Implement Stopwatch (#12623)
[betaflight.git] / src / test / unit / scheduler_unittest.cc
blob9d2f4bc2a7ba69ba790352ec91485ef750d6a0f6
1 /*
2 * This file is part of Cleanflight.
4 * Cleanflight is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 3 of the License, or
7 * (at your option) any later version.
9 * Cleanflight is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
18 #include <stdint.h>
20 extern "C" {
21 #include "drivers/accgyro/accgyro.h"
22 #include "platform.h"
23 #include "pg/pg.h"
24 #include "pg/pg_ids.h"
25 #include "pg/scheduler.h"
26 #include "scheduler/scheduler.h"
28 PG_REGISTER_WITH_RESET_TEMPLATE(schedulerConfig_t, schedulerConfig, PG_SCHEDULER_CONFIG, 0);
30 PG_RESET_TEMPLATE(schedulerConfig_t, schedulerConfig,
31 .rxRelaxDeterminism = 25,
32 .osdRelaxDeterminism = 25,
36 #include "unittest_macros.h"
37 #include "gtest/gtest.h"
39 const int TEST_GYRO_SAMPLE_HZ = 8000;
40 const int TEST_GYRO_SAMPLE_TIME = 10;
41 const int TEST_FILTERING_TIME = 40;
42 const int TEST_PID_LOOP_TIME = 58;
43 const int TEST_UPDATE_ACCEL_TIME = 32;
44 const int TEST_UPDATE_ATTITUDE_TIME = 28;
45 const int TEST_HANDLE_SERIAL_TIME = 30;
46 const int TEST_UPDATE_BATTERY_TIME = 1;
47 const int TEST_UPDATE_RX_CHECK_TIME = 34;
48 const int TEST_UPDATE_RX_MAIN_TIME = 1;
49 const int TEST_IMU_UPDATE_TIME = 5;
50 const int TEST_DISPATCH_TIME = 200;
51 const int TEST_UPDATE_OSD_CHECK_TIME = 5;
52 const int TEST_UPDATE_OSD_TIME = 30;
54 #define TASK_COUNT_UNITTEST (TASK_BATTERY_VOLTAGE + 1)
55 #define TASK_PERIOD_HZ(hz) (1000000 / (hz))
57 extern "C" {
58 task_t * unittest_scheduler_selectedTask;
59 uint8_t unittest_scheduler_selectedTaskDynPrio;
60 timeDelta_t unittest_scheduler_taskRequiredTimeUs;
61 bool taskGyroRan = false;
62 bool taskFilterRan = false;
63 bool taskPidRan = false;
64 bool taskFilterReady = false;
65 bool taskPidReady = false;
66 uint8_t activePidLoopDenom = 1;
68 int16_t debug[1];
69 uint8_t debugMode = 0;
71 void rxFrameCheck(timeUs_t, timeDelta_t) {}
73 // set up micros() to simulate time
74 uint32_t simulatedTime = 0;
75 uint32_t micros(void) { return simulatedTime; }
76 uint32_t millis(void) { return simulatedTime/1000; } // Note simplistic mapping suitable only for short unit tests
77 int32_t clockCyclesToMicros(int32_t x) { return x/10;}
78 int32_t clockCyclesTo10thMicros(int32_t x) { return x;}
79 uint32_t clockMicrosToCycles(uint32_t x) { return x*10;}
80 uint32_t getCycleCounter(void) {return simulatedTime * 10;}
82 // set up tasks to take a simulated representative time to execute
83 bool gyroFilterReady(void) { return taskFilterReady; }
84 gyroDev_t gyro {
85 .gyroModeSPI = GYRO_EXTI_NO_INT
87 gyroDev_t *gyroActiveDev(void) { return &gyro; }
88 bool pidLoopReady(void) { return taskPidReady; }
89 void failsafeCheckDataFailurePeriod(void) {}
90 void failsafeUpdateState(void) {}
91 void taskGyroSample(timeUs_t) { simulatedTime += TEST_GYRO_SAMPLE_TIME; taskGyroRan = true; }
92 void taskFiltering(timeUs_t) { simulatedTime += TEST_FILTERING_TIME; taskFilterRan = true; }
93 void taskMainPidLoop(timeUs_t) { simulatedTime += TEST_PID_LOOP_TIME; taskPidRan = true; }
94 void taskUpdateAccelerometer(timeUs_t) { simulatedTime += TEST_UPDATE_ACCEL_TIME; }
95 void taskHandleSerial(timeUs_t) { simulatedTime += TEST_HANDLE_SERIAL_TIME; }
96 void taskUpdateBatteryVoltage(timeUs_t) { simulatedTime += TEST_UPDATE_BATTERY_TIME; }
97 bool rxUpdateCheck(timeUs_t, timeDelta_t) { simulatedTime += TEST_UPDATE_RX_CHECK_TIME; return false; }
98 void taskUpdateRxMain(timeUs_t) { simulatedTime += TEST_UPDATE_RX_MAIN_TIME; }
99 void imuUpdateAttitude(timeUs_t) { simulatedTime += TEST_IMU_UPDATE_TIME; }
100 void dispatchProcess(timeUs_t) { simulatedTime += TEST_DISPATCH_TIME; }
101 bool osdUpdateCheck(timeUs_t, timeDelta_t) { simulatedTime += TEST_UPDATE_OSD_CHECK_TIME; return false; }
102 void osdUpdate(timeUs_t) { simulatedTime += TEST_UPDATE_OSD_TIME; }
104 void resetGyroTaskTestFlags(void) {
105 taskGyroRan = false;
106 taskFilterRan = false;
107 taskPidRan = false;
108 taskFilterReady = false;
109 taskPidReady = false;
112 extern int taskQueueSize;
113 extern task_t* taskQueueArray[];
115 extern void queueClear(void);
116 extern bool queueContains(task_t *task);
117 extern bool queueAdd(task_t *task);
118 extern bool queueRemove(task_t *task);
119 extern task_t *queueFirst(void);
120 extern task_t *queueNext(void);
122 task_attribute_t task_attributes[TASK_COUNT] = {
123 [TASK_SYSTEM] = {
124 .taskName = "SYSTEM",
125 .taskFunc = taskSystemLoad,
126 .desiredPeriodUs = TASK_PERIOD_HZ(10),
127 .staticPriority = TASK_PRIORITY_MEDIUM_HIGH,
129 [TASK_GYRO] = {
130 .taskName = "GYRO",
131 .taskFunc = taskGyroSample,
132 .desiredPeriodUs = TASK_PERIOD_HZ(TEST_GYRO_SAMPLE_HZ),
133 .staticPriority = TASK_PRIORITY_REALTIME,
135 [TASK_FILTER] = {
136 .taskName = "FILTER",
137 .taskFunc = taskFiltering,
138 .desiredPeriodUs = TASK_PERIOD_HZ(4000),
139 .staticPriority = TASK_PRIORITY_REALTIME,
141 [TASK_PID] = {
142 .taskName = "PID",
143 .taskFunc = taskMainPidLoop,
144 .desiredPeriodUs = TASK_PERIOD_HZ(4000),
145 .staticPriority = TASK_PRIORITY_REALTIME,
147 [TASK_ACCEL] = {
148 .taskName = "ACCEL",
149 .taskFunc = taskUpdateAccelerometer,
150 .desiredPeriodUs = TASK_PERIOD_HZ(1000),
151 .staticPriority = TASK_PRIORITY_MEDIUM,
153 [TASK_ATTITUDE] = {
154 .taskName = "ATTITUDE",
155 .taskFunc = imuUpdateAttitude,
156 .desiredPeriodUs = TASK_PERIOD_HZ(100),
157 .staticPriority = TASK_PRIORITY_MEDIUM,
159 [TASK_RX] = {
160 .taskName = "RX",
161 .checkFunc = rxUpdateCheck,
162 .taskFunc = taskUpdateRxMain,
163 .desiredPeriodUs = TASK_PERIOD_HZ(50),
164 .staticPriority = TASK_PRIORITY_HIGH,
166 [TASK_SERIAL] = {
167 .taskName = "SERIAL",
168 .taskFunc = taskHandleSerial,
169 .desiredPeriodUs = TASK_PERIOD_HZ(100),
170 .staticPriority = TASK_PRIORITY_LOW,
172 [TASK_DISPATCH] = {
173 .taskName = "DISPATCH",
174 .taskFunc = dispatchProcess,
175 .desiredPeriodUs = TASK_PERIOD_HZ(1000),
176 .staticPriority = TASK_PRIORITY_HIGH,
178 [TASK_BATTERY_VOLTAGE] = {
179 .taskName = "BATTERY_VOLTAGE",
180 .taskFunc = taskUpdateBatteryVoltage,
181 .desiredPeriodUs = TASK_PERIOD_HZ(50),
182 .staticPriority = TASK_PRIORITY_MEDIUM,
184 [TASK_OSD] = {
185 .taskName = "OSD",
186 .checkFunc = osdUpdateCheck,
187 .taskFunc = osdUpdate,
188 .desiredPeriodUs = TASK_PERIOD_HZ(12),
189 .staticPriority = TASK_PRIORITY_LOW,
193 task_t tasks[TASK_COUNT];
195 task_t *getTask(unsigned taskId)
197 return &tasks[taskId];
201 TEST(SchedulerUnittest, SetupTasks)
203 for (int i = 0; i < TASK_COUNT; ++i) {
204 tasks[i].attribute = &task_attributes[i];
209 TEST(SchedulerUnittest, TestPriorites)
211 EXPECT_EQ(TASK_PRIORITY_MEDIUM_HIGH, tasks[TASK_SYSTEM].attribute->staticPriority);
212 EXPECT_EQ(TASK_PRIORITY_REALTIME, tasks[TASK_GYRO].attribute->staticPriority);
213 EXPECT_EQ(TASK_PRIORITY_MEDIUM, tasks[TASK_ACCEL].attribute->staticPriority);
214 EXPECT_EQ(TASK_PRIORITY_LOW, tasks[TASK_SERIAL].attribute->staticPriority);
215 EXPECT_EQ(TASK_PRIORITY_MEDIUM, tasks[TASK_BATTERY_VOLTAGE].attribute->staticPriority);
218 TEST(SchedulerUnittest, TestQueueInit)
220 queueClear();
221 EXPECT_EQ(0, taskQueueSize);
222 EXPECT_EQ(0, queueFirst());
223 EXPECT_EQ(0, queueNext());
224 for (int ii = 0; ii <= TASK_COUNT; ++ii) {
225 EXPECT_EQ(0, taskQueueArray[ii]);
229 task_t *deadBeefPtr = reinterpret_cast<task_t*>(0xDEADBEEF);
231 TEST(SchedulerUnittest, TestQueue)
233 queueClear();
234 taskQueueArray[TASK_COUNT + 1] = deadBeefPtr;
236 queueAdd(&tasks[TASK_SYSTEM]); // TASK_PRIORITY_MEDIUM_HIGH
237 EXPECT_EQ(1, taskQueueSize);
238 EXPECT_EQ(&tasks[TASK_SYSTEM], queueFirst());
239 EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
241 queueAdd(&tasks[TASK_SERIAL]); // TASK_PRIORITY_LOW
242 EXPECT_EQ(2, taskQueueSize);
243 EXPECT_EQ(&tasks[TASK_SYSTEM], queueFirst());
244 EXPECT_EQ(&tasks[TASK_SERIAL], queueNext());
245 EXPECT_EQ(NULL, queueNext());
246 EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
248 queueAdd(&tasks[TASK_BATTERY_VOLTAGE]); // TASK_PRIORITY_MEDIUM
249 EXPECT_EQ(3, taskQueueSize);
250 EXPECT_EQ(&tasks[TASK_SYSTEM], queueFirst());
251 EXPECT_EQ(&tasks[TASK_BATTERY_VOLTAGE], queueNext());
252 EXPECT_EQ(&tasks[TASK_SERIAL], queueNext());
253 EXPECT_EQ(NULL, queueNext());
254 EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
256 queueAdd(&tasks[TASK_RX]); // TASK_PRIORITY_HIGH
257 EXPECT_EQ(4, taskQueueSize);
258 EXPECT_EQ(&tasks[TASK_RX], queueFirst());
259 EXPECT_EQ(&tasks[TASK_SYSTEM], queueNext());
260 EXPECT_EQ(&tasks[TASK_BATTERY_VOLTAGE], queueNext());
261 EXPECT_EQ(&tasks[TASK_SERIAL], queueNext());
262 EXPECT_EQ(NULL, queueNext());
263 EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
265 queueRemove(&tasks[TASK_SYSTEM]); // TASK_PRIORITY_HIGH
266 EXPECT_EQ(3, taskQueueSize);
267 EXPECT_EQ(&tasks[TASK_RX], queueFirst());
268 EXPECT_EQ(&tasks[TASK_BATTERY_VOLTAGE], queueNext());
269 EXPECT_EQ(&tasks[TASK_SERIAL], queueNext());
270 EXPECT_EQ(NULL, queueNext());
271 EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
274 TEST(SchedulerUnittest, TestQueueAddAndRemove)
276 queueClear();
277 taskQueueArray[TASK_COUNT + 1] = deadBeefPtr;
279 // fill up the queue
280 for (int taskId = 0; taskId < TASK_COUNT; ++taskId) {
281 const bool added = queueAdd(&tasks[taskId]);
282 EXPECT_TRUE(added);
283 EXPECT_EQ(taskId + 1, taskQueueSize);
284 EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
286 // double check end of queue
287 EXPECT_EQ(TASK_COUNT, taskQueueSize);
288 EXPECT_NE(static_cast<task_t*>(0), taskQueueArray[TASK_COUNT - 1]); // last item was indeed added to queue
289 EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT]); // null pointer at end of queue is preserved
290 EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]); // there hasn't been an out by one error
292 // and empty it again
293 for (int taskId = 0; taskId < TASK_COUNT; ++taskId) {
294 const bool removed = queueRemove(&tasks[taskId]);
295 EXPECT_TRUE(removed);
296 EXPECT_EQ(TASK_COUNT - taskId - 1, taskQueueSize);
297 EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT - taskId]);
298 EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
301 // double check size and end of queue
302 EXPECT_EQ(0, taskQueueSize); // queue is indeed empty
303 EXPECT_EQ(NULL, taskQueueArray[0]); // there is a null pointer at the end of the queueu
304 EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]); // no accidental overwrites past end of queue
307 TEST(SchedulerUnittest, TestQueueArray)
309 // test there are no "out by one" errors or buffer overruns when items are added and removed
310 queueClear();
311 taskQueueArray[TASK_COUNT_UNITTEST + 1] = deadBeefPtr; // note, must set deadBeefPtr after queueClear
313 unsigned enqueuedTasks = 0;
314 EXPECT_EQ(enqueuedTasks, taskQueueSize);
316 for (int taskId = 0; taskId < TASK_COUNT_UNITTEST - 1; ++taskId) {
317 if (tasks[taskId].attribute->taskFunc) {
318 setTaskEnabled(static_cast<taskId_e>(taskId), true);
319 enqueuedTasks++;
320 EXPECT_EQ(enqueuedTasks, taskQueueSize);
321 EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT_UNITTEST + 1]);
325 EXPECT_NE(static_cast<task_t*>(0), taskQueueArray[enqueuedTasks - 1]);
326 const task_t *lastTaskPrev = taskQueueArray[enqueuedTasks - 1];
327 EXPECT_EQ(NULL, taskQueueArray[enqueuedTasks]);
328 EXPECT_EQ(NULL, taskQueueArray[enqueuedTasks + 1]);
329 EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT_UNITTEST + 1]);
331 setTaskEnabled(TASK_SYSTEM, false);
332 EXPECT_EQ(enqueuedTasks - 1, taskQueueSize);
333 EXPECT_EQ(lastTaskPrev, taskQueueArray[enqueuedTasks - 2]);
334 EXPECT_EQ(NULL, taskQueueArray[enqueuedTasks - 1]); // NULL at end of queue
335 EXPECT_EQ(NULL, taskQueueArray[enqueuedTasks]);
336 EXPECT_EQ(NULL, taskQueueArray[enqueuedTasks + 1]);
337 EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT_UNITTEST + 1]);
339 taskQueueArray[enqueuedTasks - 1] = 0;
340 setTaskEnabled(TASK_SYSTEM, true);
341 EXPECT_EQ(enqueuedTasks, taskQueueSize);
342 EXPECT_EQ(lastTaskPrev, taskQueueArray[enqueuedTasks - 1]);
343 EXPECT_EQ(NULL, taskQueueArray[enqueuedTasks]);
344 EXPECT_EQ(NULL, taskQueueArray[enqueuedTasks + 1]);
345 EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT_UNITTEST + 1]);
347 taskInfo_t taskInfo;
348 getTaskInfo(static_cast<taskId_e>(enqueuedTasks + 1), &taskInfo);
349 EXPECT_FALSE(taskInfo.isEnabled);
350 setTaskEnabled(static_cast<taskId_e>(enqueuedTasks), true);
351 EXPECT_EQ(enqueuedTasks, taskQueueSize);
352 EXPECT_EQ(lastTaskPrev, taskQueueArray[enqueuedTasks - 1]);
353 EXPECT_EQ(NULL, taskQueueArray[enqueuedTasks + 1]); // check no buffer overrun
354 EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT_UNITTEST + 1]);
356 setTaskEnabled(TASK_SYSTEM, false);
357 EXPECT_EQ(enqueuedTasks - 1, taskQueueSize);
358 EXPECT_EQ(NULL, taskQueueArray[enqueuedTasks]);
359 EXPECT_EQ(NULL, taskQueueArray[enqueuedTasks + 1]);
360 EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT_UNITTEST + 1]);
362 setTaskEnabled(TASK_ACCEL, false);
363 EXPECT_EQ(enqueuedTasks - 2, taskQueueSize);
364 EXPECT_EQ(NULL, taskQueueArray[enqueuedTasks - 1]);
365 EXPECT_EQ(NULL, taskQueueArray[enqueuedTasks]);
366 EXPECT_EQ(NULL, taskQueueArray[enqueuedTasks + 1]);
367 EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT_UNITTEST + 1]);
369 setTaskEnabled(TASK_BATTERY_VOLTAGE, false);
370 EXPECT_EQ(enqueuedTasks - 2, taskQueueSize);
371 EXPECT_EQ(NULL, taskQueueArray[enqueuedTasks - 2]);
372 EXPECT_EQ(NULL, taskQueueArray[enqueuedTasks - 1]);
373 EXPECT_EQ(NULL, taskQueueArray[enqueuedTasks]);
374 EXPECT_EQ(NULL, taskQueueArray[enqueuedTasks + 1]);
375 EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT_UNITTEST + 1]);
378 TEST(SchedulerUnittest, TestSchedulerInit)
380 schedulerInit();
381 EXPECT_EQ(1, taskQueueSize);
382 EXPECT_EQ(&tasks[TASK_SYSTEM], queueFirst());
385 TEST(SchedulerUnittest, TestScheduleEmptyQueue)
387 queueClear();
388 simulatedTime = 4000;
389 // run the with an empty queue
390 scheduler();
391 EXPECT_EQ(NULL, unittest_scheduler_selectedTask);
394 TEST(SchedulerUnittest, TestSingleTask)
396 schedulerInit();
397 // disable all tasks except TASK_ACCEL
398 for (int taskId = 0; taskId < TASK_COUNT; ++taskId) {
399 setTaskEnabled(static_cast<taskId_e>(taskId), false);
401 setTaskEnabled(TASK_ACCEL, true);
402 tasks[TASK_ACCEL].lastExecutedAtUs = 1000;
403 tasks[TASK_ACCEL].lastStatsAtUs = 1000;
404 simulatedTime = 2050;
405 // run the scheduler and check the task has executed
406 scheduler();
407 EXPECT_NE(unittest_scheduler_selectedTask, static_cast<task_t*>(0));
408 EXPECT_EQ(unittest_scheduler_selectedTask, &tasks[TASK_ACCEL]);
409 EXPECT_EQ(1050, tasks[TASK_ACCEL].taskLatestDeltaTimeUs);
410 EXPECT_EQ(2050, tasks[TASK_ACCEL].lastExecutedAtUs);
411 EXPECT_EQ(TEST_UPDATE_ACCEL_TIME, tasks[TASK_ACCEL].totalExecutionTimeUs);
412 // task has run, so its dynamic priority should have been set to zero
413 EXPECT_EQ(0, tasks[TASK_GYRO].dynamicPriority);
416 TEST(SchedulerUnittest, TestTwoTasks)
418 // disable all tasks except TASK_ACCEL and TASK_ATTITUDE
419 for (int taskId = 0; taskId < TASK_COUNT; ++taskId) {
420 setTaskEnabled(static_cast<taskId_e>(taskId), false);
422 setTaskEnabled(TASK_ACCEL, true);
423 setTaskEnabled(TASK_ATTITUDE, true);
425 // set it up so that TASK_ACCEL ran just before TASK_ATTITUDE
426 static const uint32_t startTime = 4000;
427 simulatedTime = startTime;
428 tasks[TASK_ACCEL].lastExecutedAtUs = simulatedTime;
429 tasks[TASK_ATTITUDE].lastExecutedAtUs = tasks[TASK_ACCEL].lastExecutedAtUs - TEST_UPDATE_ATTITUDE_TIME;
430 EXPECT_EQ(0, tasks[TASK_ATTITUDE].taskAgePeriods);
431 // run the scheduler
432 scheduler();
433 // no tasks should have run, since neither task's desired time has elapsed
434 EXPECT_EQ(static_cast<task_t*>(0), unittest_scheduler_selectedTask);
436 // NOTE:
437 // TASK_ACCEL desiredPeriodUs is 1000 microseconds
438 // TASK_ATTITUDE desiredPeriodUs is 10000 microseconds
439 // 500 microseconds later
440 simulatedTime += 500;
441 // no tasks should run, since neither task's desired time has elapsed
442 scheduler();
443 EXPECT_EQ(static_cast<task_t*>(0), unittest_scheduler_selectedTask);
445 // 500 microseconds later, TASK_ACCEL desiredPeriodUs has elapsed
446 simulatedTime += 500;
447 // TASK_ACCEL should now run
448 scheduler();
449 EXPECT_EQ(&tasks[TASK_ACCEL], unittest_scheduler_selectedTask);
450 EXPECT_EQ(5000 + TEST_UPDATE_ACCEL_TIME, simulatedTime);
452 simulatedTime += 1000 - TEST_UPDATE_ACCEL_TIME;
453 scheduler();
454 // TASK_ACCEL should run again
455 EXPECT_EQ(&tasks[TASK_ACCEL], unittest_scheduler_selectedTask);
457 scheduler();
458 // No task should have run
459 EXPECT_EQ(static_cast<task_t*>(0), unittest_scheduler_selectedTask);
461 simulatedTime = startTime + 10500; // TASK_ACCEL and TASK_ATTITUDE desiredPeriodUss have elapsed
462 // of the two TASK_ACCEL should run first
463 scheduler();
464 EXPECT_EQ(&tasks[TASK_ACCEL], unittest_scheduler_selectedTask);
465 // and finally TASK_ATTITUDE should now run
466 scheduler();
467 EXPECT_EQ(&tasks[TASK_ATTITUDE], unittest_scheduler_selectedTask);
470 TEST(SchedulerUnittest, TestPriorityBump)
472 // disable all tasks except TASK_ACCEL and TASK_ATTITUDE
473 for (int taskId = 0; taskId < TASK_COUNT; ++taskId) {
474 setTaskEnabled(static_cast<taskId_e>(taskId), false);
476 setTaskEnabled(TASK_ACCEL, true);
477 setTaskEnabled(TASK_DISPATCH, true);
479 // Both tasks have an update rate of 1kHz, but TASK_DISPATCH has TASK_PRIORITY_HIGH whereas TASK_ACCEL has TASK_PRIORITY_MEDIUM
480 static const uint32_t startTime = 4000;
481 simulatedTime = startTime;
482 tasks[TASK_ACCEL].lastExecutedAtUs = simulatedTime;
483 tasks[TASK_DISPATCH].lastExecutedAtUs = tasks[TASK_ACCEL].lastExecutedAtUs;
484 EXPECT_EQ(0, tasks[TASK_DISPATCH].taskAgePeriods);
486 // Set expectation for execution time of TEST_DISPATCH_TIME us
487 tasks[TASK_DISPATCH].anticipatedExecutionTime = TEST_DISPATCH_TIME << TASK_EXEC_TIME_SHIFT;
489 // run the scheduler
490 scheduler();
491 // no tasks should have run, since neither task's desired time has elapsed
492 EXPECT_EQ(static_cast<task_t*>(0), unittest_scheduler_selectedTask);
494 // NOTE:
495 // TASK_ACCEL desiredPeriodUs is 1000 microseconds
496 // TASK_DISPATCH desiredPeriodUs is 1000 microseconds
497 // 500 microseconds later
498 simulatedTime += 500;
499 // no tasks should run, since neither task's desired time has elapsed
500 scheduler();
501 EXPECT_EQ(static_cast<task_t*>(0), unittest_scheduler_selectedTask);
503 // 500 microseconds later, 1000 desiredPeriodUs has elapsed
504 simulatedTime += 500;
505 // TASK_ACCEL should now run as there is not enough time to run the higher priority TASK_DISPATCH
506 scheduler();
507 EXPECT_EQ(&tasks[TASK_ACCEL], unittest_scheduler_selectedTask);
508 EXPECT_EQ(5000 + TEST_UPDATE_ACCEL_TIME, simulatedTime);
510 simulatedTime += 1000 - TEST_UPDATE_ACCEL_TIME;
511 // TASK_ACCEL should now run as there is not enough time to run the higher priority TASK_DISPATCH
512 scheduler();
513 EXPECT_EQ(&tasks[TASK_ACCEL], unittest_scheduler_selectedTask);
514 EXPECT_EQ(6000 + TEST_UPDATE_ACCEL_TIME, simulatedTime);
516 simulatedTime += 1000 - TEST_UPDATE_ACCEL_TIME;
517 // TASK_ACCEL should now run as there is not enough time to run the higher priority TASK_DISPATCH
518 scheduler();
519 EXPECT_EQ(&tasks[TASK_ACCEL], unittest_scheduler_selectedTask);
520 EXPECT_EQ(7000 + TEST_UPDATE_ACCEL_TIME, simulatedTime);
522 simulatedTime += 1000 - TEST_UPDATE_ACCEL_TIME;
523 // TASK_ACCEL should now run as there is not enough time to run the higher priority TASK_DISPATCH
524 scheduler();
525 EXPECT_EQ(&tasks[TASK_ACCEL], unittest_scheduler_selectedTask);
526 EXPECT_EQ(8000 + TEST_UPDATE_ACCEL_TIME, simulatedTime);
528 simulatedTime += 1000 - TEST_UPDATE_ACCEL_TIME;
529 // TASK_ACCEL should now run as there is not enough time to run the higher priority TASK_DISPATCH
530 scheduler();
531 EXPECT_EQ(&tasks[TASK_ACCEL], unittest_scheduler_selectedTask);
532 EXPECT_EQ(9000 + TEST_UPDATE_ACCEL_TIME, simulatedTime);
534 // TASK_DISPATCH has aged whilst not being run
535 EXPECT_EQ(5, tasks[TASK_DISPATCH].taskAgePeriods);
536 simulatedTime += 1000 - TEST_UPDATE_ACCEL_TIME;
537 // TASK_TASK_DISPATCH should now run as the scheduler is on its eighth loop. Note that this is affected by prior test count.
538 scheduler();
539 EXPECT_EQ(&tasks[TASK_DISPATCH], unittest_scheduler_selectedTask);
540 EXPECT_EQ(10000 + TEST_DISPATCH_TIME, simulatedTime);
541 // TASK_DISPATCH still hasn't been executed
542 EXPECT_EQ(6, tasks[TASK_DISPATCH].taskAgePeriods);
544 simulatedTime += 1000 - TEST_DISPATCH_TIME;
545 // TASK_ACCEL should now run again as there is not enough time to run the higher priority TASK_DISPATCH
546 scheduler();
547 EXPECT_EQ(&tasks[TASK_ACCEL], unittest_scheduler_selectedTask);
548 EXPECT_EQ(11000 + TEST_UPDATE_ACCEL_TIME, simulatedTime);
551 TEST(SchedulerUnittest, TestGyroTask)
553 static const uint32_t startTime = 4000;
555 // enable the gyro
556 schedulerEnableGyro();
558 // disable all tasks except TASK_GYRO, TASK_FILTER and TASK_PID
559 for (int taskId = 0; taskId < TASK_COUNT; ++taskId) {
560 setTaskEnabled(static_cast<taskId_e>(taskId), false);
562 setTaskEnabled(TASK_GYRO, true);
563 setTaskEnabled(TASK_FILTER, true);
564 setTaskEnabled(TASK_PID, true);
566 // First set it up so TASK_GYRO just ran
567 simulatedTime = startTime;
568 tasks[TASK_GYRO].lastExecutedAtUs = simulatedTime;
569 // reset the flags
570 resetGyroTaskTestFlags();
572 // run the scheduler
573 scheduler();
574 // no tasks should have run
575 EXPECT_EQ(static_cast<task_t*>(0), unittest_scheduler_selectedTask);
576 // also the gyro, filter and PID task indicators should be false
577 EXPECT_FALSE(taskGyroRan);
578 EXPECT_FALSE(taskFilterRan);
579 EXPECT_FALSE(taskPidRan);
581 /* Test the gyro task running but not triggering the filtering or PID */
582 // set the TASK_GYRO last executed time to be one period earlier
583 simulatedTime = startTime;
584 tasks[TASK_GYRO].lastExecutedAtUs = simulatedTime - TASK_PERIOD_HZ(TEST_GYRO_SAMPLE_HZ);
586 // reset the flags
587 resetGyroTaskTestFlags();
589 // run the scheduler
590 scheduler();
592 // the gyro task indicator should be true and the TASK_FILTER and TASK_PID indicators should be false
593 EXPECT_TRUE(taskGyroRan);
594 EXPECT_FALSE(taskFilterRan);
595 EXPECT_FALSE(taskPidRan);
596 // expect that no other tasks other than TASK_GYRO should have run
597 EXPECT_EQ(static_cast<task_t*>(0), unittest_scheduler_selectedTask);
599 /* Test the gyro task running and triggering the filtering task */
600 // set the TASK_GYRO last executed time to be one period earlier
601 simulatedTime = startTime;
602 tasks[TASK_GYRO].lastExecutedAtUs = simulatedTime - TASK_PERIOD_HZ(TEST_GYRO_SAMPLE_HZ);
604 // reset the flags
605 resetGyroTaskTestFlags();
606 taskFilterReady = true;
608 // run the scheduler
609 scheduler();
610 // the gyro and filter task indicators should be true and TASK_PID indicator should be false
611 EXPECT_TRUE(taskGyroRan);
612 EXPECT_TRUE(taskFilterRan);
613 EXPECT_FALSE(taskPidRan);
614 // expect that no other tasks other tasks should have run
615 EXPECT_EQ(static_cast<task_t*>(0), unittest_scheduler_selectedTask);
617 /* Test the gyro task running and triggering the PID task */
618 // set the TASK_GYRO last executed time to be one period earlier
619 simulatedTime = startTime;
620 tasks[TASK_GYRO].lastExecutedAtUs = simulatedTime - TASK_PERIOD_HZ(TEST_GYRO_SAMPLE_HZ);
622 // reset the flags
623 resetGyroTaskTestFlags();
624 taskPidReady = true;
626 // run the scheduler
627 scheduler();
628 // the gyro and PID task indicators should be true and TASK_FILTER indicator should be false
629 EXPECT_TRUE(taskGyroRan);
630 EXPECT_FALSE(taskFilterRan);
631 EXPECT_TRUE(taskPidRan);
632 // expect that no other tasks other tasks should have run
633 EXPECT_EQ(static_cast<task_t*>(0), unittest_scheduler_selectedTask);