QueryResponses.cs, DumpIndex.cs, IQueryResult.cs, QueryExecutor.cs, QueryResult.cs...
[beagle.git] / beagled / Lucene.Net / Search / FuzzyTermEnum.cs
blob2389f1272f06bb3b53f2237c2df8a043d647f4f5
1 /*
2 * Copyright 2004 The Apache Software Foundation
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
17 using System;
18 using IndexReader = Lucene.Net.Index.IndexReader;
19 using Term = Lucene.Net.Index.Term;
21 namespace Lucene.Net.Search
24 /// <summary>Subclass of FilteredTermEnum for enumerating all terms that are similiar
25 /// to the specified filter term.
26 ///
27 /// <p>Term enumerations are always ordered by Term.compareTo(). Each term in
28 /// the enumeration is greater than all that precede it.
29 /// </summary>
30 public sealed class FuzzyTermEnum : FilteredTermEnum
33 /* This should be somewhere around the average long word.
34 * If it is longer, we waste time and space. If it is shorter, we waste a
35 * little bit of time growing the array as we encounter longer words.
37 private const int TYPICAL_LONGEST_WORD_IN_INDEX = 19;
39 /* Allows us save time required to create a new array
40 * everytime similarity is called.
42 private int[][] d;
44 private float similarity;
45 private bool endEnum = false;
47 private Term searchTerm = null;
48 private System.String field;
49 private System.String text;
50 private System.String prefix;
52 private float minimumSimilarity;
53 private float scale_factor;
54 private int[] maxDistances = new int[TYPICAL_LONGEST_WORD_IN_INDEX];
56 /// <summary> Creates a FuzzyTermEnum with an empty prefix and a minSimilarity of 0.5f.
57 /// <p>
58 /// After calling the constructor the enumeration is already pointing to the first
59 /// valid term if such a term exists.
60 ///
61 /// </summary>
62 /// <param name="reader">
63 /// </param>
64 /// <param name="term">
65 /// </param>
66 /// <throws> IOException </throws>
67 /// <seealso cref="FuzzyTermEnum(IndexReader, Term, float, int)">
68 /// </seealso>
69 public FuzzyTermEnum(IndexReader reader, Term term) : this(reader, term, FuzzyQuery.defaultMinSimilarity, FuzzyQuery.defaultPrefixLength)
73 /// <summary> Creates a FuzzyTermEnum with an empty prefix.
74 /// <p>
75 /// After calling the constructor the enumeration is already pointing to the first
76 /// valid term if such a term exists.
77 ///
78 /// </summary>
79 /// <param name="reader">
80 /// </param>
81 /// <param name="term">
82 /// </param>
83 /// <param name="minSimilarity">
84 /// </param>
85 /// <throws> IOException </throws>
86 /// <seealso cref="FuzzyTermEnum(IndexReader, Term, float, int)">
87 /// </seealso>
88 public FuzzyTermEnum(IndexReader reader, Term term, float minSimilarity) : this(reader, term, minSimilarity, FuzzyQuery.defaultPrefixLength)
92 /// <summary> Constructor for enumeration of all terms from specified <code>reader</code> which share a prefix of
93 /// length <code>prefixLength</code> with <code>term</code> and which have a fuzzy similarity &gt;
94 /// <code>minSimilarity</code>.
95 /// <p>
96 /// After calling the constructor the enumeration is already pointing to the first
97 /// valid term if such a term exists.
98 ///
99 /// </summary>
100 /// <param name="reader">Delivers terms.
101 /// </param>
102 /// <param name="term">Pattern term.
103 /// </param>
104 /// <param name="minSimilarity">Minimum required similarity for terms from the reader. Default value is 0.5f.
105 /// </param>
106 /// <param name="prefixLength">Length of required common prefix. Default value is 0.
107 /// </param>
108 /// <throws> IOException </throws>
109 public FuzzyTermEnum(IndexReader reader, Term term, float minSimilarity, int prefixLength) : base()
112 if (minSimilarity >= 1.0f)
113 throw new System.ArgumentException("minimumSimilarity cannot be greater than or equal to 1");
114 else if (minSimilarity < 0.0f)
115 throw new System.ArgumentException("minimumSimilarity cannot be less than 0");
116 if (prefixLength < 0)
117 throw new System.ArgumentException("prefixLength cannot be less than 0");
119 this.minimumSimilarity = minSimilarity;
120 this.scale_factor = 1.0f / (1.0f - minimumSimilarity);
121 this.searchTerm = term;
122 this.field = searchTerm.Field();
124 //The prefix could be longer than the word.
125 //It's kind of silly though. It means we must match the entire word.
126 int fullSearchTermLength = searchTerm.Text().Length;
127 int realPrefixLength = prefixLength > fullSearchTermLength?fullSearchTermLength:prefixLength;
129 this.text = searchTerm.Text().Substring(realPrefixLength);
130 this.prefix = searchTerm.Text().Substring(0, (realPrefixLength) - (0));
132 InitializeMaxDistances();
133 this.d = InitDistanceArray();
135 SetEnum(reader.Terms(new Term(searchTerm.Field(), prefix)));
138 /// <summary> The termCompare method in FuzzyTermEnum uses Levenshtein distance to
139 /// calculate the distance between the given term and the comparing term.
140 /// </summary>
141 protected internal override bool TermCompare(Term term)
143 if (field == term.Field() && term.Text().StartsWith(prefix))
145 System.String target = term.Text().Substring(prefix.Length);
146 this.similarity = Similarity(target);
147 return (similarity > minimumSimilarity);
149 endEnum = true;
150 return false;
153 public override float Difference()
155 return (float) ((similarity - minimumSimilarity) * scale_factor);
158 public override bool EndEnum()
160 return endEnum;
163 /// <summary>***************************
164 /// Compute Levenshtein distance
165 /// ****************************
166 /// </summary>
168 /// <summary> Finds and returns the smallest of three integers </summary>
169 private static int min(int a, int b, int c)
171 int t = (a < b) ? a : b;
172 return (t < c) ? t : c;
175 private int[][] InitDistanceArray()
177 int[][] tmpArray = new int[this.text.Length + 1][];
178 for (int i = 0; i < this.text.Length + 1; i++)
180 tmpArray[i] = new int[TYPICAL_LONGEST_WORD_IN_INDEX];
182 return tmpArray;
185 /// <summary> <p>Similarity returns a number that is 1.0f or less (including negative numbers)
186 /// based on how similar the Term is compared to a target term. It returns
187 /// exactly 0.0f when
188 /// <pre>
189 /// editDistance &lt; maximumEditDistance</pre>
190 /// Otherwise it returns:
191 /// <pre>
192 /// 1 - (editDistance / length)</pre>
193 /// where length is the length of the shortest term (text or target) including a
194 /// prefix that are identical and editDistance is the Levenshtein distance for
195 /// the two words.</p>
196 ///
197 /// <p>Embedded within this algorithm is a fail-fast Levenshtein distance
198 /// algorithm. The fail-fast algorithm differs from the standard Levenshtein
199 /// distance algorithm in that it is aborted if it is discovered that the
200 /// mimimum distance between the words is greater than some threshold.
201 ///
202 /// <p>To calculate the maximum distance threshold we use the following formula:
203 /// <pre>
204 /// (1 - minimumSimilarity) * length</pre>
205 /// where length is the shortest term including any prefix that is not part of the
206 /// similarity comparision. This formula was derived by solving for what maximum value
207 /// of distance returns false for the following statements:
208 /// <pre>
209 /// similarity = 1 - ((float)distance / (float) (prefixLength + Math.min(textlen, targetlen)));
210 /// return (similarity > minimumSimilarity);</pre>
211 /// where distance is the Levenshtein distance for the two words.
212 /// </p>
213 /// <p>Levenshtein distance (also known as edit distance) is a measure of similiarity
214 /// between two strings where the distance is measured as the number of character
215 /// deletions, insertions or substitutions required to transform one string to
216 /// the other string.
217 /// </summary>
218 /// <param name="target">the target word or phrase
219 /// </param>
220 /// <returns> the similarity, 0.0 or less indicates that it matches less than the required
221 /// threshold and 1.0 indicates that the text and target are identical
222 /// </returns>
223 private float Similarity(System.String target)
225 lock (this)
227 int m = target.Length;
228 int n = text.Length;
229 if (n == 0)
231 //we don't have anything to compare. That means if we just add
232 //the letters for m we get the new word
233 return prefix.Length == 0 ? 0.0f : 1.0f - ((float) m / prefix.Length);
235 if (m == 0)
237 return prefix.Length == 0 ? 0.0f : 1.0f - ((float) n / prefix.Length);
240 int maxDistance = GetMaxDistance(m);
242 if (maxDistance < System.Math.Abs(m - n))
244 //just adding the characters of m to n or vice-versa results in
245 //too many edits
246 //for example "pre" length is 3 and "prefixes" length is 8. We can see that
247 //given this optimal circumstance, the edit distance cannot be less than 5.
248 //which is 8-3 or more precisesly Math.abs(3-8).
249 //if our maximum edit distance is 4, then we can discard this word
250 //without looking at it.
251 return 0.0f;
254 //let's make sure we have enough room in our array to do the distance calculations.
255 if (d[0].Length <= m)
257 GrowDistanceArray(m);
260 // init matrix d
261 for (int i = 0; i <= n; i++)
262 d[i][0] = i;
263 for (int j = 0; j <= m; j++)
264 d[0][j] = j;
266 // start computing edit distance
267 for (int i = 1; i <= n; i++)
269 int bestPossibleEditDistance = m;
270 char s_i = text[i - 1];
271 for (int j = 1; j <= m; j++)
273 if (s_i != target[j - 1])
275 d[i][j] = min(d[i - 1][j], d[i][j - 1], d[i - 1][j - 1]) + 1;
277 else
279 d[i][j] = min(d[i - 1][j] + 1, d[i][j - 1] + 1, d[i - 1][j - 1]);
281 bestPossibleEditDistance = System.Math.Min(bestPossibleEditDistance, d[i][j]);
284 //After calculating row i, the best possible edit distance
285 //can be found by found by finding the smallest value in a given column.
286 //If the bestPossibleEditDistance is greater than the max distance, abort.
288 if (i > maxDistance && bestPossibleEditDistance > maxDistance)
290 //equal is okay, but not greater
291 //the closest the target can be to the text is just too far away.
292 //this target is leaving the party early.
293 return 0.0f;
297 // this will return less than 0.0 when the edit distance is
298 // greater than the number of characters in the shorter word.
299 // but this was the formula that was previously used in FuzzyTermEnum,
300 // so it has not been changed (even though minimumSimilarity must be
301 // greater than 0.0)
302 return 1.0f - ((float) d[n][m] / (float) (prefix.Length + System.Math.Min(n, m)));
306 /// <summary> Grow the second dimension of the array, so that we can calculate the
307 /// Levenshtein difference.
308 /// </summary>
309 private void GrowDistanceArray(int m)
311 for (int i = 0; i < d.Length; i++)
313 d[i] = new int[m + 1];
317 /// <summary> The max Distance is the maximum Levenshtein distance for the text
318 /// compared to some other value that results in score that is
319 /// better than the minimum similarity.
320 /// </summary>
321 /// <param name="m">the length of the "other value"
322 /// </param>
323 /// <returns> the maximum levenshtein distance that we care about
324 /// </returns>
325 private int GetMaxDistance(int m)
327 return (m < maxDistances.Length)?maxDistances[m]:CalculateMaxDistance(m);
330 private void InitializeMaxDistances()
332 for (int i = 0; i < maxDistances.Length; i++)
334 maxDistances[i] = CalculateMaxDistance(i);
338 private int CalculateMaxDistance(int m)
340 return (int) ((1 - minimumSimilarity) * (System.Math.Min(text.Length, m) + prefix.Length));
343 public override void Close()
345 base.Close(); //call super.close() and let the garbage collector do its work.