Merge pull request #11189 from klutvott123/move-telemetry-displayport-init
[betaflight.git] / lib / main / CMSIS / DSP / Source / MatrixFunctions / arm_mat_cmplx_mult_q31.c
blob65cbb663f26dfba9a00eea55dded31c18263d9e4
1 /* ----------------------------------------------------------------------
2 * Project: CMSIS DSP Library
3 * Title: arm_mat_cmplx_mult_q31.c
4 * Description: Floating-point matrix multiplication
6 * $Date: 27. January 2017
7 * $Revision: V.1.5.1
9 * Target Processor: Cortex-M cores
10 * -------------------------------------------------------------------- */
12 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
14 * SPDX-License-Identifier: Apache-2.0
16 * Licensed under the Apache License, Version 2.0 (the License); you may
17 * not use this file except in compliance with the License.
18 * You may obtain a copy of the License at
20 * www.apache.org/licenses/LICENSE-2.0
22 * Unless required by applicable law or agreed to in writing, software
23 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25 * See the License for the specific language governing permissions and
26 * limitations under the License.
29 #include "arm_math.h"
31 /**
32 * @ingroup groupMatrix
35 /**
36 * @addtogroup CmplxMatrixMult
37 * @{
40 /**
41 * @brief Q31 Complex matrix multiplication
42 * @param[in] *pSrcA points to the first input complex matrix structure
43 * @param[in] *pSrcB points to the second input complex matrix structure
44 * @param[out] *pDst points to output complex matrix structure
45 * @return The function returns either
46 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
48 * @details
49 * <b>Scaling and Overflow Behavior:</b>
51 * \par
52 * The function is implemented using an internal 64-bit accumulator.
53 * The accumulator has a 2.62 format and maintains full precision of the intermediate
54 * multiplication results but provides only a single guard bit. There is no saturation
55 * on intermediate additions. Thus, if the accumulator overflows it wraps around and
56 * distorts the result. The input signals should be scaled down to avoid intermediate
57 * overflows. The input is thus scaled down by log2(numColsA) bits
58 * to avoid overflows, as a total of numColsA additions are performed internally.
59 * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
64 arm_status arm_mat_cmplx_mult_q31(
65 const arm_matrix_instance_q31 * pSrcA,
66 const arm_matrix_instance_q31 * pSrcB,
67 arm_matrix_instance_q31 * pDst)
69 q31_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
70 q31_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
71 q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
72 q31_t *pOut = pDst->pData; /* output data matrix pointer */
73 q31_t *px; /* Temporary output data matrix pointer */
74 uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
75 uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
76 uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
77 q63_t sumReal1, sumImag1; /* accumulator */
78 q31_t a0, b0, c0, d0;
79 q31_t a1, b1, c1, d1;
82 /* Run the below code for Cortex-M4 and Cortex-M3 */
84 uint16_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */
85 arm_status status; /* status of matrix multiplication */
87 #ifdef ARM_MATH_MATRIX_CHECK
90 /* Check for matrix mismatch condition */
91 if ((pSrcA->numCols != pSrcB->numRows) ||
92 (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
95 /* Set status as ARM_MATH_SIZE_MISMATCH */
96 status = ARM_MATH_SIZE_MISMATCH;
98 else
99 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
102 /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
103 /* row loop */
106 /* Output pointer is set to starting address of the row being processed */
107 px = pOut + 2 * i;
109 /* For every row wise process, the column loop counter is to be initiated */
110 col = numColsB;
112 /* For every row wise process, the pIn2 pointer is set
113 ** to the starting address of the pSrcB data */
114 pIn2 = pSrcB->pData;
116 j = 0U;
118 /* column loop */
121 /* Set the variable sum, that acts as accumulator, to zero */
122 sumReal1 = 0.0;
123 sumImag1 = 0.0;
125 /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
126 pIn1 = pInA;
128 /* Apply loop unrolling and compute 4 MACs simultaneously. */
129 colCnt = numColsA >> 2;
131 /* matrix multiplication */
132 while (colCnt > 0U)
135 /* Reading real part of complex matrix A */
136 a0 = *pIn1;
138 /* Reading real part of complex matrix B */
139 c0 = *pIn2;
141 /* Reading imaginary part of complex matrix A */
142 b0 = *(pIn1 + 1U);
144 /* Reading imaginary part of complex matrix B */
145 d0 = *(pIn2 + 1U);
147 /* Multiply and Accumlates */
148 sumReal1 += (q63_t) a0 *c0;
149 sumImag1 += (q63_t) b0 *c0;
151 /* update pointers */
152 pIn1 += 2U;
153 pIn2 += 2 * numColsB;
155 /* Multiply and Accumlates */
156 sumReal1 -= (q63_t) b0 *d0;
157 sumImag1 += (q63_t) a0 *d0;
159 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
161 /* read real and imag values from pSrcA and pSrcB buffer */
162 a1 = *pIn1;
163 c1 = *pIn2;
164 b1 = *(pIn1 + 1U);
165 d1 = *(pIn2 + 1U);
167 /* Multiply and Accumlates */
168 sumReal1 += (q63_t) a1 *c1;
169 sumImag1 += (q63_t) b1 *c1;
171 /* update pointers */
172 pIn1 += 2U;
173 pIn2 += 2 * numColsB;
175 /* Multiply and Accumlates */
176 sumReal1 -= (q63_t) b1 *d1;
177 sumImag1 += (q63_t) a1 *d1;
179 a0 = *pIn1;
180 c0 = *pIn2;
182 b0 = *(pIn1 + 1U);
183 d0 = *(pIn2 + 1U);
185 /* Multiply and Accumlates */
186 sumReal1 += (q63_t) a0 *c0;
187 sumImag1 += (q63_t) b0 *c0;
189 /* update pointers */
190 pIn1 += 2U;
191 pIn2 += 2 * numColsB;
193 /* Multiply and Accumlates */
194 sumReal1 -= (q63_t) b0 *d0;
195 sumImag1 += (q63_t) a0 *d0;
197 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
199 a1 = *pIn1;
200 c1 = *pIn2;
202 b1 = *(pIn1 + 1U);
203 d1 = *(pIn2 + 1U);
205 /* Multiply and Accumlates */
206 sumReal1 += (q63_t) a1 *c1;
207 sumImag1 += (q63_t) b1 *c1;
209 /* update pointers */
210 pIn1 += 2U;
211 pIn2 += 2 * numColsB;
213 /* Multiply and Accumlates */
214 sumReal1 -= (q63_t) b1 *d1;
215 sumImag1 += (q63_t) a1 *d1;
217 /* Decrement the loop count */
218 colCnt--;
221 /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
222 ** No loop unrolling is used. */
223 colCnt = numColsA % 0x4U;
225 while (colCnt > 0U)
227 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
228 a1 = *pIn1;
229 c1 = *pIn2;
231 b1 = *(pIn1 + 1U);
232 d1 = *(pIn2 + 1U);
234 /* Multiply and Accumlates */
235 sumReal1 += (q63_t) a1 *c1;
236 sumImag1 += (q63_t) b1 *c1;
238 /* update pointers */
239 pIn1 += 2U;
240 pIn2 += 2 * numColsB;
242 /* Multiply and Accumlates */
243 sumReal1 -= (q63_t) b1 *d1;
244 sumImag1 += (q63_t) a1 *d1;
246 /* Decrement the loop counter */
247 colCnt--;
250 /* Store the result in the destination buffer */
251 *px++ = (q31_t) clip_q63_to_q31(sumReal1 >> 31);
252 *px++ = (q31_t) clip_q63_to_q31(sumImag1 >> 31);
254 /* Update the pointer pIn2 to point to the starting address of the next column */
255 j++;
256 pIn2 = pSrcB->pData + 2U * j;
258 /* Decrement the column loop counter */
259 col--;
261 } while (col > 0U);
263 /* Update the pointer pInA to point to the starting address of the next row */
264 i = i + numColsB;
265 pInA = pInA + 2 * numColsA;
267 /* Decrement the row loop counter */
268 row--;
270 } while (row > 0U);
272 /* Set status as ARM_MATH_SUCCESS */
273 status = ARM_MATH_SUCCESS;
276 /* Return to application */
277 return (status);
281 * @} end of MatrixMult group