If RSSI Channel is set to Disabled when using S.Bus then generate RSS… (#5090)
[betaflight.git] / src / main / rx / nrf24_v202.c
blob86db49d46913cfc1d0584b0d62a750184fb55ed4
1 /*
2 * This file is part of Cleanflight.
4 * Cleanflight is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 3 of the License, or
7 * (at your option) any later version.
9 * Cleanflight is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
18 // this file is copied with modifications from bradwii for jd385
19 // see https://github.com/hackocopter/bradwii-jd385
21 #include <stdbool.h>
22 #include <stdint.h>
23 #include <stdlib.h>
25 #include <platform.h>
27 #ifdef USE_RX_V202
29 #include "build/build_config.h"
31 #include "common/utils.h"
33 #include "drivers/io.h"
34 #include "drivers/rx/rx_nrf24l01.h"
35 #include "drivers/time.h"
37 #include "rx/rx.h"
38 #include "rx/rx_spi.h"
39 #include "rx/nrf24_v202.h"
42 * V202 Protocol
43 * No auto acknowledgment
44 * Payload size is 16 and static
45 * Data rate is 1Mbps, there is a 256Kbps data rate used by the Deviation transmitter implementation
46 * Bind Phase
47 * uses address {0x66, 0x88, 0x68, 0x68, 0x68}
48 * uses channels from the frequency hopping table
49 * Data phase
50 * uses same address as bind phase
51 * hops between 16 channels that are set using the txId sent in the bind packet and the frequency hopping table
54 #define V2X2_PAYLOAD_SIZE 16
55 #define V2X2_NFREQCHANNELS 16
56 #define TXIDSIZE 3
57 #define V2X2_RC_CHANNEL_COUNT 11
59 enum {
60 // packet[14] flags
61 V2X2_FLAG_CAMERA = 0x01, // also automatic Missile Launcher and Hoist in one direction
62 V2X2_FLAG_VIDEO = 0x02, // also Sprayer, Bubbler, Missile Launcher(1), and Hoist in the other dir.
63 V2X2_FLAG_FLIP = 0x04,
64 V2X2_FLAG_UNK9 = 0x08,
65 V2X2_FLAG_LED = 0x10,
66 V2X2_FLAG_UNK10 = 0x20,
67 V2X2_FLAG_BIND = 0xC0,
68 // packet[10] flags
69 V2X2_FLAG_HEADLESS = 0x02,
70 V2X2_FLAG_MAG_CAL_X = 0x08,
71 V2X2_FLAG_MAG_CAL_Y = 0x20
74 enum {
75 PHASE_NOT_BOUND = 0,
76 PHASE_BOUND
79 // This is frequency hopping table for V202 protocol
80 // The table is the first 4 rows of 32 frequency hopping
81 // patterns, all other rows are derived from the first 4.
82 // For some reason the protocol avoids channels, dividing
83 // by 16 and replaces them by subtracting 3 from the channel
84 // number in this case.
85 // The pattern is defined by 5 least significant bits of
86 // sum of 3 bytes comprising TX id
87 static const uint8_t v2x2_freq_hopping[][V2X2_NFREQCHANNELS] = {
88 { 0x27, 0x1B, 0x39, 0x28, 0x24, 0x22, 0x2E, 0x36,
89 0x19, 0x21, 0x29, 0x14, 0x1E, 0x12, 0x2D, 0x18 }, // 00
90 { 0x2E, 0x33, 0x25, 0x38, 0x19, 0x12, 0x18, 0x16,
91 0x2A, 0x1C, 0x1F, 0x37, 0x2F, 0x23, 0x34, 0x10 }, // 01
92 { 0x11, 0x1A, 0x35, 0x24, 0x28, 0x18, 0x25, 0x2A,
93 0x32, 0x2C, 0x14, 0x27, 0x36, 0x34, 0x1C, 0x17 }, // 02
94 { 0x22, 0x27, 0x17, 0x39, 0x34, 0x28, 0x2B, 0x1D,
95 0x18, 0x2A, 0x21, 0x38, 0x10, 0x26, 0x20, 0x1F } // 03
98 STATIC_UNIT_TESTED uint8_t rf_channels[V2X2_NFREQCHANNELS];
99 STATIC_UNIT_TESTED uint8_t rf_ch_num;
100 STATIC_UNIT_TESTED uint8_t bind_phase;
101 static uint32_t packet_timer;
102 STATIC_UNIT_TESTED uint8_t txid[TXIDSIZE];
103 static uint32_t rx_timeout;
104 extern uint16_t rxSpiRcData[];
106 static const unsigned char v2x2_channelindex[] = {RC_SPI_THROTTLE,RC_SPI_YAW,RC_SPI_PITCH,RC_SPI_ROLL,
107 RC_SPI_AUX1,RC_SPI_AUX2,RC_SPI_AUX3,RC_SPI_AUX4,RC_SPI_AUX5,RC_SPI_AUX6,RC_SPI_AUX7};
109 static void prepare_to_bind(void)
111 packet_timer = micros();
112 for (int i = 0; i < V2X2_NFREQCHANNELS; ++i) {
113 rf_channels[i] = v2x2_freq_hopping[0][i];
115 rx_timeout = 1000L;
118 static void switch_channel(void)
120 NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_channels[rf_ch_num]);
121 if (++rf_ch_num >= V2X2_NFREQCHANNELS) rf_ch_num = 0;
124 static void v2x2_set_tx_id(uint8_t *id)
126 uint8_t sum;
127 txid[0] = id[0];
128 txid[1] = id[1];
129 txid[2] = id[2];
130 sum = id[0] + id[1] + id[2];
132 // Base row is defined by lowest 2 bits
133 const uint8_t *fh_row = v2x2_freq_hopping[sum & 0x03];
134 // Higher 3 bits define increment to corresponding row
135 uint8_t increment = (sum & 0x1e) >> 2;
136 for (int i = 0; i < V2X2_NFREQCHANNELS; ++i) {
137 uint8_t val = fh_row[i] + increment;
138 // Strange avoidance of channels divisible by 16
139 rf_channels[i] = (val & 0x0f) ? val : val - 3;
143 static void decode_bind_packet(uint8_t *packet)
145 if ((packet[14] & V2X2_FLAG_BIND) == V2X2_FLAG_BIND) {
146 // Fill out rf_channels with bound protocol parameters
147 v2x2_set_tx_id(&packet[7]);
148 bind_phase = PHASE_BOUND;
149 rx_timeout = 1000L; // find the channel as fast as possible
153 // Returns whether the data was successfully decoded
154 static rx_spi_received_e decode_packet(uint8_t *packet)
156 if (bind_phase != PHASE_BOUND) {
157 decode_bind_packet(packet);
158 return RX_SPI_RECEIVED_BIND;
160 // Decode packet
161 if ((packet[14] & V2X2_FLAG_BIND) == V2X2_FLAG_BIND) {
162 return RX_SPI_RECEIVED_BIND;
164 if (packet[7] != txid[0] ||
165 packet[8] != txid[1] ||
166 packet[9] != txid[2]) {
167 return RX_SPI_RECEIVED_NONE;
169 // Restore regular interval
170 rx_timeout = 10000L; // 4ms interval, duplicate packets, (8ms unique) + 25%
171 // TREA order in packet to MultiWii order is handled by
172 // correct assignment to channelindex
173 // Throttle 0..255 to 1000..2000
174 rxSpiRcData[v2x2_channelindex[0]] = ((uint16_t)packet[0]) * 1000 / 255 + 1000;
175 for (int i = 1; i < 4; ++i) {
176 uint8_t a = packet[i];
177 rxSpiRcData[v2x2_channelindex[i]] = ((uint16_t)(a < 0x80 ? 0x7f - a : a)) * 1000 / 255 + 1000;
179 const uint8_t flags[] = {V2X2_FLAG_LED, V2X2_FLAG_FLIP, V2X2_FLAG_CAMERA, V2X2_FLAG_VIDEO}; // two more unknown bits
180 for (int i = 4; i < 8; ++i) {
181 rxSpiRcData[v2x2_channelindex[i]] = (packet[14] & flags[i-4]) ? PWM_RANGE_MAX : PWM_RANGE_MIN;
183 const uint8_t flags10[] = {V2X2_FLAG_HEADLESS, V2X2_FLAG_MAG_CAL_X, V2X2_FLAG_MAG_CAL_Y};
184 for (int i = 8; i < 11; ++i) {
185 rxSpiRcData[v2x2_channelindex[i]] = (packet[10] & flags10[i-8]) ? PWM_RANGE_MAX : PWM_RANGE_MIN;
187 packet_timer = micros();
188 return RX_SPI_RECEIVED_DATA;
191 void v202Nrf24SetRcDataFromPayload(uint16_t *rcData, const uint8_t *packet)
193 UNUSED(rcData);
194 UNUSED(packet);
195 // Ideally the decoding of the packet should be moved into here, to reduce the overhead of v202DataReceived function.
198 static rx_spi_received_e readrx(uint8_t *packet)
200 if (!(NRF24L01_ReadReg(NRF24L01_07_STATUS) & BV(NRF24L01_07_STATUS_RX_DR))) {
201 uint32_t t = micros() - packet_timer;
202 if (t > rx_timeout) {
203 switch_channel();
204 packet_timer = micros();
206 return RX_SPI_RECEIVED_NONE;
208 packet_timer = micros();
209 NRF24L01_WriteReg(NRF24L01_07_STATUS, BV(NRF24L01_07_STATUS_RX_DR)); // clear the RX_DR flag
210 NRF24L01_ReadPayload(packet, V2X2_PAYLOAD_SIZE);
211 NRF24L01_FlushRx();
213 switch_channel();
214 return decode_packet(packet);
218 * This is called periodically by the scheduler.
219 * Returns RX_SPI_RECEIVED_DATA if a data packet was received.
221 rx_spi_received_e v202Nrf24DataReceived(uint8_t *packet)
223 return readrx(packet);
226 static void v202Nrf24Setup(rx_spi_protocol_e protocol)
228 NRF24L01_Initialize(BV(NRF24L01_00_CONFIG_EN_CRC) | BV(NRF24L01_00_CONFIG_CRCO)); // 2-bytes CRC
230 NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgment
231 NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, BV(NRF24L01_02_EN_RXADDR_ERX_P0)); // Enable data pipe 0
232 NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, NRF24L01_03_SETUP_AW_5BYTES); // 5-byte RX/TX address
233 NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0xFF); // 4ms retransmit t/o, 15 tries
234 if (protocol == RX_SPI_NRF24_V202_250K) {
235 NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, NRF24L01_06_RF_SETUP_RF_DR_250Kbps | NRF24L01_06_RF_SETUP_RF_PWR_n12dbm);
236 } else {
237 NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, NRF24L01_06_RF_SETUP_RF_DR_1Mbps | NRF24L01_06_RF_SETUP_RF_PWR_n12dbm);
239 NRF24L01_WriteReg(NRF24L01_07_STATUS, BV(NRF24L01_07_STATUS_RX_DR) | BV(NRF24L01_07_STATUS_TX_DS) | BV(NRF24L01_07_STATUS_MAX_RT)); // Clear data ready, data sent, and retransmit
240 NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, V2X2_PAYLOAD_SIZE); // bytes of data payload for pipe 0
241 NRF24L01_WriteReg(NRF24L01_17_FIFO_STATUS, 0x00); // Just in case, no real bits to write here
242 #define RX_TX_ADDR_LEN 5
243 const uint8_t rx_tx_addr[RX_TX_ADDR_LEN] = {0x66, 0x88, 0x68, 0x68, 0x68};
244 NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rx_tx_addr, RX_TX_ADDR_LEN);
245 NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, RX_TX_ADDR_LEN);
247 NRF24L01_FlushTx();
248 NRF24L01_FlushRx();
250 rf_ch_num = 0;
251 bind_phase = PHASE_NOT_BOUND;
252 prepare_to_bind();
253 switch_channel();
254 NRF24L01_SetRxMode(); // enter receive mode to start listening for packets
257 bool v202Nrf24Init(const rxConfig_t *rxConfig, rxRuntimeConfig_t *rxRuntimeConfig)
259 rxRuntimeConfig->channelCount = V2X2_RC_CHANNEL_COUNT;
260 v202Nrf24Setup((rx_spi_protocol_e)rxConfig->rx_spi_protocol);
262 return true;
264 #endif