number of ``chambers''.
533 Pointers to chambers are stored in the even slots,
534 whereas pointer to the associated quasi-polynomials
535 are stored in the odd slots.
536 To be able to store pointers to chambers, the
537 definition of
\ai[\tt]{evalue
} was changed as follows.
539 typedef struct _evalue
{
540 Value d; /* denominator */
542 Value n; /* numerator (if denominator >
0) */
543 struct _enode *p; /* pointer (if denominator ==
0) */
544 Polyhedron *D; /* domain (if denominator == -
1) */
548 Note that we allow a ``chamber'' to be a union of polyhedra
549 as discussed in
\citeN[Section~
4.5.1]{Verdoolaege2005PhD
}.
550 Chambers with extra variables, i.e., those of
551 \citeN[Section~
4.6.5]{Verdoolaege2005PhD
},
552 are only partially supported.
553 The field
\ai[\tt]{pos
} is set to the actual dimension,
554 i.e., the number of parameters.
556 \subsection{Operations on Quasi-polynomials
}
559 In this section we discuss some of the more important
560 operations on
\ai[\tt]{evalue
}s provided by the
562 Some of these operations are extensions
563 of the functions from
\PolyLib/ with the same name.
565 Most of these operation are also provided by
\isl/ on
566 \ai[\tt]{isl
\_pw\_qpolynomial}s, which are set to replace
567 \ai[\tt]{evalue
}s. Use
\ai[\tt]{isl
\_pw\_qpolynomial\_from\_evalue} to convert
568 from
\ai[\tt]{evalue
}s to
\ai[\tt]{isl
\_pw\_qpolynomial}s.
570 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_evalue(
571 __isl_take isl_space *dim, const evalue *e);
575 void eadd(const evalue *e1,evalue *res);
576 void emul(const evalue *e1, evalue *res);
578 The functions
\ai[\tt]{eadd
} and
\ai[\tt]{emul
} takes
579 two (pointers to)
\ai[\tt]{evalue
}s
\verb+e1+ and
\verb+res+
580 and computes their sum and product respectively.
581 The result is stored in
\verb+res+, overwriting (and deallocating)
582 the original value of
\verb+res+.
583 It is an error if exactly one of
584 the arguments of
\ai[\tt]{eadd
} is of type
\ai[\tt]{partition
}
585 (unless the other argument is
\verb+
0+).
586 The addition and multiplication operations are described
587 in
\citeN[Section~
4.5.1]{Verdoolaege2005PhD
}
588 and~
\citeN[Section~
4.5.2]{Verdoolaege2005PhD
}
591 The function
\ai[\tt]{eadd
} is an extension of the function
592 \ai[\tt]{new
\_eadd} from
\shortciteN{Seghir2002
}.
593 Apart from supporting the additional types from Section~
\ref{a:data
},
594 the new version also additionally imposes an order on the nesting of
595 different
\ai[\tt]{enode
}s.
596 Without such an ordering,
\ai[\tt]{evalue
}s could be constructed
597 representing for example
599 (
0 y^
0 + (
0 x^
0 +
1 x^
1 ) y^
1 ) x^
0 + (
0 y^
0 -
1 y^
1) x^
1
602 which is just a funny way of saying $
0$.
605 void eor(evalue *e1, evalue *res);
607 The function
\ai[\tt]{eor
} implements the
\ai{union
}
608 operation from
\citeN[Section~
4.5.3]{Verdoolaege2005PhD
}. Both arguments
609 are assumed to correspond to indicator functions.
612 evalue *esum(evalue *E, int nvar);
613 evalue *evalue_sum(evalue *E, int nvar, unsigned MaxRays);
615 The function
\ai[\tt]{esum
} has been superseded by
616 \ai[\tt]{evalue
\_sum}.
617 The function
\ai[\tt]{evalue
\_sum} performs the summation
618 operation from
\citeN[Section~
4.5.4]{Verdoolaege2005PhD
}.
619 The piecewise step-polynomial represented by
\verb+E+ is summated
620 over its first
\verb+nvar+ variables.
621 Note that
\verb+E+ must be zero or of type
\ai[\tt]{partition
}.
622 The function returns the result in a newly allocated
624 Note also that
\verb+E+ needs to have been converted
625 from
\ai[\tt]{fractional
}s to
\ai[\tt]{flooring
}s using
626 the function
\ai[\tt]{evalue
\_frac2floor}.
628 void evalue_frac2floor(evalue *e);
630 This function also ensures that the arguments of the
631 \ai[\tt]{flooring
}s are positive in the relevant chambers.
632 It currently assumes that the argument of each
633 \ai[\tt]{fractional
} in the original
\ai[\tt]{evalue
}
634 has a minimum in the corresponding chamber.
637 double compute_evalue(const evalue *e, Value *list_args);
638 Value *compute_poly(Enumeration *en,Value *list_args);
639 evalue *evalue_eval(const evalue *e, Value *values);
641 The functions
\ai[\tt]{compute
\_evalue},
642 \ai[\tt]{compute
\_poly} and
643 \ai[\tt]{evalue
\_eval}
644 evaluate a (piecewise) quasi-polynomial
645 at a certain point. The argument
\verb+list_args+
646 points to an array of
\ai[\tt]{Value
}s that is assumed
648 The
\verb+double+ return value of
\ai[\tt]{compute
\_evalue}
649 is inherited from
\PolyLib/.
652 void print_evalue(FILE *DST, const evalue *e, char **pname);
654 The function
\ai[\tt]{print
\_evalue} dumps a human-readable
655 representation to the stream pointed to by
\verb+DST+.
656 The argument
\verb+pname+ points
657 to an array of character strings representing the parameter names.
658 The array is assumed to be long enough.
661 int eequal(const evalue *e1, const evalue *e2);
663 The function
\ai[\tt]{eequal
} return true (
\verb+
1+) if its
664 two arguments are structurally identical.
665 I.e., it does
{\em not\/
} check whether the two
666 (piecewise) quasi-polynomial represent the same function.
669 void reduce_evalue (evalue *e);
671 The function
\ai[\tt]{reduce
\_evalue} performs some
672 simplifications on
\ai[\tt]{evalue
}s.
673 Here, we only describe the simplifications that are directly
674 related to the internal representation.
675 Some other simplifications are explained in
676 \citeN[Section~
4.7.2]{Verdoolaege2005PhD
}.
677 If the highest order coefficients of a
\ai[\tt]{polynomial
},
678 \ai[\tt]{fractional
} or
\ai[\tt]{flooring
} are zero (possibly
679 after some other simplifications), then the size of the array
680 is reduced. If only the constant term remains, i.e.,
681 the size is reduced to $
1$ for
\ai[\tt]{polynomial
} or to $
2$
682 for the other types, then the whole node is replaced by
684 Additionally, if the argument of a
\ai[\tt]{fractional
}
685 has been reduced to a constant, then the whole node
686 is replaced by its partial evaluation.
687 A
\ai[\tt]{relation
} is similarly reduced if its second
688 branch or both its branches are zero.
689 Chambers with zero associated quasi-polynomials are
690 discarded from a
\ai[\tt]{partition
}.
692 \subsection{Generating Functions
}
694 The representation of
\rgf/s uses
695 some basic types from the
\ai[\tt]{NTL
} library
\shortcite{NTL
}
696 for representing arbitrary precision integers
698 as well as vectors (
\ai[\tt]{vec
\_ZZ}) and matrices (
\ai[\tt]{mat
\_ZZ})
700 We further introduces a type
\ai[\tt]{QQ
} for representing a rational
701 number and use vectors (
\ai[\tt]{vec
\_QQ}) of such numbers.
708 NTL_vector_decl(QQ,vec_QQ);
711 Each term in a
\rgf/ is represented by a
\ai[\tt]{short
\_rat}
716 /* rows: terms in numerator */
721 /* rows: factors in denominator */
726 The fields
\ai[\tt]{n
} and
\ai[\tt]{d
} represent the
727 numerator and the denominator respectively.
728 Note that in our implementation we combine terms
729 with the same denominator.
730 In the numerator, each element of
\ai[\tt]{coeff
} and each row of
\ai[\tt]{power
}
731 represents a single such term.
732 The vector
\ai[\tt]{coeff
} contains the rational coefficients
733 $
\alpha_i$ of each term.
734 The columns of
\ai[\tt]{power
} correspond to the powers
736 In the denominator, each row of
\ai[\tt]{power
}
737 corresponds to the power $
\vec b_
{ij
}$ of a
738 factor in the denominator.
742 shows the internal representation of
744 \frac{\frac 3 2 \, x_0^
2 x_1^
3 +
2 \, x_0^
5 x_1^
{-
7}}
745 { (
1 - x_0 x_1^
{-
3}) (
1 - x_1^
2)
}
751 \begin{minipage
}{0cm
}
755 \begin{tabular
}{|c|c|c|
}
770 }+UC*++!D
\hbox{\tt short
\_rat}
774 \caption{Representation of
776 \left(
\frac 3 2 \, x_0^
2 x_1^
3 +
2 \, x_0^
5 x_1^
{-
7}\right)
777 /
\left( (
1 - x_0 x_1^
{-
3}) (
1 - x_1^
2)
\right)
784 The whole
\rgf/ is represented by a
\ai[\tt]{gen
\_fun}
787 typedef std::set<short_rat *,
788 short_rat_lex_smaller_denominator > short_rat_list;
794 void add(const QQ& c, const vec_ZZ& num, const mat_ZZ& den);
795 void add(short_rat *r);
796 void add(const QQ& c, const gen_fun *gf,
797 barvinok_options *options);
798 void substitute(Matrix *CP);
799 gen_fun *Hadamard_product(const gen_fun *gf,
800 barvinok_options *options);
801 void print(std::ostream& os,
802 unsigned int nparam, char **param_name) const;
803 operator evalue *() const;
804 ZZ coefficient(Value* params, barvinok_options *options) const;
805 void coefficient(Value* params, Value* c) const;
807 gen_fun(Polyhedron *C);
809 gen_fun(const gen_fun *gf);
813 A new
\ai[\tt]{gen
\_fun} can be constructed either as empty
\rgf/ (possibly
814 with a given context
\verb+C+), as a copy of an existing
\rgf/
\verb+gf+, or as
815 constant
\rgf/ with value for the constant term specified by
\verb+c+.
817 The first
\ai[\tt]{gen
\_fun::add
} method adds a new term to the
\rgf/,
818 described by the coefficient
\verb+c+, the numerator
\verb+num+ and the
819 denominator
\verb+den+.
820 It makes all powers in the denominator lexico-positive,
821 orders them in lexicographical order and inserts the new
822 term in
\ai[\tt]{term
} according to the lexicographical
823 order of the combined powers in the denominator.
824 The second
\ai[\tt]{gen
\_fun::add
} method adds
\verb+c+ times
\verb+gf+
827 The method
\ai[\tt]{gen
\_fun::operator evalue *
} performs
828 the conversion from
\rgf/ to
\psp/ explained in
829 \citeN[Section~
4.5.5]{Verdoolaege2005PhD
}.
830 The
\ai[\tt]{Polyhedron
} \ai[\tt]{context
} is the superset
831 of all points where the enumerator is non-zero used during this conversion,
832 i.e., it is the set $Q$ from
\citeN[Equation~
4.31]{Verdoolaege2005PhD
}.
833 If
\ai[\tt]{context
} is
\verb+NULL+ the maximal
834 allowed context is assumed, i.e., the maximal
835 region with lexico-positive rays.
837 The method
\ai[\tt]{gen
\_fun::coefficient
} computes the coefficient
838 of the term with power given by
\verb+params+ and stores the result
840 This method performs essentially the same computations as
841 \ai[\tt]{gen
\_fun::operator evalue *
}, except that it adds extra
842 equality constraints based on the specified values for the power.
844 The method
\ai[\tt]{gen
\_fun::substitute
} performs the
845 \ai{monomial substitution
} specified by the homogeneous matrix
\verb+CP+
846 that maps a set of ``
\ai{compressed parameter
}s''
\shortcite{Meister2004PhD
}
847 to the original set of parameters.
848 That is, if we are given a
\rgf/ $G(
\vec z)$ that encodes the
849 explicit function $g(
\vec i')$, where $
\vec i'$ are the coordinates of
850 the transformed space, and
\verb+CP+ represents the map
851 $
\vec i = A
\vec i' +
\vec a$ back to the original space with coordinates $
\vec i$,
852 then this method transforms the
\rgf/ to $F(
\vec x)$ encoding the
853 same explicit function $f(
\vec i)$, i.e.,
854 $$f(
\vec i) = f(A
\vec i' +
\vec a) = g(
\vec i ').$$
855 This means that the coefficient of the term
856 $
\vec x^
{\vec i
} =
\vec x^
{A
\vec i' +
\vec a
}$ in $F(
\vec x)$ should be equal to the
857 coefficient of the term $
\vec z^
{\vec i'
}$ in $G(
\vec z)$.
861 \sum_i \epsilon_i \frac{\vec z^
{\vec v_i
}}{\prod_j (
1-
\vec z^
{\vec b_
{ij
}})
}
866 \sum_i \epsilon_i \frac{\vec x^
{A
\vec v_i +
\vec a
}}
867 {\prod_j (
1-
\vec x^
{A
\vec b_
{ij
}})
}
871 The method
\ai[\tt]{gen
\_fun::Hadamard
\_product} computes the
872 \ai{Hadamard product
} of the current
\rgf/ with the
\rgf/
\verb+gf+,
873 as explained in
\citeN[Section~
4.5.2]{Verdoolaege2005PhD
}.
875 \subsection{Counting Functions
}
876 \label{a:counting:functions
}
878 Our library provides essentially three different counting functions:
879 one for non-parametric polytopes, one for parametric polytopes
880 and one for parametric sets with existential variables.
881 The old versions of these functions have a ``
\ai[\tt]{MaxRays
}''
882 argument, while the new versions have a more general
883 \ai[\tt]{barvinok
\_options} argument.
884 For more information on
\ai[\tt]{barvinok
\_options}, see Section~
\ref{a:options
}.
887 void barvinok_count(Polyhedron *P, Value* result,
889 void barvinok_count_with_options(Polyhedron *P, Value* result,
890 struct barvinok_options *options);
892 The function
\ai[\tt]{barvinok
\_count} or
893 \ai[\tt]{barvinok
\_count\_with\_options} enumerates the non-parametric
894 polytope
\verb+P+ and returns the result in the
\ai[\tt]{Value
}
895 pointed to by
\verb+result+, which needs to have been allocated
897 If
\verb+P+ is a union, then only the first set in the union will
898 be taken into account.
899 For the meaning of the argument
\verb+NbMaxCons+, see
900 the discussion on
\ai[\tt]{MaxRays
} in Section~
\ref{a:options
}.
902 The function
\ai[\tt]{barvinok
\_enumerate} for enumerating
903 parametric polytopes was meant to be
904 a drop-in replacement of
\PolyLib/'s
\ai[\tt]{Polyhedron
\_Enumerate}
906 Unfortunately, the latter has been changed to
907 accept an extra argument in recent versions of
\PolyLib/ as shown below.
909 Enumeration* barvinok_enumerate(Polyhedron *P, Polyhedron* C,
911 extern Enumeration *Polyhedron_Enumerate(Polyhedron *P,
912 Polyhedron *C, unsigned MAXRAYS, char **pname);
914 The argument
\verb+MaxRays+ has the same meaning as the argument
915 \verb+NbMaxCons+ above.
916 The argument
\verb+P+ refers to the $(d+n)$-dimensional
917 polyhedron defining the parametric polytope.
918 The argument
\verb+C+ is an $n$-dimensional polyhedron containing
919 extra constraints on the parameter space.
920 Its primary use is to indicate how many of the dimensions
921 in
\verb+P+ refer to parameters as any constraint in
\verb+C+
922 could equally well have been added to
\verb+P+ itself.
923 Note that the dimensions referring to the parameters should
925 If either
\verb+P+ or
\verb+C+ is a union,
926 then only the first set in the union will be taken into account.
927 The result is a newly allocated
\ai[\tt]{Enumeration
}.
928 As an alternative we also provide a function
929 (
\ai[\tt]{barvinok
\_enumerate\_ev} or
930 \ai[\tt]{barvinok
\_enumerate\_with\_options}) that returns
933 evalue* barvinok_enumerate_ev(Polyhedron *P, Polyhedron* C,
935 evalue* barvinok_enumerate_with_options(Polyhedron *P,
936 Polyhedron* C, struct barvinok_options *options);
939 For enumerating parametric sets with existentially quantified variables,
940 we provide two functions:
941 \ai[\tt]{barvinok
\_enumerate\_e},
943 \ai[\tt]{barvinok
\_enumerate\_isl}.
945 evalue* barvinok_enumerate_e(Polyhedron *P,
946 unsigned exist, unsigned nparam, unsigned MaxRays);
947 evalue* barvinok_enumerate_e_with_options(Polyhedron *P,
948 unsigned exist, unsigned nparam,
949 struct barvinok_options *options);
950 evalue *barvinok_enumerate_isl(Polyhedron *P,
951 unsigned exist, unsigned nparam,
952 struct barvinok_options *options);
953 evalue *barvinok_enumerate_scarf(Polyhedron *P,
954 unsigned exist, unsigned nparam,
955 struct barvinok_options *options);
957 The first function tries the simplification rules from
958 \citeN[Section~
4.6.2]{Verdoolaege2005PhD
} before resorting to the method
959 based on
\indac{PIP
} from
\citeN[Section~
4.6.3]{Verdoolaege2005PhD
}.
960 The second function immediately applies the technique from
961 \citeN[Section~
4.6.3]{Verdoolaege2005PhD
}.
962 The argument
\verb+exist+ refers to the number of existential variables,
964 the argument
\verb+nparam+ refers to the number of parameters.
965 The order of the dimensions in
\verb+P+ is:
966 counted variables first, then existential variables and finally
968 The function
\ai[\tt]{barvinok
\_enumerate\_scarf} performs the same
969 computation as the function
\ai[\tt]{barvinok
\_enumerate\_scarf\_series}
970 below, but produces an explicit representation instead of a generating function.
973 gen_fun * barvinok_series(Polyhedron *P, Polyhedron* C,
975 gen_fun * barvinok_series_with_options(Polyhedron *P,
976 Polyhedron* C, barvinok_options *options);
977 gen_fun *barvinok_enumerate_e_series(Polyhedron *P,
978 unsigned exist, unsigned nparam,
979 barvinok_options *options);
980 gen_fun *barvinok_enumerate_scarf_series(Polyhedron *P,
981 unsigned exist, unsigned nparam,
982 barvinok_options *options);
985 \ai[\tt]{barvinok
\_series} or
986 \ai[\tt]{barvinok
\_series\_with\_options} enumerates parametric polytopes
987 in the form of a
\rgf/.
988 The polyhedron
\verb+P+ is assumed to have only
989 revlex-positive rays.
991 The function
\ai[\tt]{barvinok
\_enumerate\_e\_series} computes a
992 generating function for the number of point in the parametric set
993 defined by
\verb+P+ with
\verb+exist+ existentially quantified
994 variables using the
\ai{projection theorem
}, as explained
995 in
\autoref{s:projection
}.
996 The function
\ai[\tt]{barvinok
\_enumerate\_scarf\_series} computes a
997 generating function for the number of point in the parametric set
998 defined by
\verb+P+ with
\verb+exist+ existentially quantified
999 variables, which is assumed to be
2.
1000 This function implements the technique of
1001 \shortciteN{Scarf2006Neighborhood
} using the
\ai{neighborhood complex
}
1002 description of
\shortciteN{Scarf1981indivisibilities:II
}.
1003 It is currently restricted to problems with
3 or
4 constraints involving
1004 the existentially quantified variables.
1006 \subsection{Auxiliary Functions
}
1008 In this section we briefly mention some auxiliary functions
1009 available in the
\barvinok/ library.
1012 void Polyhedron_Polarize(Polyhedron *P);
1014 The function
\ai[\tt]{Polyhedron
\_Polarize}
1015 polarizes its argument and is explained
1016 in
\citeN[Section~
4.4.2]{Verdoolaege2005PhD
}.
1019 int unimodular_complete(Matrix *M, int row);
1021 The function
\ai[\tt]{unimodular
\_complete} extends
1022 the first
\verb+row+ rows of
1023 \verb+M+ with an integral basis of the orthogonal complement
1024 as explained in Section~
\ref{s:completion
}.
1026 if the resulting matrix is unimodular
\index{unimodular matrix
}.
1029 int DomainIncludes(Polyhedron *D1, Polyhedron *D2);
1031 The function
\ai[\tt]{DomainIncludes
} extends
1032 the function
\ai[\tt]{PolyhedronIncludes
}
1033 provided by
\PolyLib/
1034 to unions of polyhedra.
1035 It checks whether every polyhedron in the union
{\tt D2
}
1036 is included in some polyhedron of
{\tt D1
}.
1039 Polyhedron *DomainConstraintSimplify(Polyhedron *P,
1042 The value returned by
1043 \ai[\tt]{DomainConstraintSimplify
} is a pointer to
1044 a newly allocated
\ai[\tt]{Polyhedron
} that contains the
1045 same integer points as its first argument but possibly
1046 has simpler constraints.
1047 Each constraint $ g
\sp a x
\ge c $
1048 is replaced by $
\sp a x
\ge \ceil{ \frac c g
} $,
1049 where $g$ is the
\ac{gcd
} of the coefficients in the original
1051 The
\ai[\tt]{Polyhedron
} pointed to by
\verb+P+ is destroyed.
1054 Polyhedron* Polyhedron_Project(Polyhedron *P, int dim);
1056 The function
\ai[\tt]{Polyhedron
\_Project} projects
1057 \verb+P+ onto its last
\verb+dim+ dimensions.
1060 Matrix *left_inverse(Matrix *M, Matrix **Eq);
1062 The
\ai[\tt]{left
\_inverse} function computes the left inverse
1063 of
\verb+M+ as explained in Section~
\ref{s:inverse
}.
1065 \sindex{reduced
}{basis
}
1066 \sindex{generalized
}{reduced basis
}
1068 Matrix *Polyhedron_Reduced_Basis(Polyhedron *P,
1069 struct barvinok_options *options);
1071 \ai[\tt]{Polyhedron
\_Reduced\_Basis} computes
1072 a
\ai{generalized reduced basis
} of
{\tt P
}, which
1073 is assumed to be a polytope, using the algorithm
1074 of~
\shortciteN{Cook1993implementation
}.
1075 See
\autoref{s:feasibility
} for more information.
1076 The basis vectors are stored in the rows of the matrix returned.
1079 Vector *Polyhedron_Sample(Polyhedron *P,
1080 struct barvinok_options *options);
1082 \ai[\tt]{Polyhedron
\_Sample} returns an
\ai{integer point
} of
{\tt P
}
1083 or
{\tt NULL
} if
{\tt P
} contains no integer points.
1084 The integer point is found using the algorithm
1085 of~
\shortciteN{Cook1993implementation
} and uses
1086 \ai[\tt]{Polyhedron
\_Reduced\_Basis} to compute the reduced bases.
1087 See
\autoref{s:feasibility
} for more information.