Merge pull request #11297 from SteveCEvans/baro_state
[betaflight.git] / src / main / rx / nrf24_v202.c
blobc113189d5c7960f5ba6ec2d032edfcc4f569c452
1 /*
2 * This file is part of Cleanflight and Betaflight.
4 * Cleanflight and Betaflight are free software. You can redistribute
5 * this software and/or modify this software under the terms of the
6 * GNU General Public License as published by the Free Software
7 * Foundation, either version 3 of the License, or (at your option)
8 * any later version.
10 * Cleanflight and Betaflight are distributed in the hope that they
11 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
12 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 * See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this software.
18 * If not, see <http://www.gnu.org/licenses/>.
21 // this file is copied with modifications from bradwii for jd385
22 // see https://github.com/hackocopter/bradwii-jd385
24 #include <stdbool.h>
25 #include <stdint.h>
26 #include <stdlib.h>
28 #include "platform.h"
30 #ifdef USE_RX_V202
32 #include "build/build_config.h"
34 #include "common/utils.h"
36 #include "pg/rx.h"
38 #include "drivers/io.h"
39 #include "drivers/rx/rx_nrf24l01.h"
40 #include "drivers/time.h"
42 #include "rx/rx.h"
43 #include "rx/rx_spi.h"
44 #include "rx/nrf24_v202.h"
47 * V202 Protocol
48 * No auto acknowledgment
49 * Payload size is 16 and static
50 * Data rate is 1Mbps, there is a 256Kbps data rate used by the Deviation transmitter implementation
51 * Bind Phase
52 * uses address {0x66, 0x88, 0x68, 0x68, 0x68}
53 * uses channels from the frequency hopping table
54 * Data phase
55 * uses same address as bind phase
56 * hops between 16 channels that are set using the txId sent in the bind packet and the frequency hopping table
59 #define V2X2_PAYLOAD_SIZE 16
60 #define V2X2_NFREQCHANNELS 16
61 #define TXIDSIZE 3
62 #define V2X2_RC_CHANNEL_COUNT 11
64 enum {
65 // packet[14] flags
66 V2X2_FLAG_CAMERA = 0x01, // also automatic Missile Launcher and Hoist in one direction
67 V2X2_FLAG_VIDEO = 0x02, // also Sprayer, Bubbler, Missile Launcher(1), and Hoist in the other dir.
68 V2X2_FLAG_FLIP = 0x04,
69 V2X2_FLAG_UNK9 = 0x08,
70 V2X2_FLAG_LED = 0x10,
71 V2X2_FLAG_UNK10 = 0x20,
72 V2X2_FLAG_BIND = 0xC0,
73 // packet[10] flags
74 V2X2_FLAG_HEADLESS = 0x02,
75 V2X2_FLAG_MAG_CAL_X = 0x08,
76 V2X2_FLAG_MAG_CAL_Y = 0x20
79 enum {
80 PHASE_NOT_BOUND = 0,
81 PHASE_BOUND
84 // This is frequency hopping table for V202 protocol
85 // The table is the first 4 rows of 32 frequency hopping
86 // patterns, all other rows are derived from the first 4.
87 // For some reason the protocol avoids channels, dividing
88 // by 16 and replaces them by subtracting 3 from the channel
89 // number in this case.
90 // The pattern is defined by 5 least significant bits of
91 // sum of 3 bytes comprising TX id
92 static const uint8_t v2x2_freq_hopping[][V2X2_NFREQCHANNELS] = {
93 { 0x27, 0x1B, 0x39, 0x28, 0x24, 0x22, 0x2E, 0x36,
94 0x19, 0x21, 0x29, 0x14, 0x1E, 0x12, 0x2D, 0x18 }, // 00
95 { 0x2E, 0x33, 0x25, 0x38, 0x19, 0x12, 0x18, 0x16,
96 0x2A, 0x1C, 0x1F, 0x37, 0x2F, 0x23, 0x34, 0x10 }, // 01
97 { 0x11, 0x1A, 0x35, 0x24, 0x28, 0x18, 0x25, 0x2A,
98 0x32, 0x2C, 0x14, 0x27, 0x36, 0x34, 0x1C, 0x17 }, // 02
99 { 0x22, 0x27, 0x17, 0x39, 0x34, 0x28, 0x2B, 0x1D,
100 0x18, 0x2A, 0x21, 0x38, 0x10, 0x26, 0x20, 0x1F } // 03
103 STATIC_UNIT_TESTED uint8_t rf_channels[V2X2_NFREQCHANNELS];
104 STATIC_UNIT_TESTED uint8_t rf_ch_num;
105 STATIC_UNIT_TESTED uint8_t bind_phase;
106 static uint32_t packet_timer;
107 STATIC_UNIT_TESTED uint8_t txid[TXIDSIZE];
108 static uint32_t rx_timeout;
109 extern uint16_t rxSpiRcData[];
111 static const unsigned char v2x2_channelindex[] = {RC_SPI_THROTTLE,RC_SPI_YAW,RC_SPI_PITCH,RC_SPI_ROLL,
112 RC_SPI_AUX1,RC_SPI_AUX2,RC_SPI_AUX3,RC_SPI_AUX4,RC_SPI_AUX5,RC_SPI_AUX6,RC_SPI_AUX7};
114 static void prepare_to_bind(void)
116 packet_timer = micros();
117 for (int i = 0; i < V2X2_NFREQCHANNELS; ++i) {
118 rf_channels[i] = v2x2_freq_hopping[0][i];
120 rx_timeout = 1000L;
123 static void switch_channel(void)
125 NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_channels[rf_ch_num]);
126 if (++rf_ch_num >= V2X2_NFREQCHANNELS) rf_ch_num = 0;
129 static void v2x2_set_tx_id(uint8_t *id)
131 uint8_t sum;
132 txid[0] = id[0];
133 txid[1] = id[1];
134 txid[2] = id[2];
135 sum = id[0] + id[1] + id[2];
137 // Base row is defined by lowest 2 bits
138 const uint8_t *fh_row = v2x2_freq_hopping[sum & 0x03];
139 // Higher 3 bits define increment to corresponding row
140 uint8_t increment = (sum & 0x1e) >> 2;
141 for (int i = 0; i < V2X2_NFREQCHANNELS; ++i) {
142 uint8_t val = fh_row[i] + increment;
143 // Strange avoidance of channels divisible by 16
144 rf_channels[i] = (val & 0x0f) ? val : val - 3;
148 static void decode_bind_packet(uint8_t *packet)
150 if ((packet[14] & V2X2_FLAG_BIND) == V2X2_FLAG_BIND) {
151 // Fill out rf_channels with bound protocol parameters
152 v2x2_set_tx_id(&packet[7]);
153 bind_phase = PHASE_BOUND;
154 rx_timeout = 1000L; // find the channel as fast as possible
158 // Returns whether the data was successfully decoded
159 static rx_spi_received_e decode_packet(uint8_t *packet)
161 if (bind_phase != PHASE_BOUND) {
162 decode_bind_packet(packet);
163 return RX_SPI_RECEIVED_BIND;
165 // Decode packet
166 if ((packet[14] & V2X2_FLAG_BIND) == V2X2_FLAG_BIND) {
167 return RX_SPI_RECEIVED_BIND;
169 if (packet[7] != txid[0] ||
170 packet[8] != txid[1] ||
171 packet[9] != txid[2]) {
172 return RX_SPI_RECEIVED_NONE;
174 // Restore regular interval
175 rx_timeout = 10000L; // 4ms interval, duplicate packets, (8ms unique) + 25%
176 // TREA order in packet to MultiWii order is handled by
177 // correct assignment to channelindex
178 // Throttle 0..255 to 1000..2000
179 rxSpiRcData[v2x2_channelindex[0]] = ((uint16_t)packet[0]) * 1000 / 255 + 1000;
180 for (int i = 1; i < 4; ++i) {
181 uint8_t a = packet[i];
182 rxSpiRcData[v2x2_channelindex[i]] = ((uint16_t)(a < 0x80 ? 0x7f - a : a)) * 1000 / 255 + 1000;
184 const uint8_t flags[] = {V2X2_FLAG_LED, V2X2_FLAG_FLIP, V2X2_FLAG_CAMERA, V2X2_FLAG_VIDEO}; // two more unknown bits
185 for (int i = 4; i < 8; ++i) {
186 rxSpiRcData[v2x2_channelindex[i]] = (packet[14] & flags[i-4]) ? PWM_RANGE_MAX : PWM_RANGE_MIN;
188 const uint8_t flags10[] = {V2X2_FLAG_HEADLESS, V2X2_FLAG_MAG_CAL_X, V2X2_FLAG_MAG_CAL_Y};
189 for (int i = 8; i < 11; ++i) {
190 rxSpiRcData[v2x2_channelindex[i]] = (packet[10] & flags10[i-8]) ? PWM_RANGE_MAX : PWM_RANGE_MIN;
192 packet_timer = micros();
193 return RX_SPI_RECEIVED_DATA;
196 void v202Nrf24SetRcDataFromPayload(uint16_t *rcData, const uint8_t *packet)
198 UNUSED(rcData);
199 UNUSED(packet);
200 // Ideally the decoding of the packet should be moved into here, to reduce the overhead of v202DataReceived function.
203 static rx_spi_received_e readrx(uint8_t *packet)
205 if (!(NRF24L01_ReadReg(NRF24L01_07_STATUS) & BIT(NRF24L01_07_STATUS_RX_DR))) {
206 uint32_t t = micros() - packet_timer;
207 if (t > rx_timeout) {
208 switch_channel();
209 packet_timer = micros();
211 return RX_SPI_RECEIVED_NONE;
213 packet_timer = micros();
214 NRF24L01_WriteReg(NRF24L01_07_STATUS, BIT(NRF24L01_07_STATUS_RX_DR)); // clear the RX_DR flag
215 NRF24L01_ReadPayload(packet, V2X2_PAYLOAD_SIZE);
216 NRF24L01_FlushRx();
218 switch_channel();
219 return decode_packet(packet);
223 * This is called periodically by the scheduler.
224 * Returns RX_SPI_RECEIVED_DATA if a data packet was received.
226 rx_spi_received_e v202Nrf24DataReceived(uint8_t *packet)
228 return readrx(packet);
231 static void v202Nrf24Setup(rx_spi_protocol_e protocol)
233 NRF24L01_Initialize(BIT(NRF24L01_00_CONFIG_EN_CRC) | BIT(NRF24L01_00_CONFIG_CRCO)); // 2-bytes CRC
235 NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgment
236 NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, BIT(NRF24L01_02_EN_RXADDR_ERX_P0)); // Enable data pipe 0
237 NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, NRF24L01_03_SETUP_AW_5BYTES); // 5-byte RX/TX address
238 NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0xFF); // 4ms retransmit t/o, 15 tries
239 if (protocol == RX_SPI_NRF24_V202_250K) {
240 NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, NRF24L01_06_RF_SETUP_RF_DR_250Kbps | NRF24L01_06_RF_SETUP_RF_PWR_n12dbm);
241 } else {
242 NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, NRF24L01_06_RF_SETUP_RF_DR_1Mbps | NRF24L01_06_RF_SETUP_RF_PWR_n12dbm);
244 NRF24L01_WriteReg(NRF24L01_07_STATUS, BIT(NRF24L01_07_STATUS_RX_DR) | BIT(NRF24L01_07_STATUS_TX_DS) | BIT(NRF24L01_07_STATUS_MAX_RT)); // Clear data ready, data sent, and retransmit
245 NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, V2X2_PAYLOAD_SIZE); // bytes of data payload for pipe 0
246 NRF24L01_WriteReg(NRF24L01_17_FIFO_STATUS, 0x00); // Just in case, no real bits to write here
247 #define RX_TX_ADDR_LEN 5
248 const uint8_t rx_tx_addr[RX_TX_ADDR_LEN] = {0x66, 0x88, 0x68, 0x68, 0x68};
249 NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rx_tx_addr, RX_TX_ADDR_LEN);
250 NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, RX_TX_ADDR_LEN);
252 NRF24L01_FlushTx();
253 NRF24L01_FlushRx();
255 rf_ch_num = 0;
256 bind_phase = PHASE_NOT_BOUND;
257 prepare_to_bind();
258 switch_channel();
259 NRF24L01_SetRxMode(); // enter receive mode to start listening for packets
262 bool v202Nrf24Init(const rxSpiConfig_t *rxSpiConfig, rxRuntimeState_t *rxRuntimeState, rxSpiExtiConfig_t *extiConfig)
264 UNUSED(extiConfig);
266 rxRuntimeState->channelCount = V2X2_RC_CHANNEL_COUNT;
267 v202Nrf24Setup((rx_spi_protocol_e)rxSpiConfig->rx_spi_protocol);
269 return true;
271 #endif