Merge pull request #11189 from klutvott123/move-telemetry-displayport-init
[betaflight.git] / lib / main / CMSIS / DSP / Source / TransformFunctions / arm_rfft_f32.c
bloba1bd81b1dc9f14211137740a0f5f77b2f5906543
1 /* ----------------------------------------------------------------------
2 * Project: CMSIS DSP Library
3 * Title: arm_rfft_f32.c
4 * Description: RFFT & RIFFT Floating point process function
6 * $Date: 27. January 2017
7 * $Revision: V.1.5.1
9 * Target Processor: Cortex-M cores
10 * -------------------------------------------------------------------- */
12 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
14 * SPDX-License-Identifier: Apache-2.0
16 * Licensed under the Apache License, Version 2.0 (the License); you may
17 * not use this file except in compliance with the License.
18 * You may obtain a copy of the License at
20 * www.apache.org/licenses/LICENSE-2.0
22 * Unless required by applicable law or agreed to in writing, software
23 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25 * See the License for the specific language governing permissions and
26 * limitations under the License.
29 #include "arm_math.h"
31 /* ----------------------------------------------------------------------
32 * Internal functions prototypes
33 * -------------------------------------------------------------------- */
35 extern void arm_radix4_butterfly_f32(
36 float32_t * pSrc,
37 uint16_t fftLen,
38 float32_t * pCoef,
39 uint16_t twidCoefModifier);
41 extern void arm_radix4_butterfly_inverse_f32(
42 float32_t * pSrc,
43 uint16_t fftLen,
44 float32_t * pCoef,
45 uint16_t twidCoefModifier,
46 float32_t onebyfftLen);
48 extern void arm_bitreversal_f32(
49 float32_t * pSrc,
50 uint16_t fftSize,
51 uint16_t bitRevFactor,
52 uint16_t * pBitRevTab);
54 void arm_split_rfft_f32(
55 float32_t * pSrc,
56 uint32_t fftLen,
57 float32_t * pATable,
58 float32_t * pBTable,
59 float32_t * pDst,
60 uint32_t modifier);
62 void arm_split_rifft_f32(
63 float32_t * pSrc,
64 uint32_t fftLen,
65 float32_t * pATable,
66 float32_t * pBTable,
67 float32_t * pDst,
68 uint32_t modifier);
70 /**
71 * @ingroup groupTransforms
74 /**
75 * @addtogroup RealFFT
76 * @{
79 /**
80 * @brief Processing function for the floating-point RFFT/RIFFT.
81 * @deprecated Do not use this function. It has been superceded by \ref arm_rfft_fast_f32 and will be removed
82 * in the future.
83 * @param[in] *S points to an instance of the floating-point RFFT/RIFFT structure.
84 * @param[in] *pSrc points to the input buffer.
85 * @param[out] *pDst points to the output buffer.
86 * @return none.
89 void arm_rfft_f32(
90 const arm_rfft_instance_f32 * S,
91 float32_t * pSrc,
92 float32_t * pDst)
94 const arm_cfft_radix4_instance_f32 *S_CFFT = S->pCfft;
97 /* Calculation of Real IFFT of input */
98 if (S->ifftFlagR == 1U)
100 /* Real IFFT core process */
101 arm_split_rifft_f32(pSrc, S->fftLenBy2, S->pTwiddleAReal,
102 S->pTwiddleBReal, pDst, S->twidCoefRModifier);
105 /* Complex radix-4 IFFT process */
106 arm_radix4_butterfly_inverse_f32(pDst, S_CFFT->fftLen,
107 S_CFFT->pTwiddle,
108 S_CFFT->twidCoefModifier,
109 S_CFFT->onebyfftLen);
111 /* Bit reversal process */
112 if (S->bitReverseFlagR == 1U)
114 arm_bitreversal_f32(pDst, S_CFFT->fftLen,
115 S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
118 else
121 /* Calculation of RFFT of input */
123 /* Complex radix-4 FFT process */
124 arm_radix4_butterfly_f32(pSrc, S_CFFT->fftLen,
125 S_CFFT->pTwiddle, S_CFFT->twidCoefModifier);
127 /* Bit reversal process */
128 if (S->bitReverseFlagR == 1U)
130 arm_bitreversal_f32(pSrc, S_CFFT->fftLen,
131 S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
135 /* Real FFT core process */
136 arm_split_rfft_f32(pSrc, S->fftLenBy2, S->pTwiddleAReal,
137 S->pTwiddleBReal, pDst, S->twidCoefRModifier);
143 * @} end of RealFFT group
147 * @brief Core Real FFT process
148 * @param[in] *pSrc points to the input buffer.
149 * @param[in] fftLen length of FFT.
150 * @param[in] *pATable points to the twiddle Coef A buffer.
151 * @param[in] *pBTable points to the twiddle Coef B buffer.
152 * @param[out] *pDst points to the output buffer.
153 * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
154 * @return none.
157 void arm_split_rfft_f32(
158 float32_t * pSrc,
159 uint32_t fftLen,
160 float32_t * pATable,
161 float32_t * pBTable,
162 float32_t * pDst,
163 uint32_t modifier)
165 uint32_t i; /* Loop Counter */
166 float32_t outR, outI; /* Temporary variables for output */
167 float32_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
168 float32_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */
169 float32_t *pDst1 = &pDst[2], *pDst2 = &pDst[(4U * fftLen) - 1U]; /* temp pointers for output buffer */
170 float32_t *pSrc1 = &pSrc[2], *pSrc2 = &pSrc[(2U * fftLen) - 1U]; /* temp pointers for input buffer */
172 /* Init coefficient pointers */
173 pCoefA = &pATable[modifier * 2U];
174 pCoefB = &pBTable[modifier * 2U];
176 i = fftLen - 1U;
178 while (i > 0U)
181 outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
182 + pSrc[2 * n - 2 * i] * pBTable[2 * i] +
183 pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
186 /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
187 pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
188 pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
190 /* read pATable[2 * i] */
191 CoefA1 = *pCoefA++;
192 /* pATable[2 * i + 1] */
193 CoefA2 = *pCoefA;
195 /* pSrc[2 * i] * pATable[2 * i] */
196 outR = *pSrc1 * CoefA1;
197 /* pSrc[2 * i] * CoefA2 */
198 outI = *pSrc1++ * CoefA2;
200 /* (pSrc[2 * i + 1] + pSrc[2 * fftLen - 2 * i + 1]) * CoefA2 */
201 outR -= (*pSrc1 + *pSrc2) * CoefA2;
202 /* pSrc[2 * i + 1] * CoefA1 */
203 outI += *pSrc1++ * CoefA1;
205 CoefB1 = *pCoefB;
207 /* pSrc[2 * fftLen - 2 * i + 1] * CoefB1 */
208 outI -= *pSrc2-- * CoefB1;
209 /* pSrc[2 * fftLen - 2 * i] * CoefA2 */
210 outI -= *pSrc2 * CoefA2;
212 /* pSrc[2 * fftLen - 2 * i] * CoefB1 */
213 outR += *pSrc2-- * CoefB1;
215 /* write output */
216 *pDst1++ = outR;
217 *pDst1++ = outI;
219 /* write complex conjugate output */
220 *pDst2-- = -outI;
221 *pDst2-- = outR;
223 /* update coefficient pointer */
224 pCoefB = pCoefB + (modifier * 2U);
225 pCoefA = pCoefA + ((modifier * 2U) - 1U);
227 i--;
231 pDst[2U * fftLen] = pSrc[0] - pSrc[1];
232 pDst[(2U * fftLen) + 1U] = 0.0f;
234 pDst[0] = pSrc[0] + pSrc[1];
235 pDst[1] = 0.0f;
241 * @brief Core Real IFFT process
242 * @param[in] *pSrc points to the input buffer.
243 * @param[in] fftLen length of FFT.
244 * @param[in] *pATable points to the twiddle Coef A buffer.
245 * @param[in] *pBTable points to the twiddle Coef B buffer.
246 * @param[out] *pDst points to the output buffer.
247 * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
248 * @return none.
251 void arm_split_rifft_f32(
252 float32_t * pSrc,
253 uint32_t fftLen,
254 float32_t * pATable,
255 float32_t * pBTable,
256 float32_t * pDst,
257 uint32_t modifier)
259 float32_t outR, outI; /* Temporary variables for output */
260 float32_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
261 float32_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */
262 float32_t *pSrc1 = &pSrc[0], *pSrc2 = &pSrc[(2U * fftLen) + 1U];
264 pCoefA = &pATable[0];
265 pCoefB = &pBTable[0];
267 while (fftLen > 0U)
270 outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
271 pIn[2 * n - 2 * i] * pBTable[2 * i] -
272 pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
274 outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
275 pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
276 pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
280 CoefA1 = *pCoefA++;
281 CoefA2 = *pCoefA;
283 /* outR = (pSrc[2 * i] * CoefA1 */
284 outR = *pSrc1 * CoefA1;
286 /* - pSrc[2 * i] * CoefA2 */
287 outI = -(*pSrc1++) * CoefA2;
289 /* (pSrc[2 * i + 1] + pSrc[2 * fftLen - 2 * i + 1]) * CoefA2 */
290 outR += (*pSrc1 + *pSrc2) * CoefA2;
292 /* pSrc[2 * i + 1] * CoefA1 */
293 outI += (*pSrc1++) * CoefA1;
295 CoefB1 = *pCoefB;
297 /* - pSrc[2 * fftLen - 2 * i + 1] * CoefB1 */
298 outI -= *pSrc2-- * CoefB1;
300 /* pSrc[2 * fftLen - 2 * i] * CoefB1 */
301 outR += *pSrc2 * CoefB1;
303 /* pSrc[2 * fftLen - 2 * i] * CoefA2 */
304 outI += *pSrc2-- * CoefA2;
306 /* write output */
307 *pDst++ = outR;
308 *pDst++ = outI;
310 /* update coefficient pointer */
311 pCoefB = pCoefB + (modifier * 2U);
312 pCoefA = pCoefA + ((modifier * 2U) - 1U);
314 /* Decrement loop count */
315 fftLen--;