Merge pull request #11198 from SteveCEvans/sce_rc2
[betaflight.git] / lib / main / STM32G4 / Drivers / STM32G4xx_HAL_Driver / Src / stm32g4xx_hal_opamp.c
blob9d12de5b66a1d380a475a53c2a3fd4c58910bedb
1 /**
2 ******************************************************************************
3 * @file stm32g4xx_hal_opamp.c
4 * @author MCD Application Team
5 * @brief OPAMP HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the operational amplifiers (OPAMP1,...OPAMP6)
8 * peripheral:
9 * + OPAMP Configuration
10 * + OPAMP calibration
11 * Thanks to
12 * + Initialization/de-initialization functions
13 * + I/O operation functions
14 * + Peripheral Control functions
15 * + Peripheral State functions
17 @verbatim
18 ================================================================================
19 ##### OPAMP Peripheral Features #####
20 ================================================================================
22 [..] The device integrates up to 6 operational amplifiers OPAMP1, OPAMP2,
23 OPAMP3, OPAMP4, OPAMP5 and OPAMP6:
25 (#) The OPAMP(s) provides several exclusive running modes.
26 (++) Standalone mode
27 (++) Programmable Gain Amplifier (PGA) mode (Resistor feedback output)
28 (++) Follower mode
30 (#) The OPAMP(s) provide(s) calibration capabilities.
31 (++) Calibration aims at correcting some offset for running mode.
32 (++) The OPAMP uses either factory calibration settings OR user defined
33 calibration (trimming) settings (i.e. trimming mode).
34 (++) The user defined settings can be figured out using self calibration
35 handled by HAL_OPAMP_SelfCalibrate, HAL_OPAMPEx_SelfCalibrateAll
36 (++) HAL_OPAMP_SelfCalibrate:
37 (++) Runs automatically the calibration in 2 steps.
38 (90% of VDDA for NMOS transistors, 10% of VDDA for PMOS transistors).
39 (As OPAMP is Rail-to-rail input/output, these 2 steps calibration is
40 appropriate and enough in most cases).
41 (++) Enables the user trimming mode
42 (++) Updates the init structure with trimming values with fresh calibration
43 results.
44 The user may store the calibration results for larger
45 (ex monitoring the trimming as a function of temperature
46 for instance)
47 (++) for STM32G4 devices having 6 OPAMPs
48 HAL_OPAMPEx_SelfCalibrateAll
49 runs calibration of 6 OPAMPs in parallel.
51 (#) For any running mode, an additional Timer-controlled Mux (multiplexer)
52 mode can be set on top.
53 (++) Timer-controlled Mux mode allows Automatic switching of inputs
54 configuration (inverting and non inverting).
55 (++) Hence on top of defaults (primary) inverting and non-inverting inputs,
56 the user shall select secondary inverting and non inverting inputs.
57 (++) TIM1 OC6, TIM8 OC6 and TIM20 OC6 provides the alternate switching
58 tempo between defaults (primary) and secondary inputs.
59 (++) These 3 timers (TIM1, TIM8 and TIM20) can be combined to design a more
60 complex switching scheme. So that any of the selected channel can initiate
61 the configuration switch.
63 (#) Running mode: Standalone mode
64 (++) Gain is set externally (gain depends on external loads).
65 (++) Follower mode also possible externally by connecting the inverting input to
66 the output.
68 (#) Running mode: Follower mode
69 (++) Inverting Input is not connected.
71 (#) Running mode: Programmable Gain Amplifier (PGA) mode
72 (Resistor feedback output)
73 (++) The OPAMP(s) output(s) can be internally connected to resistor feedback
74 output.
75 (++) The OPAMP inverting input can be "not" connected, signal to amplify is
76 connected to non inverting input and gain is positive (2,4,8,16,32 or 64)
77 (++) The OPAMP inverting input can be connected to VINM0:
78 If signal is applied to non inverting input, gain is positive (2,4,8,16,32 or 64).
79 If signal is applied to inverting input, gain is negative (-1,-3,-7,-15-,31 or -63).
80 In both cases, the other input can be used as bias.
83 ##### How to use this driver #####
84 ================================================================================
85 [..]
87 *** High speed / normal power mode ***
88 ============================================
89 [..] To run in high speed mode:
91 (#) Configure the OPAMP using HAL_OPAMP_Init() function:
92 (++) Select OPAMP_POWERMODE_HIGHSPEED
93 (++) Otherwise select OPAMP_POWERMODE_NORMAL
95 *** Calibration ***
96 ============================================
97 [..] To run the OPAMP calibration self calibration:
99 (#) Start calibration using HAL_OPAMP_SelfCalibrate.
100 Store the calibration results.
102 *** Running mode ***
103 ============================================
104 [..] To use the OPAMP, perform the following steps:
106 (#) Fill in the HAL_OPAMP_MspInit() to
107 (++) Configure the OPAMP input AND output in analog mode using
108 HAL_GPIO_Init() to map the OPAMP output to the GPIO pin.
110 (#) Registrate Callbacks
111 (++) The compilation define USE_HAL_OPAMP_REGISTER_CALLBACKS when set to 1
112 allows the user to configure dynamically the driver callbacks.
114 (++) Use Functions @ref HAL_OPAMP_RegisterCallback() to register a user callback,
115 it allows to register following callbacks:
116 (+++) MspInitCallback : OPAMP MspInit.
117 (+++) MspDeInitCallback : OPAMP MspDeInit.
118 This function takes as parameters the HAL peripheral handle, the Callback ID
119 and a pointer to the user callback function.
121 (++) Use function @ref HAL_OPAMP_UnRegisterCallback() to reset a callback to the default
122 weak (surcharged) function. It allows to reset following callbacks:
123 (+++) MspInitCallback : OPAMP MspInit.
124 (+++) MspDeInitCallback : OPAMP MspDeInit.
125 (+++) All Callbacks
127 (#) Configure the OPAMP using HAL_OPAMP_Init() function:
128 (++) Select the mode
129 (++) Select the inverting input
130 (++) Select the non-inverting input
131 (++) Select if the internal ouput should be enabled/disabled (if enabled, regular I/O output is disabled)
132 (++) Select if the Timer controlled Mux is disabled or enabled and controlled by specified timer(s)
133 (++) If the Timer controlled Mux mode is enabled, select the secondary inverting input
134 (++) If the Timer controlled Mux mode is enabled, Select the secondary non-inverting input
135 (++) If PGA mode is enabled, Select if inverting input is connected.
136 (++) If PGA mode is enabled, Select PGA gain to be used.
137 (++) Select either factory or user defined trimming mode.
138 (++) If the user defined trimming mode is enabled, select PMOS & NMOS trimming values
139 (typ. settings returned by HAL_OPAMP_SelfCalibrate function).
141 (#) Enable the OPAMP using HAL_OPAMP_Start() function.
143 (#) Disable the OPAMP using HAL_OPAMP_Stop() function.
145 (#) Lock the OPAMP in running mode using HAL_OPAMP_Lock() & HAL_OPAMP_TimerMuxLock functions.
146 From then the configuration can only be modified
147 (++) After HW reset
148 (++) OR thanks to HAL_OPAMP_MspDeInit called (user defined) from HAL_OPAMP_DeInit.
150 *** Running mode: change of configuration while OPAMP ON ***
151 ============================================
152 [..] To Re-configure OPAMP when OPAMP is ON (change on the fly)
153 (#) If needed, fill in the HAL_OPAMP_MspInit()
154 (++) This is the case for instance if you wish to use new OPAMP I/O
156 (#) Configure the OPAMP using HAL_OPAMP_Init() function:
157 (++) As in configure case, selects first the parameters you wish to modify.
158 (++) If OPAMP control register is locked, it is not possible to modify any values
159 on the fly (even the timer controlled mux parameters).
160 (++) If OPAMP timer controlled mux mode register is locked, it is possible to modify any values
161 of the control register but none on the timer controlled mux mode one.
163 (#) Change from high speed mode to normal power mode (& vice versa) requires
164 first HAL_OPAMP_DeInit() (force OPAMP OFF) and then HAL_OPAMP_Init().
165 In other words, of OPAMP is ON, HAL_OPAMP_Init can NOT change power mode
166 alone.
168 @endverbatim
169 ******************************************************************************
170 * @attention
172 * <h2><center>&copy; Copyright (c) 2018 STMicroelectronics.
173 * All rights reserved.</center></h2>
175 * This software component is licensed by ST under BSD 3-Clause license,
176 * the "License"; You may not use this file except in compliance with the
177 * License. You may obtain a copy of the License at:
178 * opensource.org/licenses/BSD-3-Clause
180 ******************************************************************************
184 Additional Tables:
185 The OPAMPs non inverting input (both default and secondary) can be
186 selected among the list shown by table below.
188 The OPAMPs non inverting input (both default and secondary) can be
189 selected among the list shown by table below.
191 Table 1. OPAMPs inverting/non-inverting inputs for the STM32G4 devices:
192 +--------------------------------------------------------------------------------------------+
193 | | | OPAMP1 | OPAMP2 | OPAMP3 | OPAMP4 | OPAMP5 | OPAMP6 |
194 |-----------------|--------|----------|----------|----------|----------|----------|----------|
195 | | No conn| X | X | X | X | X | X |
196 | Inverting Input | VM0 | PA3 | PA5 | PB2 | PB10 | PB15 | PA1 |
197 | (1) | VM1 | PC5 | PC5 | PB10 | PD8 | PA3 | PB1 |
198 |-----------------|--------|----------|----------|----------|----------|----------|----------|
199 | | VP0 | PA1 | PA7 | PB0 | PB13 | PB14 | PB12 |
200 | Non Inverting | VP1 | PA3 | PB14 | PB13 | PD11 | PD12 | PD9 |
201 | Input | VP2 | PA7 | PB0 | PA1 | PB11 | PC3 | PB13 |
202 | | VP3 | DAC3_CH1 | PD14 | DAC3_CH2 | DAC4_CH1 | DAC4_CH2 | DAC3_CH1 |
203 +--------------------------------------------------------------------------------------------+
204 (1): No connection in follower mode.
206 Table 2. OPAMPs outputs for the STM32G4 devices:
207 +--------------------------------------------------------------------------------+
208 | | | OPAMP1 | OPAMP2 | OPAMP3 | OPAMP4 | OPAMP5 | OPAMP6 |
209 |-----------------|--------|--------|--------|--------|--------|--------|--------|
210 | Output | | PA2 | PA6 | PB1 | PB12 | PA8 | PB11 |
211 |-----------------|--------|--------|--------|--------|--------|--------|--------+
212 | Internal output | | ADC1 | ADC2 | ADC2 | ADC5 | ADC5 | ADC4 |
213 | to ADCs | | CH13 | CH16 | CH18 | CH5 | CH3 | CH17 |
214 | | | | | ADC3 | | | |
215 | | | | | CH13 | | | |
216 |-----------------|--------|--------|--------|--------|--------|--------|--------+
220 /* Includes ------------------------------------------------------------------*/
221 #include "stm32g4xx_hal.h"
223 /** @addtogroup STM32G4xx_HAL_Driver
224 * @{
227 #ifdef HAL_OPAMP_MODULE_ENABLED
229 /** @defgroup OPAMP OPAMP
230 * @brief OPAMP HAL module driver
231 * @{
234 /* Private typedef -----------------------------------------------------------*/
235 /* Private define ------------------------------------------------------------*/
236 /** @defgroup OPAMP_Private_Define OPAMP Private Define
237 * @{
239 /* CSR register reset value */
240 #define OPAMP_CSR_RESET_VALUE (0x00000000UL)
241 /* CSR register TRIM value upon reset are factory ones, filter them out from CSR register check */
242 #define OPAMP_CSR_RESET_CHECK_MASK (~(OPAMP_CSR_TRIMOFFSETN | OPAMP_CSR_TRIMOFFSETP))
243 /* CSR init register Mask */
244 #define OPAMP_CSR_UPDATE_PARAMETERS_INIT_MASK (OPAMP_CSR_TRIMOFFSETN | OPAMP_CSR_TRIMOFFSETP \
245 | OPAMP_CSR_HIGHSPEEDEN | OPAMP_CSR_OPAMPINTEN \
246 | OPAMP_CSR_PGGAIN | OPAMP_CSR_VPSEL \
247 | OPAMP_CSR_VMSEL | OPAMP_CSR_FORCEVP)
248 /* TCMR init register Mask */
249 #define OPAMP_TCMR_UPDATE_PARAMETERS_INIT_MASK (OPAMP_TCMR_T20CMEN | OPAMP_TCMR_T8CMEN \
250 | OPAMP_TCMR_T1CMEN | OPAMP_TCMR_VPSSEL \
251 | OPAMP_TCMR_VMSSEL)
253 * @}
256 /* Private macro -------------------------------------------------------------*/
257 /* Private variables ---------------------------------------------------------*/
258 /* Private function prototypes -----------------------------------------------*/
259 /* Exported functions ---------------------------------------------------------*/
261 /** @defgroup OPAMP_Exported_Functions OPAMP Exported Functions
262 * @{
265 /** @defgroup OPAMP_Exported_Functions_Group1 Initialization and de-initialization functions
266 * @brief Initialization and Configuration functions
268 @verbatim
269 ===============================================================================
270 ##### Initialization and de-initialization functions #####
271 ===============================================================================
272 [..] This section provides functions allowing to:
274 @endverbatim
275 * @{
279 * @brief Initializes the OPAMP according to the specified
280 * parameters in the OPAMP_InitTypeDef and initialize the associated handle.
281 * @note If the selected opamp is locked, initialization can't be performed.
282 * To unlock the configuration, perform a system reset.
283 * @param hopamp OPAMP handle
284 * @retval HAL status
286 HAL_StatusTypeDef HAL_OPAMP_Init(OPAMP_HandleTypeDef *hopamp)
288 HAL_StatusTypeDef status = HAL_OK;
290 /* Check the OPAMP handle allocation and lock status */
291 /* Init not allowed if calibration is ongoing */
292 if (hopamp == NULL)
294 return HAL_ERROR;
296 else if (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED)
298 return HAL_ERROR;
300 else if (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY)
302 return HAL_ERROR;
304 else
307 /* Check the parameter */
308 assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
310 /* Set OPAMP parameters */
311 assert_param(IS_OPAMP_POWERMODE(hopamp->Init.PowerMode));
312 assert_param(IS_OPAMP_FUNCTIONAL_NORMALMODE(hopamp->Init.Mode));
313 assert_param(IS_OPAMP_NONINVERTING_INPUT(hopamp->Init.NonInvertingInput));
315 #if (USE_HAL_OPAMP_REGISTER_CALLBACKS == 1)
316 if (hopamp->State == HAL_OPAMP_STATE_RESET)
318 if (hopamp->MspInitCallback == NULL)
320 hopamp->MspInitCallback = HAL_OPAMP_MspInit;
323 #endif /* USE_HAL_OPAMP_REGISTER_CALLBACKS */
325 if ((hopamp->Init.Mode) == OPAMP_STANDALONE_MODE)
327 assert_param(IS_OPAMP_INVERTING_INPUT(hopamp->Init.InvertingInput));
329 assert_param(IS_FUNCTIONAL_STATE(hopamp->Init.InternalOutput));
331 assert_param(IS_OPAMP_TIMERCONTROLLED_MUXMODE(hopamp->Init.TimerControlledMuxmode));
333 if ((hopamp->Init.TimerControlledMuxmode) != OPAMP_TIMERCONTROLLEDMUXMODE_DISABLE)
335 assert_param(IS_OPAMP_SEC_NONINVERTING_INPUT(hopamp->Init.NonInvertingInputSecondary));
336 assert_param(IS_OPAMP_SEC_INVERTING_INPUT(hopamp->Init.InvertingInputSecondary));
339 if ((hopamp->Init.Mode) == OPAMP_PGA_MODE)
341 assert_param(IS_OPAMP_PGACONNECT(hopamp->Init.PgaConnect));
342 assert_param(IS_OPAMP_PGA_GAIN(hopamp->Init.PgaGain));
345 assert_param(IS_OPAMP_TRIMMING(hopamp->Init.UserTrimming));
346 if ((hopamp->Init.UserTrimming) == OPAMP_TRIMMING_USER)
348 assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValueP));
349 assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValueN));
352 /* Init SYSCFG and the low level hardware to access opamp */
353 __HAL_RCC_SYSCFG_CLK_ENABLE();
355 if (hopamp->State == HAL_OPAMP_STATE_RESET)
357 /* Allocate lock resource and initialize it */
358 hopamp->Lock = HAL_UNLOCKED;
361 #if (USE_HAL_OPAMP_REGISTER_CALLBACKS == 1)
362 hopamp->MspInitCallback(hopamp);
363 #else
364 /* Call MSP init function */
365 HAL_OPAMP_MspInit(hopamp);
366 #endif /* USE_HAL_OPAMP_REGISTER_CALLBACKS */
368 /* Set OPAMP parameters */
369 /* Set bits according to hopamp->hopamp->Init.Mode value */
370 /* Set bits according to hopamp->hopamp->Init.InvertingInput value */
371 /* Set bits according to hopamp->hopamp->Init.NonInvertingInput value */
372 /* Set bits according to hopamp->hopamp->Init.InternalOutput value */
373 /* Set bits according to hopamp->hopamp->Init.TimerControlledMuxmode value */
374 /* Set bits according to hopamp->hopamp->Init.InvertingInputSecondary value */
375 /* Set bits according to hopamp->hopamp->Init.NonInvertingInputSecondary value */
376 /* Set bits according to hopamp->hopamp->Init.PgaConnect value */
377 /* Set bits according to hopamp->hopamp->Init.PgaGain value */
378 /* Set bits according to hopamp->hopamp->Init.UserTrimming value */
379 /* Set bits according to hopamp->hopamp->Init.TrimmingValueP value */
380 /* Set bits according to hopamp->hopamp->Init.TrimmingValueN value */
383 /* check if OPAMP_PGA_MODE & in Follower mode */
384 /* - InvertingInput */
385 /* is Not Applicable */
387 if ((hopamp->Init.Mode == OPAMP_PGA_MODE) || (hopamp->Init.Mode == OPAMP_FOLLOWER_MODE))
389 /* Update User Trim config first to be able to modify trimming value afterwards */
390 MODIFY_REG(hopamp->Instance->CSR,
391 OPAMP_CSR_USERTRIM,
392 hopamp->Init.UserTrimming);
393 MODIFY_REG(hopamp->Instance->CSR,
394 OPAMP_CSR_UPDATE_PARAMETERS_INIT_MASK,
395 hopamp->Init.PowerMode |
396 hopamp->Init.Mode |
397 hopamp->Init.NonInvertingInput |
398 ((hopamp->Init.InternalOutput == ENABLE) ? OPAMP_CSR_OPAMPINTEN : 0UL) |
399 hopamp->Init.PgaConnect |
400 hopamp->Init.PgaGain |
401 (hopamp->Init.TrimmingValueP << OPAMP_INPUT_NONINVERTING) |
402 (hopamp->Init.TrimmingValueN << OPAMP_INPUT_INVERTING));
404 else /* OPAMP_STANDALONE_MODE */
406 /* Update User Trim config first to be able to modify trimming value afterwards */
407 MODIFY_REG(hopamp->Instance->CSR,
408 OPAMP_CSR_USERTRIM,
409 hopamp->Init.UserTrimming);
410 MODIFY_REG(hopamp->Instance->CSR,
411 OPAMP_CSR_UPDATE_PARAMETERS_INIT_MASK,
412 hopamp->Init.PowerMode |
413 hopamp->Init.Mode |
414 hopamp->Init.InvertingInput |
415 hopamp->Init.NonInvertingInput |
416 ((hopamp->Init.InternalOutput == ENABLE) ? OPAMP_CSR_OPAMPINTEN : 0UL) |
417 hopamp->Init.PgaConnect |
418 hopamp->Init.PgaGain |
419 (hopamp->Init.TrimmingValueP << OPAMP_INPUT_NONINVERTING) |
420 (hopamp->Init.TrimmingValueN << OPAMP_INPUT_INVERTING));
423 if ((READ_BIT(hopamp->Instance->TCMR, OPAMP_TCMR_LOCK)) == 0UL)
425 MODIFY_REG(hopamp->Instance->TCMR,
426 OPAMP_TCMR_UPDATE_PARAMETERS_INIT_MASK,
427 hopamp->Init.TimerControlledMuxmode |
428 hopamp->Init.InvertingInputSecondary |
429 hopamp->Init.NonInvertingInputSecondary);
432 /* Update the OPAMP state*/
433 if (hopamp->State == HAL_OPAMP_STATE_RESET)
435 /* From RESET state to READY State */
436 hopamp->State = HAL_OPAMP_STATE_READY;
438 /* else: remain in READY or BUSY state (no update) */
440 return status;
446 * @brief DeInitializes the OPAMP peripheral
447 * @note Deinitialization can't be performed if the OPAMP configuration is locked.
448 * To unlock the configuration, perform a system reset.
449 * @param hopamp OPAMP handle
450 * @retval HAL status
452 HAL_StatusTypeDef HAL_OPAMP_DeInit(OPAMP_HandleTypeDef *hopamp)
454 HAL_StatusTypeDef status = HAL_OK;
456 /* Check the OPAMP handle allocation */
457 /* DeInit not allowed if calibration is ongoing */
458 if (hopamp == NULL)
460 status = HAL_ERROR;
462 else if (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY)
464 status = HAL_ERROR;
466 else
468 /* Check the parameter */
469 assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
471 /* Set OPAMP_CSR register to reset value */
472 WRITE_REG(hopamp->Instance->CSR, OPAMP_CSR_RESET_VALUE);
474 /* DeInit the low level hardware: GPIO, CLOCK and NVIC */
475 /* When OPAMP is locked, unlocking can be achieved thanks to */
476 /* __HAL_RCC_SYSCFG_CLK_DISABLE() call within HAL_OPAMP_MspDeInit */
477 /* Note that __HAL_RCC_SYSCFG_CLK_DISABLE() also disables comparator */
479 #if (USE_HAL_OPAMP_REGISTER_CALLBACKS == 1)
480 if (hopamp->MspDeInitCallback == NULL)
482 hopamp->MspDeInitCallback = HAL_OPAMP_MspDeInit;
484 /* DeInit the low level hardware */
485 hopamp->MspDeInitCallback(hopamp);
486 #else
487 HAL_OPAMP_MspDeInit(hopamp);
488 #endif /* USE_HAL_OPAMP_REGISTER_CALLBACKS */
490 if (OPAMP_CSR_RESET_VALUE == (hopamp->Instance->CSR & OPAMP_CSR_RESET_CHECK_MASK))
492 /* Update the OPAMP state */
493 hopamp->State = HAL_OPAMP_STATE_RESET;
495 else /* RESET STATE */
497 /* DeInit not complete */
498 /* It can be the case if OPAMP was formerly locked */
499 status = HAL_ERROR;
501 /* The OPAMP state is NOT updated */
504 /* Process unlocked */
505 __HAL_UNLOCK(hopamp);
508 return status;
512 * @brief Initialize the OPAMP MSP.
513 * @param hopamp OPAMP handle
514 * @retval None
516 __weak void HAL_OPAMP_MspInit(OPAMP_HandleTypeDef *hopamp)
518 /* Prevent unused argument(s) compilation warning */
519 UNUSED(hopamp);
521 /* NOTE : This function should not be modified, when the callback is needed,
522 the HAL_OPAMP_MspInit could be implemented in the user file
525 /* Example */
529 * @brief DeInitialize OPAMP MSP.
530 * @param hopamp OPAMP handle
531 * @retval None
533 __weak void HAL_OPAMP_MspDeInit(OPAMP_HandleTypeDef *hopamp)
535 /* Prevent unused argument(s) compilation warning */
536 UNUSED(hopamp);
538 /* NOTE : This function should not be modified, when the callback is needed,
539 the HAL_OPAMP_MspDeInit could be implemented in the user file
545 * @}
549 /** @defgroup OPAMP_Exported_Functions_Group2 Input and Output operation functions
550 * @brief Data transfers functions
552 @verbatim
553 ===============================================================================
554 ##### IO operation functions #####
555 ===============================================================================
556 [..]
557 This subsection provides a set of functions allowing to manage the OPAMP data
558 transfers.
560 @endverbatim
561 * @{
565 * @brief Start the opamp
566 * @param hopamp OPAMP handle
567 * @retval HAL status
570 HAL_StatusTypeDef HAL_OPAMP_Start(OPAMP_HandleTypeDef *hopamp)
572 HAL_StatusTypeDef status = HAL_OK;
574 /* Check the OPAMP handle allocation */
575 /* Check if OPAMP locked */
576 if (hopamp == NULL)
578 status = HAL_ERROR;
580 else if (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED)
582 status = HAL_ERROR;
584 else
586 /* Check the parameter */
587 assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
589 if (hopamp->State == HAL_OPAMP_STATE_READY)
591 /* Enable the selected opamp */
592 SET_BIT(hopamp->Instance->CSR, OPAMP_CSR_OPAMPxEN);
594 /* Update the OPAMP state*/
595 /* From HAL_OPAMP_STATE_READY to HAL_OPAMP_STATE_BUSY */
596 hopamp->State = HAL_OPAMP_STATE_BUSY;
598 else
600 status = HAL_ERROR;
605 return status;
609 * @brief Stop the opamp
610 * @param hopamp OPAMP handle
611 * @retval HAL status
613 HAL_StatusTypeDef HAL_OPAMP_Stop(OPAMP_HandleTypeDef *hopamp)
615 HAL_StatusTypeDef status = HAL_OK;
617 /* Check the OPAMP handle allocation */
618 /* Check if OPAMP locked */
619 /* Check if OPAMP calibration ongoing */
620 if (hopamp == NULL)
622 status = HAL_ERROR;
624 else if (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED)
626 status = HAL_ERROR;
628 else if (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY)
630 status = HAL_ERROR;
632 else
634 /* Check the parameter */
635 assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
637 if (hopamp->State == HAL_OPAMP_STATE_BUSY)
639 /* Disable the selected opamp */
640 CLEAR_BIT(hopamp->Instance->CSR, OPAMP_CSR_OPAMPxEN);
642 /* Update the OPAMP state*/
643 /* From HAL_OPAMP_STATE_BUSY to HAL_OPAMP_STATE_READY*/
644 hopamp->State = HAL_OPAMP_STATE_READY;
646 else
648 status = HAL_ERROR;
651 return status;
655 * @brief Run the self calibration of one OPAMP
656 * @note Calibration is performed in the mode specified in OPAMP init
657 * structure (mode normal or high-speed).
658 * @param hopamp handle
659 * @retval Updated offset trimming values (PMOS & NMOS), user trimming is enabled
660 * @retval HAL status
661 * @note Calibration runs about 25 ms.
664 HAL_StatusTypeDef HAL_OPAMP_SelfCalibrate(OPAMP_HandleTypeDef *hopamp)
667 HAL_StatusTypeDef status = HAL_OK;
669 uint32_t trimmingvaluen;
670 uint32_t trimmingvaluep;
671 uint32_t delta;
673 /* Check the OPAMP handle allocation */
674 /* Check if OPAMP locked */
675 if (hopamp == NULL)
677 status = HAL_ERROR;
679 else if (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED)
681 status = HAL_ERROR;
683 else
686 /* Check if OPAMP in calibration mode and calibration not yet enable */
687 if (hopamp->State == HAL_OPAMP_STATE_READY)
689 /* Check the parameter */
690 assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
692 /* Set Calibration mode */
693 /* Non-inverting input connected to calibration reference voltage. */
694 SET_BIT(hopamp->Instance->CSR, OPAMP_CSR_FORCEVP);
696 /* user trimming values are used for offset calibration */
697 SET_BIT(hopamp->Instance->CSR, OPAMP_CSR_USERTRIM);
699 /* Enable calibration */
700 SET_BIT(hopamp->Instance->CSR, OPAMP_CSR_CALON);
702 /* 1st calibration - N */
703 /* Select 90% VREF */
704 MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_CALSEL, OPAMP_VREF_90VDDA);
706 /* Enable the selected opamp */
707 SET_BIT(hopamp->Instance->CSR, OPAMP_CSR_OPAMPxEN);
709 /* Init trimming counter */
710 /* Medium value */
711 trimmingvaluen = 16UL;
712 delta = 8UL;
714 while (delta != 0UL)
716 /* Set candidate trimming */
717 MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETN, trimmingvaluen << OPAMP_INPUT_INVERTING);
719 /* OFFTRIMmax delay 2 ms as per datasheet (electrical characteristics */
720 /* Offset trim time: during calibration, minimum time needed between */
721 /* two steps to have 1 mV accuracy */
722 HAL_Delay(2);
724 if ((hopamp->Instance->CSR & OPAMP_CSR_OUTCAL) != 0UL)
726 /* OPAMP_CSR_OUTCAL is HIGH try higher trimming */
727 trimmingvaluen += delta;
729 else
731 /* OPAMP_CSR_OUTCAL is LOW try lower trimming */
732 trimmingvaluen -= delta;
735 delta >>= 1;
738 /* Still need to check if righ calibration is current value or un step below */
739 /* Indeed the first value that causes the OUTCAL bit to change from 1 to 0 */
740 MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETN, trimmingvaluen << OPAMP_INPUT_INVERTING);
742 /* OFFTRIMmax delay 2 ms as per datasheet (electrical characteristics */
743 /* Offset trim time: during calibration, minimum time needed between */
744 /* two steps to have 1 mV accuracy */
745 HAL_Delay(2);
747 if ((hopamp->Instance->CSR & OPAMP_CSR_OUTCAL) != 0UL)
749 /* OPAMP_CSR_OUTCAL is actually one value more */
750 trimmingvaluen++;
751 /* Set right trimming */
752 MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETN, trimmingvaluen << OPAMP_INPUT_INVERTING);
755 /* 2nd calibration - P */
756 /* Select 10% VREF */
757 MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_CALSEL, OPAMP_VREF_10VDDA);
759 /* Init trimming counter */
760 /* Medium value */
761 trimmingvaluep = 16UL;
762 delta = 8UL;
764 while (delta != 0UL)
766 /* Set candidate trimming */
767 MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETP, trimmingvaluep << OPAMP_INPUT_NONINVERTING);
769 /* OFFTRIMmax delay 2 ms as per datasheet (electrical characteristics */
770 /* Offset trim time: during calibration, minimum time needed between */
771 /* two steps to have 1 mV accuracy */
772 HAL_Delay(2);
774 if ((hopamp->Instance->CSR & OPAMP_CSR_OUTCAL) != 0UL)
776 /* OPAMP_CSR_OUTCAL is HIGH try higher trimming */
777 trimmingvaluep += delta;
779 else
781 trimmingvaluep -= delta;
784 delta >>= 1;
787 /* Still need to check if righ calibration is current value or un step below */
788 /* Indeed the first value that causes the OUTCAL bit to change from 1 to 0U */
789 /* Set candidate trimming */
790 MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETP, trimmingvaluep << OPAMP_INPUT_NONINVERTING);
792 /* OFFTRIMmax delay 2 ms as per datasheet (electrical characteristics */
793 /* Offset trim time: during calibration, minimum time needed between */
794 /* two steps to have 1 mV accuracy */
795 HAL_Delay(2);
797 if ((hopamp->Instance->CSR & OPAMP_CSR_OUTCAL) != 0UL)
799 /* OPAMP_CSR_OUTCAL is actually one value more */
800 trimmingvaluep++;
801 /* Set right trimming */
802 MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETP, trimmingvaluep << OPAMP_INPUT_NONINVERTING);
805 /* Disable calibration */
806 CLEAR_BIT(hopamp->Instance->CSR, OPAMP_CSR_CALON);
808 /* Disable the OPAMP */
809 CLEAR_BIT(hopamp->Instance->CSR, OPAMP_CSR_OPAMPxEN);
811 /* Set operating mode */
812 /* Non-inverting input connected to calibration reference voltage. */
813 CLEAR_BIT(hopamp->Instance->CSR, OPAMP_CSR_FORCEVP);
815 /* Self calibration is successful */
816 /* Store calibration(user timming) results in init structure. */
818 /* Write calibration result N */
819 hopamp->Init.TrimmingValueN = trimmingvaluen;
821 /* Write calibration result P */
822 hopamp->Init.TrimmingValueP = trimmingvaluep;
824 /* Select user timming mode */
825 /* And updated with calibrated settings */
826 hopamp->Init.UserTrimming = OPAMP_TRIMMING_USER;
827 MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETP, trimmingvaluep << OPAMP_INPUT_NONINVERTING);
828 MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETN, trimmingvaluen << OPAMP_INPUT_INVERTING);
831 else
833 /* OPAMP can not be calibrated from this mode */
834 status = HAL_ERROR;
837 return status;
841 * @}
844 /** @defgroup OPAMP_Exported_Functions_Group3 Peripheral Control functions
845 * @brief Peripheral Control functions
847 @verbatim
848 ===============================================================================
849 ##### Peripheral Control functions #####
850 ===============================================================================
851 [..]
852 This subsection provides a set of functions allowing to control the OPAMP data
853 transfers.
857 @endverbatim
858 * @{
862 * @brief Lock the selected opamp configuration.
863 * @param hopamp OPAMP handle
864 * @retval HAL status
866 HAL_StatusTypeDef HAL_OPAMP_Lock(OPAMP_HandleTypeDef *hopamp)
868 HAL_StatusTypeDef status = HAL_OK;
870 /* Check the OPAMP handle allocation */
871 /* Check if OPAMP locked */
872 /* OPAMP can be locked when enabled and running in normal mode */
873 /* It is meaningless otherwise */
874 if (hopamp == NULL)
876 status = HAL_ERROR;
878 else if (hopamp->State != HAL_OPAMP_STATE_BUSY)
880 status = HAL_ERROR;
882 else
884 /* Check the parameter */
885 assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
887 /* Lock OPAMP */
888 SET_BIT(hopamp->Instance->CSR, OPAMP_CSR_LOCK);
890 /* OPAMP state changed to locked */
891 hopamp->State = HAL_OPAMP_STATE_BUSYLOCKED;
893 return status;
897 * @}
901 * @brief Lock the selected opamp timer controlled mux configuration.
902 * @param hopamp OPAMP handle
903 * @retval HAL status
905 HAL_StatusTypeDef HAL_OPAMP_LockTimerMux(OPAMP_HandleTypeDef *hopamp)
907 HAL_StatusTypeDef status = HAL_OK;
909 /* Check the OPAMP handle allocation */
910 /* Check if OPAMP timer controlled mux is locked */
911 /* OPAMP timer controlled mux can be locked when enabled */
912 /* It is meaningless otherwise */
913 if (hopamp == NULL)
915 status = HAL_ERROR;
917 else if (hopamp->State == HAL_OPAMP_STATE_RESET)
919 status = HAL_ERROR;
921 else if (READ_BIT(hopamp->Instance->TCMR, OPAMP_TCMR_LOCK) == OPAMP_TCMR_LOCK)
923 status = HAL_ERROR;
925 else
927 /* Check the parameter */
928 assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
930 /* Lock OPAMP */
931 SET_BIT(hopamp->Instance->TCMR, OPAMP_TCMR_LOCK);
933 return status;
937 * @}
940 /** @defgroup OPAMP_Exported_Functions_Group4 Peripheral State functions
941 * @brief Peripheral State functions
943 @verbatim
944 ===============================================================================
945 ##### Peripheral State functions #####
946 ===============================================================================
947 [..]
948 This subsection permit to get in run-time the status of the peripheral
949 and the data flow.
951 @endverbatim
952 * @{
956 * @brief Return the OPAMP state
957 * @param hopamp OPAMP handle
958 * @retval HAL state
960 HAL_OPAMP_StateTypeDef HAL_OPAMP_GetState(OPAMP_HandleTypeDef *hopamp)
962 /* Check the OPAMP handle allocation */
963 if (hopamp == NULL)
965 return HAL_OPAMP_STATE_RESET;
968 /* Check the parameter */
969 assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
971 return hopamp->State;
975 * @brief Return the OPAMP factory trimming value
976 * @param hopamp OPAMP handle
977 * @param trimmingoffset Trimming offset (P or N)
978 * @retval Trimming value (P or N): range: 0->31
979 * or OPAMP_FACTORYTRIMMING_DUMMY if trimming value is not available
982 OPAMP_TrimmingValueTypeDef HAL_OPAMP_GetTrimOffset(OPAMP_HandleTypeDef *hopamp, uint32_t trimmingoffset)
984 uint32_t oldusertrimming = 0UL;
985 OPAMP_TrimmingValueTypeDef oldtrimmingvaluep = 0UL, oldtrimmingvaluen = 0UL, trimmingvalue;
987 /* Check the OPAMP handle allocation */
988 /* Value can be retrieved in HAL_OPAMP_STATE_READY state */
989 if (hopamp == NULL)
991 return OPAMP_FACTORYTRIMMING_DUMMY;
993 else if (hopamp->State != HAL_OPAMP_STATE_READY)
995 return OPAMP_FACTORYTRIMMING_DUMMY;
997 else
999 /* Check the parameter */
1000 assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
1001 assert_param(IS_OPAMP_FACTORYTRIMMING(trimmingoffset));
1003 /* Check the trimming mode */
1004 if ((READ_BIT(hopamp->Instance->CSR, OPAMP_CSR_USERTRIM)) != 0UL)
1006 /* User trimming is used */
1007 oldusertrimming = OPAMP_TRIMMING_USER;
1008 /* Store the TrimmingValueP & TrimmingValueN */
1009 oldtrimmingvaluep = (hopamp->Instance->CSR & OPAMP_CSR_TRIMOFFSETP) >> OPAMP_INPUT_NONINVERTING;
1010 oldtrimmingvaluen = (hopamp->Instance->CSR & OPAMP_CSR_TRIMOFFSETN) >> OPAMP_INPUT_INVERTING;
1013 /* Set factory timming mode */
1014 CLEAR_BIT(hopamp->Instance->CSR, OPAMP_CSR_USERTRIM);
1016 /* Get factory trimming */
1017 if (trimmingoffset == OPAMP_FACTORYTRIMMING_P)
1019 /* Return TrimOffsetP */
1020 trimmingvalue = ((hopamp->Instance->CSR & OPAMP_CSR_TRIMOFFSETP) >> OPAMP_INPUT_NONINVERTING);
1022 else
1024 /* Return TrimOffsetN */
1025 trimmingvalue = ((hopamp->Instance->CSR & OPAMP_CSR_TRIMOFFSETN) >> OPAMP_INPUT_INVERTING);
1028 /* Restore user trimming configuration if it was formerly set */
1029 /* Check if user trimming was used */
1030 if (oldusertrimming == OPAMP_TRIMMING_USER)
1032 /* Restore user trimming */
1033 SET_BIT(hopamp->Instance->CSR, OPAMP_CSR_USERTRIM);
1034 MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETP, oldtrimmingvaluep << OPAMP_INPUT_NONINVERTING);
1035 MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETN, oldtrimmingvaluen << OPAMP_INPUT_INVERTING);
1038 return trimmingvalue;
1041 * @}
1044 #if (USE_HAL_OPAMP_REGISTER_CALLBACKS == 1)
1046 * @brief Register a User OPAMP Callback
1047 * To be used instead of the weak (surcharged) predefined callback
1048 * @param hopamp : OPAMP handle
1049 * @param CallbackID : ID of the callback to be registered
1050 * This parameter can be one of the following values:
1051 * @arg @ref HAL_OPAMP_MSP_INIT_CB_ID OPAMP MspInit callback ID
1052 * @arg @ref HAL_OPAMP_MSP_DEINIT_CB_ID OPAMP MspDeInit callback ID
1053 * @param pCallback : pointer to the Callback function
1054 * @retval status
1056 HAL_StatusTypeDef HAL_OPAMP_RegisterCallback(OPAMP_HandleTypeDef *hopamp, HAL_OPAMP_CallbackIDTypeDef CallbackId,
1057 pOPAMP_CallbackTypeDef pCallback)
1059 HAL_StatusTypeDef status = HAL_OK;
1061 if (pCallback == NULL)
1063 return HAL_ERROR;
1066 /* Process locked */
1067 __HAL_LOCK(hopamp);
1069 if (hopamp->State == HAL_OPAMP_STATE_READY)
1071 switch (CallbackId)
1073 case HAL_OPAMP_MSP_INIT_CB_ID :
1074 hopamp->MspInitCallback = pCallback;
1075 break;
1076 case HAL_OPAMP_MSP_DEINIT_CB_ID :
1077 hopamp->MspDeInitCallback = pCallback;
1078 break;
1079 default :
1080 /* update return status */
1081 status = HAL_ERROR;
1082 break;
1085 else if (hopamp->State == HAL_OPAMP_STATE_RESET)
1087 switch (CallbackId)
1089 case HAL_OPAMP_MSP_INIT_CB_ID :
1090 hopamp->MspInitCallback = pCallback;
1091 break;
1092 case HAL_OPAMP_MSP_DEINIT_CB_ID :
1093 hopamp->MspDeInitCallback = pCallback;
1094 break;
1095 default :
1096 /* update return status */
1097 status = HAL_ERROR;
1098 break;
1101 else
1103 /* update return status */
1104 status = HAL_ERROR;
1107 /* Release Lock */
1108 __HAL_UNLOCK(hopamp);
1109 return status;
1113 * @brief Unregister a User OPAMP Callback
1114 * OPAMP Callback is redirected to the weak (surcharged) predefined callback
1115 * @param hopamp : OPAMP handle
1116 * @param CallbackID : ID of the callback to be unregistered
1117 * This parameter can be one of the following values:
1118 * @arg @ref HAL_OPAMP_MSP_INIT_CB_ID OPAMP MSP Init Callback ID
1119 * @arg @ref HAL_OPAMP_MSP_DEINIT_CB_ID OPAMP MSP DeInit Callback ID
1120 * @arg @ref HAL_OPAMP_ALL_CB_ID OPAMP All Callbacks
1121 * @retval status
1124 HAL_StatusTypeDef HAL_OPAMP_UnRegisterCallback(OPAMP_HandleTypeDef *hopamp, HAL_OPAMP_CallbackIDTypeDef CallbackId)
1126 HAL_StatusTypeDef status = HAL_OK;
1128 /* Process locked */
1129 __HAL_LOCK(hopamp);
1131 if (hopamp->State == HAL_OPAMP_STATE_READY)
1133 switch (CallbackId)
1135 case HAL_OPAMP_MSP_INIT_CB_ID :
1136 hopamp->MspInitCallback = HAL_OPAMP_MspInit;
1137 break;
1138 case HAL_OPAMP_MSP_DEINIT_CB_ID :
1139 hopamp->MspDeInitCallback = HAL_OPAMP_MspDeInit;
1140 break;
1141 case HAL_OPAMP_ALL_CB_ID :
1142 hopamp->MspInitCallback = HAL_OPAMP_MspInit;
1143 hopamp->MspDeInitCallback = HAL_OPAMP_MspDeInit;
1144 break;
1145 default :
1146 /* update return status */
1147 status = HAL_ERROR;
1148 break;
1151 else if (hopamp->State == HAL_OPAMP_STATE_RESET)
1153 switch (CallbackId)
1155 case HAL_OPAMP_MSP_INIT_CB_ID :
1156 hopamp->MspInitCallback = HAL_OPAMP_MspInit;
1157 break;
1158 case HAL_OPAMP_MSP_DEINIT_CB_ID :
1159 hopamp->MspDeInitCallback = HAL_OPAMP_MspDeInit;
1160 break;
1161 default :
1162 /* update return status */
1163 status = HAL_ERROR;
1164 break;
1167 else
1169 /* update return status */
1170 status = HAL_ERROR;
1173 /* Release Lock */
1174 __HAL_UNLOCK(hopamp);
1175 return status;
1178 #endif /* USE_HAL_OPAMP_REGISTER_CALLBACKS */
1181 * @}
1185 * @}
1188 #endif /* HAL_OPAMP_MODULE_ENABLED */
1190 * @}
1195 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/