4 #include <isl_set_polylib.h>
5 #include <barvinok/evalue.h>
6 #include <barvinok/util.h>
7 #include <barvinok/barvinok.h>
8 #include "barvinok_enumerate_options.h"
10 #include "verif_ehrhart.h"
11 #include "verify_series.h"
12 #include "remove_equalities.h"
13 #include "evalue_convert.h"
14 #include "conversion.h"
15 #include "skewed_genfun.h"
17 #undef CS /* for Solaris 10 */
22 /* The input of this example program is the same as that of testehrhart
23 * in the PolyLib distribution, i.e., a polytope in combined
24 * data and parameter space, a context polytope in parameter space
25 * and (optionally) the names of the parameters.
26 * Both polytopes are in PolyLib notation.
29 struct verify_point_enum
{
30 struct verify_point_data vpd
;
32 isl_pw_qpolynomial
*pwqp
;
35 static int verify_point(__isl_take isl_point
*pnt
, void *user
)
37 struct verify_point_enum
*vpe
= (struct verify_point_enum
*) user
;
42 isl_qpolynomial
*cnt
= NULL
;
43 int pa
= vpe
->vpd
.options
->barvinok
->approx
->approximation
;
46 FILE *out
= vpe
->vpd
.options
->print_all
? stdout
: stderr
;
53 set
= isl_set_copy(vpe
->set
);
54 nparam
= isl_set_dim(set
, isl_dim_param
);
55 for (i
= 0; i
< nparam
; ++i
) {
56 isl_point_get_coordinate(pnt
, isl_dim_param
, i
, &v
);
57 set
= isl_set_fix(set
, isl_dim_param
, i
, v
);
60 if (isl_set_count(set
, &v
) < 0)
63 cnt
= isl_pw_qpolynomial_eval(isl_pw_qpolynomial_copy(vpe
->pwqp
),
66 cst
= isl_qpolynomial_is_cst(cnt
, &n
, &d
);
70 if (pa
== BV_APPROX_SIGN_LOWER
)
71 isl_int_cdiv_q(n
, n
, d
);
72 else if (pa
== BV_APPROX_SIGN_UPPER
)
73 isl_int_fdiv_q(n
, n
, d
);
75 isl_int_tdiv_q(n
, n
, d
);
77 if (pa
== BV_APPROX_SIGN_APPROX
)
78 /* just accept everything */
80 else if (pa
== BV_APPROX_SIGN_LOWER
)
81 ok
= isl_int_le(n
, v
);
82 else if (pa
== BV_APPROX_SIGN_UPPER
)
83 ok
= isl_int_ge(n
, v
);
85 ok
= isl_int_eq(n
, v
);
87 if (vpe
->vpd
.options
->print_all
|| !ok
) {
89 for (i
= 0; i
< nparam
; ++i
) {
92 isl_point_get_coordinate(pnt
, isl_dim_param
, i
, &d
);
93 isl_int_print(out
, d
, 0);
96 isl_int_print(out
, n
, 0);
97 fprintf(out
, ", count = ");
98 isl_int_print(out
, v
, 0);
100 fprintf(out
, ". OK\n");
102 fprintf(out
, ". NOT OK\n");
103 } else if ((vpe
->vpd
.n
% vpe
->vpd
.s
) == 0) {
113 isl_qpolynomial_free(cnt
);
122 if (vpe
->vpd
.options
->continue_on_error
)
125 return (vpe
->vpd
.n
>= 1 && ok
) ? 0 : -1;
128 static int verify_isl(Polyhedron
*P
, Polyhedron
*C
,
129 evalue
*EP
, const struct verify_options
*options
)
131 struct verify_point_enum vpe
= { { options
} };
133 isl_ctx
*ctx
= isl_ctx_alloc();
139 dim
= isl_dim_set_alloc(ctx
, C
->Dimension
, P
->Dimension
- C
->Dimension
);
140 for (i
= 0; i
< C
->Dimension
; ++i
)
141 dim
= isl_dim_set_name(dim
, isl_dim_param
, i
, options
->params
[i
]);
142 set
= isl_set_new_from_polylib(P
, isl_dim_copy(dim
));
143 dim
= isl_dim_drop(dim
, isl_dim_set
, 0, P
->Dimension
- C
->Dimension
);
144 set_C
= isl_set_new_from_polylib(C
, dim
);
145 set_C
= isl_set_intersect(isl_set_copy(set
), set_C
);
146 set_C
= isl_set_remove_dims(set_C
,
147 isl_dim_set
, 0, P
->Dimension
- C
->Dimension
);
149 set_C
= verify_context_set_bounds(set_C
, options
);
151 r
= verify_point_data_init(&vpe
.vpd
, set_C
);
154 vpe
.pwqp
= isl_pw_qpolynomial_from_evalue(isl_set_get_dim(set_C
), EP
);
156 isl_set_foreach_point(set_C
, verify_point
, &vpe
);
160 isl_pw_qpolynomial_free(vpe
.pwqp
);
166 verify_point_data_fini(&vpe
.vpd
);
171 static int verify(Polyhedron
*P
, Polyhedron
*C
, evalue
*EP
, skewed_gen_fun
*gf
,
172 struct enumerate_options
*options
)
178 if (!options
->series
|| options
->function
)
179 return verify_isl(P
, C
, EP
, options
->verify
);
181 CS
= check_poly_context_scan(P
, &C
, C
->Dimension
, options
->verify
);
183 p
= Vector_Alloc(P
->Dimension
+2);
184 value_set_si(p
->p
[P
->Dimension
+1], 1);
186 /* S = scanning list of polyhedra */
187 S
= Polyhedron_Scan(P
, C
, options
->verify
->barvinok
->MaxRays
);
189 check_poly_init(C
, options
->verify
);
191 /******* CHECK NOW *********/
193 if (!options
->series
|| options
->function
) {
194 if (!check_poly_EP(S
, CS
, EP
, 0, C
->Dimension
, 0, p
->p
,
198 if (!check_poly_gf(S
, CS
, gf
, 0, C
->Dimension
, 0, p
->p
,
206 fprintf(stderr
,"Check failed !\n");
208 if (!options
->verify
->print_all
)
220 /* frees M and Minv */
221 static void apply_transformation(Polyhedron
**P
, Polyhedron
**C
,
222 bool free_P
, bool free_C
,
223 Matrix
*M
, Matrix
*Minv
, Matrix
**inv
,
224 barvinok_options
*options
)
229 M2
= align_matrix(M
, (*P
)->Dimension
+ 1);
231 *P
= Polyhedron_Preimage(*P
, M2
, options
->MaxRays
);
237 *C
= Polyhedron_Preimage(*C
, M
, options
->MaxRays
);
245 *inv
= Matrix_Alloc(Minv
->NbRows
, T
->NbColumns
);
246 Matrix_Product(Minv
, T
, *inv
);
253 /* Since we have "compressed" the parameters (in case there were
254 * any equalities), the result is independent of the coordinates in the
255 * coordinate subspace spanned by the lines. We can therefore assume
256 * these coordinates are zero and compute the inverse image of the map
257 * from a lower dimensional space that adds zeros in the appropriate
260 static void remove_lines(Polyhedron
*C
, Matrix
**M
, Matrix
**Minv
)
262 Matrix
*L
= Matrix_Alloc(C
->Dimension
+1, C
->Dimension
+1);
263 for (int r
= 0; r
< C
->NbBid
; ++r
)
264 Vector_Copy(C
->Ray
[r
]+1, L
->p
[r
], C
->Dimension
);
265 unimodular_complete(L
, C
->NbBid
);
266 assert(value_one_p(L
->p
[C
->Dimension
][C
->Dimension
]));
267 assert(First_Non_Zero(L
->p
[C
->Dimension
], C
->Dimension
) == -1);
268 Matrix_Transposition(L
);
269 assert(First_Non_Zero(L
->p
[C
->Dimension
], C
->Dimension
) == -1);
271 *M
= Matrix_Alloc(C
->Dimension
+1, C
->Dimension
-C
->NbBid
+1);
272 for (int i
= 0; i
< C
->Dimension
+1; ++i
)
273 Vector_Copy(L
->p
[i
]+C
->NbBid
, (*M
)->p
[i
], C
->Dimension
-C
->NbBid
+1);
275 Matrix
*Linv
= Matrix_Alloc(C
->Dimension
+1, C
->Dimension
+1);
276 int ok
= Matrix_Inverse(L
, Linv
);
280 *Minv
= Matrix_Alloc(C
->Dimension
-C
->NbBid
+1, C
->Dimension
+1);
281 for (int i
= C
->NbBid
; i
< C
->Dimension
+1; ++i
)
282 Vector_AntiScale(Linv
->p
[i
], (*Minv
)->p
[i
-C
->NbBid
],
283 Linv
->p
[C
->Dimension
][C
->Dimension
], C
->Dimension
+1);
287 static skewed_gen_fun
*series(Polyhedron
*P
, Polyhedron
* C
,
288 barvinok_options
*options
)
297 /* Compute true context */
298 C1
= Polyhedron_Project(P
, C
->Dimension
);
299 C2
= DomainIntersection(C
, C1
, options
->MaxRays
);
302 POL_ENSURE_VERTICES(C2
);
303 if (C2
->NbBid
!= 0) {
305 Matrix
*M
, *Minv
, *M2
;
307 if (C2
->NbEq
|| P
->NbEq
) {
308 /* We remove all equalities to be sure all lines are unit vectors */
310 remove_all_equalities(&PT
, &CT
, &CP
, NULL
, C2
->Dimension
,
317 inv
= left_inverse(CP
, &eq
);
323 div
= Matrix_Alloc(inv
->NbRows
-1, inv
->NbColumns
+1);
324 for (int i
= 0; i
< inv
->NbRows
-1; ++i
) {
325 Vector_Gcd(inv
->p
[i
], inv
->NbColumns
, &tmp
);
326 if (mpz_divisible_p(tmp
,
327 inv
->p
[inv
->NbRows
-1][inv
->NbColumns
-1]))
329 Vector_Copy(inv
->p
[i
], div
->p
[d
], inv
->NbColumns
);
330 value_assign(div
->p
[d
][inv
->NbColumns
],
331 inv
->p
[inv
->NbRows
-1][inv
->NbColumns
-1]);
343 POL_ENSURE_VERTICES(C2
);
347 remove_lines(C2
, &M
, &Minv
);
348 apply_transformation(&PT
, &C2
, PT
!= P
, C2
!= C
, M
, Minv
, &inv
,
352 POL_ENSURE_VERTICES(C2
);
353 if (!Polyhedron_has_revlex_positive_rays(C2
, C2
->Dimension
)) {
357 Constraints
= Matrix_Alloc(C2
->NbConstraints
, C2
->Dimension
+1);
358 for (int i
= 0; i
< C2
->NbConstraints
; ++i
)
359 Vector_Copy(C2
->Constraint
[i
]+1, Constraints
->p
[i
], C2
->Dimension
);
360 left_hermite(Constraints
, &H
, &Q
, &U
);
361 Matrix_Free(Constraints
);
363 for (int i
= 0; i
< C2
->Dimension
/2; ++i
)
364 Vector_Exchange(Q
->p
[i
], Q
->p
[C2
->Dimension
-1-i
], C2
->Dimension
);
367 Matrix
*M
= Matrix_Alloc(C2
->Dimension
+1, C2
->Dimension
+1);
369 int ok
= Matrix_Inverse(U
, M
);
373 apply_transformation(&PT
, &C2
, PT
!= P
, C2
!= C
, M
, Q
, &inv
, options
);
375 gf
= barvinok_series_with_options(PT
, C2
, options
);
379 return new skewed_gen_fun(gf
, inv
, eq
, div
);
382 int main(int argc
, char **argv
)
387 skewed_gen_fun
*gf
= NULL
;
388 const char **param_name
;
389 int print_solution
= 1;
391 struct enumerate_options
*options
= enumerate_options_new_with_defaults();
393 argc
= enumerate_options_parse(options
, argc
, argv
, ISL_ARG_ALL
);
397 A
= Constraints2Polyhedron(M
, options
->verify
->barvinok
->MaxRays
);
401 C
= Constraints2Polyhedron(M
, options
->verify
->barvinok
->MaxRays
);
403 assert(A
->Dimension
>= C
->Dimension
);
404 param_name
= Read_ParamNames(stdin
, C
->Dimension
);
406 if (options
->verify
->verify
) {
407 verify_options_set_range(options
->verify
, A
->Dimension
);
408 if (!options
->verify
->barvinok
->verbose
)
412 if (print_solution
&& options
->verify
->barvinok
->verbose
) {
413 Polyhedron_Print(stdout
, P_VALUE_FMT
, A
);
414 Polyhedron_Print(stdout
, P_VALUE_FMT
, C
);
417 if (options
->series
) {
418 gf
= series(A
, C
, options
->verify
->barvinok
);
419 if (print_solution
) {
420 gf
->print(cout
, C
->Dimension
, param_name
);
423 if (options
->function
) {
426 print_evalue(stdout
, EP
, param_name
);
429 EP
= barvinok_enumerate_with_options(A
, C
, options
->verify
->barvinok
);
431 if (evalue_convert(EP
, options
->convert
, options
->verify
->barvinok
->verbose
,
432 C
->Dimension
, param_name
))
435 printf("\nSize: %zd\n", evalue_size(EP
));
437 print_evalue(stdout
, EP
, param_name
);
440 if (options
->verify
->verify
) {
441 options
->verify
->params
= param_name
;
442 result
= verify(A
, C
, EP
, gf
, options
);
450 if (options
->verify
->barvinok
->print_stats
)
451 barvinok_stats_print(options
->verify
->barvinok
->stats
, stdout
);
453 Free_ParamNames(param_name
, C
->Dimension
);
456 enumerate_options_free(options
);