Create release.yml
[betaflight.git] / lib / main / STM32F1 / Drivers / STM32F1xx_HAL_Driver / Src / stm32f1xx_ll_tim.c
blobfb3cd875207444b2b33e9a52ce22658beb9a77d6
1 /**
2 ******************************************************************************
3 * @file stm32f1xx_ll_tim.c
4 * @author MCD Application Team
5 * @version V1.1.1
6 * @date 12-May-2017
7 * @brief TIM LL module driver.
8 ******************************************************************************
9 * @attention
11 * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
13 * Redistribution and use in source and binary forms, with or without modification,
14 * are permitted provided that the following conditions are met:
15 * 1. Redistributions of source code must retain the above copyright notice,
16 * this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright notice,
18 * this list of conditions and the following disclaimer in the documentation
19 * and/or other materials provided with the distribution.
20 * 3. Neither the name of STMicroelectronics nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
27 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 ******************************************************************************
37 #if defined(USE_FULL_LL_DRIVER)
39 /* Includes ------------------------------------------------------------------*/
40 #include "stm32f1xx_ll_tim.h"
41 #include "stm32f1xx_ll_bus.h"
43 #ifdef USE_FULL_ASSERT
44 #include "stm32_assert.h"
45 #else
46 #define assert_param(expr) ((void)0U)
47 #endif
49 /** @addtogroup STM32F1xx_LL_Driver
50 * @{
53 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM9) || defined (TIM10) || defined (TIM11) || defined (TIM12) || defined (TIM13) || defined (TIM14) || defined (TIM15) || defined (TIM16) || defined (TIM17)
55 /** @addtogroup TIM_LL
56 * @{
59 /* Private types -------------------------------------------------------------*/
60 /* Private variables ---------------------------------------------------------*/
61 /* Private constants ---------------------------------------------------------*/
62 /* Private macros ------------------------------------------------------------*/
63 /** @addtogroup TIM_LL_Private_Macros
64 * @{
66 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
67 || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
68 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
69 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
70 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
72 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
73 || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
74 || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
76 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
77 || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
78 || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
79 || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
80 || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
81 || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
82 || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
83 || ((__VALUE__) == LL_TIM_OCMODE_PWM2))
85 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
86 || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
88 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
89 || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
91 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
92 || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
94 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
95 || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
96 || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
98 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
99 || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
100 || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
101 || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
103 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
104 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
105 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
106 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
107 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
108 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
109 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
110 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
111 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
112 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
113 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
114 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
115 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
116 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
117 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
118 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
120 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
121 || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
123 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
124 || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
125 || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))
127 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
128 || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
130 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
131 || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
133 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
134 || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
136 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
137 || ((__VALUE__) == LL_TIM_LOCKLEVEL_1) \
138 || ((__VALUE__) == LL_TIM_LOCKLEVEL_2) \
139 || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
141 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
142 || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
144 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
145 || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
147 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
148 || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
150 * @}
154 /* Private function prototypes -----------------------------------------------*/
155 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
156 * @{
158 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
159 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
160 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
161 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
162 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
163 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
164 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
165 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
167 * @}
170 /* Exported functions --------------------------------------------------------*/
171 /** @addtogroup TIM_LL_Exported_Functions
172 * @{
175 /** @addtogroup TIM_LL_EF_Init
176 * @{
180 * @brief Set TIMx registers to their reset values.
181 * @param TIMx Timer instance
182 * @retval An ErrorStatus enumeration value:
183 * - SUCCESS: TIMx registers are de-initialized
184 * - ERROR: invalid TIMx instance
186 ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx)
188 ErrorStatus result = SUCCESS;
190 /* Check the parameters */
191 assert_param(IS_TIM_INSTANCE(TIMx));
193 if (TIMx == TIM2)
195 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
196 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
198 #if defined(TIM1)
199 else if (TIMx == TIM1)
201 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1);
202 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1);
204 #endif
205 #if defined(TIM3)
206 else if (TIMx == TIM3)
208 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
209 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
211 #endif
212 #if defined(TIM4)
213 else if (TIMx == TIM4)
215 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4);
216 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4);
218 #endif
219 #if defined(TIM5)
220 else if (TIMx == TIM5)
222 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5);
223 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5);
225 #endif
226 #if defined(TIM6)
227 else if (TIMx == TIM6)
229 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6);
230 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6);
232 #endif
233 #if defined (TIM7)
234 else if (TIMx == TIM7)
236 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7);
237 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7);
239 #endif
240 #if defined(TIM8)
241 else if (TIMx == TIM8)
243 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8);
244 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8);
246 #endif
247 #if defined(TIM9)
248 else if (TIMx == TIM9)
250 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM9);
251 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM9);
253 #endif
254 #if defined(TIM10)
255 else if (TIMx == TIM10)
257 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM10);
258 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM10);
260 #endif
261 #if defined(TIM11)
262 else if (TIMx == TIM11)
264 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM11);
265 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM11);
267 #endif
268 #if defined(TIM12)
269 else if (TIMx == TIM12)
271 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM12);
272 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM12);
274 #endif
275 #if defined(TIM13)
276 else if (TIMx == TIM13)
278 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM13);
279 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM13);
281 #endif
282 #if defined(TIM14)
283 else if (TIMx == TIM14)
285 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM14);
286 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM14);
288 #endif
289 #if defined(TIM15)
290 else if (TIMx == TIM15)
292 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM15);
293 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM15);
295 #endif
296 #if defined(TIM16)
297 else if (TIMx == TIM16)
299 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM16);
300 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM16);
302 #endif
303 #if defined(TIM17)
304 else if (TIMx == TIM17)
306 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM17);
307 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM17);
309 #endif
310 else
312 result = ERROR;
315 return result;
319 * @brief Set the fields of the time base unit configuration data structure
320 * to their default values.
321 * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
322 * @retval None
324 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
326 /* Set the default configuration */
327 TIM_InitStruct->Prescaler = (uint16_t)0x0000;
328 TIM_InitStruct->CounterMode = LL_TIM_COUNTERMODE_UP;
329 TIM_InitStruct->Autoreload = 0xFFFFFFFFU;
330 TIM_InitStruct->ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
331 TIM_InitStruct->RepetitionCounter = (uint8_t)0x00;
335 * @brief Configure the TIMx time base unit.
336 * @param TIMx Timer Instance
337 * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (TIMx time base unit configuration data structure)
338 * @retval An ErrorStatus enumeration value:
339 * - SUCCESS: TIMx registers are de-initialized
340 * - ERROR: not applicable
342 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct)
344 uint32_t tmpcr1 = 0U;
346 /* Check the parameters */
347 assert_param(IS_TIM_INSTANCE(TIMx));
348 assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
349 assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
351 tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
353 if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
355 /* Select the Counter Mode */
356 MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
359 if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
361 /* Set the clock division */
362 MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
365 /* Write to TIMx CR1 */
366 LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
368 /* Set the Autoreload value */
369 LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
371 /* Set the Prescaler value */
372 LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
374 if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
376 /* Set the Repetition Counter value */
377 LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
380 /* Generate an update event to reload the Prescaler
381 and the repetition counter value (if applicable) immediately */
382 LL_TIM_GenerateEvent_UPDATE(TIMx);
384 return SUCCESS;
388 * @brief Set the fields of the TIMx output channel configuration data
389 * structure to their default values.
390 * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (the output channel configuration data structure)
391 * @retval None
393 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
395 /* Set the default configuration */
396 TIM_OC_InitStruct->OCMode = LL_TIM_OCMODE_FROZEN;
397 TIM_OC_InitStruct->OCState = LL_TIM_OCSTATE_DISABLE;
398 TIM_OC_InitStruct->OCNState = LL_TIM_OCSTATE_DISABLE;
399 TIM_OC_InitStruct->CompareValue = 0x00000000U;
400 TIM_OC_InitStruct->OCPolarity = LL_TIM_OCPOLARITY_HIGH;
401 TIM_OC_InitStruct->OCNPolarity = LL_TIM_OCPOLARITY_HIGH;
402 TIM_OC_InitStruct->OCIdleState = LL_TIM_OCIDLESTATE_LOW;
403 TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
407 * @brief Configure the TIMx output channel.
408 * @param TIMx Timer Instance
409 * @param Channel This parameter can be one of the following values:
410 * @arg @ref LL_TIM_CHANNEL_CH1
411 * @arg @ref LL_TIM_CHANNEL_CH2
412 * @arg @ref LL_TIM_CHANNEL_CH3
413 * @arg @ref LL_TIM_CHANNEL_CH4
414 * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration data structure)
415 * @retval An ErrorStatus enumeration value:
416 * - SUCCESS: TIMx output channel is initialized
417 * - ERROR: TIMx output channel is not initialized
419 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
421 ErrorStatus result = ERROR;
423 switch (Channel)
425 case LL_TIM_CHANNEL_CH1:
426 result = OC1Config(TIMx, TIM_OC_InitStruct);
427 break;
428 case LL_TIM_CHANNEL_CH2:
429 result = OC2Config(TIMx, TIM_OC_InitStruct);
430 break;
431 case LL_TIM_CHANNEL_CH3:
432 result = OC3Config(TIMx, TIM_OC_InitStruct);
433 break;
434 case LL_TIM_CHANNEL_CH4:
435 result = OC4Config(TIMx, TIM_OC_InitStruct);
436 break;
437 default:
438 break;
441 return result;
445 * @brief Set the fields of the TIMx input channel configuration data
446 * structure to their default values.
447 * @param TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration data structure)
448 * @retval None
450 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
452 /* Set the default configuration */
453 TIM_ICInitStruct->ICPolarity = LL_TIM_IC_POLARITY_RISING;
454 TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
455 TIM_ICInitStruct->ICPrescaler = LL_TIM_ICPSC_DIV1;
456 TIM_ICInitStruct->ICFilter = LL_TIM_IC_FILTER_FDIV1;
460 * @brief Configure the TIMx input channel.
461 * @param TIMx Timer Instance
462 * @param Channel This parameter can be one of the following values:
463 * @arg @ref LL_TIM_CHANNEL_CH1
464 * @arg @ref LL_TIM_CHANNEL_CH2
465 * @arg @ref LL_TIM_CHANNEL_CH3
466 * @arg @ref LL_TIM_CHANNEL_CH4
467 * @param TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data structure)
468 * @retval An ErrorStatus enumeration value:
469 * - SUCCESS: TIMx output channel is initialized
470 * - ERROR: TIMx output channel is not initialized
472 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
474 ErrorStatus result = ERROR;
476 switch (Channel)
478 case LL_TIM_CHANNEL_CH1:
479 result = IC1Config(TIMx, TIM_IC_InitStruct);
480 break;
481 case LL_TIM_CHANNEL_CH2:
482 result = IC2Config(TIMx, TIM_IC_InitStruct);
483 break;
484 case LL_TIM_CHANNEL_CH3:
485 result = IC3Config(TIMx, TIM_IC_InitStruct);
486 break;
487 case LL_TIM_CHANNEL_CH4:
488 result = IC4Config(TIMx, TIM_IC_InitStruct);
489 break;
490 default:
491 break;
494 return result;
498 * @brief Fills each TIM_EncoderInitStruct field with its default value
499 * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface configuration data structure)
500 * @retval None
502 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
504 /* Set the default configuration */
505 TIM_EncoderInitStruct->EncoderMode = LL_TIM_ENCODERMODE_X2_TI1;
506 TIM_EncoderInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING;
507 TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
508 TIM_EncoderInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1;
509 TIM_EncoderInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1;
510 TIM_EncoderInitStruct->IC2Polarity = LL_TIM_IC_POLARITY_RISING;
511 TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
512 TIM_EncoderInitStruct->IC2Prescaler = LL_TIM_ICPSC_DIV1;
513 TIM_EncoderInitStruct->IC2Filter = LL_TIM_IC_FILTER_FDIV1;
517 * @brief Configure the encoder interface of the timer instance.
518 * @param TIMx Timer Instance
519 * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface configuration data structure)
520 * @retval An ErrorStatus enumeration value:
521 * - SUCCESS: TIMx registers are de-initialized
522 * - ERROR: not applicable
524 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
526 uint32_t tmpccmr1 = 0U;
527 uint32_t tmpccer = 0U;
529 /* Check the parameters */
530 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
531 assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
532 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
533 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
534 assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
535 assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
536 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
537 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
538 assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
539 assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
541 /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
542 TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
544 /* Get the TIMx CCMR1 register value */
545 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
547 /* Get the TIMx CCER register value */
548 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
550 /* Configure TI1 */
551 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC);
552 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
553 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
554 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
556 /* Configure TI2 */
557 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC);
558 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
559 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
560 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
562 /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
563 tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
564 tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
565 tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
566 tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
568 /* Set encoder mode */
569 LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
571 /* Write to TIMx CCMR1 */
572 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
574 /* Write to TIMx CCER */
575 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
577 return SUCCESS;
581 * @brief Set the fields of the TIMx Hall sensor interface configuration data
582 * structure to their default values.
583 * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface configuration data structure)
584 * @retval None
586 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
588 /* Set the default configuration */
589 TIM_HallSensorInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING;
590 TIM_HallSensorInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1;
591 TIM_HallSensorInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1;
592 TIM_HallSensorInitStruct->CommutationDelay = 0U;
596 * @brief Configure the Hall sensor interface of the timer instance.
597 * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
598 * to the TI1 input channel
599 * @note TIMx slave mode controller is configured in reset mode.
600 Selected internal trigger is TI1F_ED.
601 * @note Channel 1 is configured as input, IC1 is mapped on TRC.
602 * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
603 * between 2 changes on the inputs. It gives information about motor speed.
604 * @note Channel 2 is configured in output PWM 2 mode.
605 * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
606 * @note OC2REF is selected as trigger output on TRGO.
607 * @param TIMx Timer Instance
608 * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor interface configuration data structure)
609 * @retval An ErrorStatus enumeration value:
610 * - SUCCESS: TIMx registers are de-initialized
611 * - ERROR: not applicable
613 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
615 uint32_t tmpcr2 = 0U;
616 uint32_t tmpccmr1 = 0U;
617 uint32_t tmpccer = 0U;
618 uint32_t tmpsmcr = 0U;
620 /* Check the parameters */
621 assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
622 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
623 assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
624 assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));
626 /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
627 TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
629 /* Get the TIMx CR2 register value */
630 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
632 /* Get the TIMx CCMR1 register value */
633 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
635 /* Get the TIMx CCER register value */
636 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
638 /* Get the TIMx SMCR register value */
639 tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);
641 /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
642 tmpcr2 |= TIM_CR2_TI1S;
644 /* OC2REF signal is used as trigger output (TRGO) */
645 tmpcr2 |= LL_TIM_TRGO_OC2REF;
647 /* Configure the slave mode controller */
648 tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
649 tmpsmcr |= LL_TIM_TS_TI1F_ED;
650 tmpsmcr |= LL_TIM_SLAVEMODE_RESET;
652 /* Configure input channel 1 */
653 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC);
654 tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
655 tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
656 tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);
658 /* Configure input channel 2 */
659 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE | TIM_CCMR1_OC2PE | TIM_CCMR1_OC2CE);
660 tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);
662 /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
663 tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
664 tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
665 tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
667 /* Write to TIMx CR2 */
668 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
670 /* Write to TIMx SMCR */
671 LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);
673 /* Write to TIMx CCMR1 */
674 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
676 /* Write to TIMx CCER */
677 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
679 /* Write to TIMx CCR2 */
680 LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);
682 return SUCCESS;
686 * @brief Set the fields of the Break and Dead Time configuration data structure
687 * to their default values.
688 * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
689 * @retval None
691 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
693 /* Set the default configuration */
694 TIM_BDTRInitStruct->OSSRState = LL_TIM_OSSR_DISABLE;
695 TIM_BDTRInitStruct->OSSIState = LL_TIM_OSSI_DISABLE;
696 TIM_BDTRInitStruct->LockLevel = LL_TIM_LOCKLEVEL_OFF;
697 TIM_BDTRInitStruct->DeadTime = (uint8_t)0x00;
698 TIM_BDTRInitStruct->BreakState = LL_TIM_BREAK_DISABLE;
699 TIM_BDTRInitStruct->BreakPolarity = LL_TIM_BREAK_POLARITY_LOW;
700 TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
704 * @brief Configure the Break and Dead Time feature of the timer instance.
705 * @note As the bits AOE, BKP, BKE, OSSR, OSSI and DTG[7:0] can be write-locked
706 * depending on the LOCK configuration, it can be necessary to configure all of
707 * them during the first write access to the TIMx_BDTR register.
708 * @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
709 * a timer instance provides a break input.
710 * @param TIMx Timer Instance
711 * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure(Break and Dead Time configuration data structure)
712 * @retval An ErrorStatus enumeration value:
713 * - SUCCESS: Break and Dead Time is initialized
714 * - ERROR: not applicable
716 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
718 uint32_t tmpbdtr = 0;
720 /* Check the parameters */
721 assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
722 assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
723 assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
724 assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
725 assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
726 assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
727 assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
729 /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
730 the OSSI State, the dead time value and the Automatic Output Enable Bit */
732 /* Set the BDTR bits */
733 MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
734 MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
735 MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
736 MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
737 MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
738 MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
739 MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
740 MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, TIM_BDTRInitStruct->AutomaticOutput);
742 /* Set TIMx_BDTR */
743 LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
745 return SUCCESS;
748 * @}
752 * @}
755 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
756 * @brief Private functions
757 * @{
760 * @brief Configure the TIMx output channel 1.
761 * @param TIMx Timer Instance
762 * @param TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
763 * @retval An ErrorStatus enumeration value:
764 * - SUCCESS: TIMx registers are de-initialized
765 * - ERROR: not applicable
767 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
769 uint32_t tmpccmr1 = 0U;
770 uint32_t tmpccer = 0U;
771 uint32_t tmpcr2 = 0U;
773 /* Check the parameters */
774 assert_param(IS_TIM_CC1_INSTANCE(TIMx));
775 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
776 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
777 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
778 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
779 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
781 /* Disable the Channel 1: Reset the CC1E Bit */
782 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
784 /* Get the TIMx CCER register value */
785 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
787 /* Get the TIMx CR2 register value */
788 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
790 /* Get the TIMx CCMR1 register value */
791 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
793 /* Reset Capture/Compare selection Bits */
794 CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
796 /* Set the Output Compare Mode */
797 MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
799 /* Set the Output Compare Polarity */
800 MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
802 /* Set the Output State */
803 MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
805 if (IS_TIM_BREAK_INSTANCE(TIMx))
807 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
808 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
810 /* Set the complementary output Polarity */
811 MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
813 /* Set the complementary output State */
814 MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
816 /* Set the Output Idle state */
817 MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
819 /* Set the complementary output Idle state */
820 MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
823 /* Write to TIMx CR2 */
824 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
826 /* Write to TIMx CCMR1 */
827 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
829 /* Set the Capture Compare Register value */
830 LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
832 /* Write to TIMx CCER */
833 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
835 return SUCCESS;
839 * @brief Configure the TIMx output channel 2.
840 * @param TIMx Timer Instance
841 * @param TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
842 * @retval An ErrorStatus enumeration value:
843 * - SUCCESS: TIMx registers are de-initialized
844 * - ERROR: not applicable
846 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
848 uint32_t tmpccmr1 = 0U;
849 uint32_t tmpccer = 0U;
850 uint32_t tmpcr2 = 0U;
852 /* Check the parameters */
853 assert_param(IS_TIM_CC2_INSTANCE(TIMx));
854 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
855 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
856 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
857 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
858 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
860 /* Disable the Channel 2: Reset the CC2E Bit */
861 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
863 /* Get the TIMx CCER register value */
864 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
866 /* Get the TIMx CR2 register value */
867 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
869 /* Get the TIMx CCMR1 register value */
870 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
872 /* Reset Capture/Compare selection Bits */
873 CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
875 /* Select the Output Compare Mode */
876 MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
878 /* Set the Output Compare Polarity */
879 MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
881 /* Set the Output State */
882 MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
884 if (IS_TIM_BREAK_INSTANCE(TIMx))
886 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
887 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
889 /* Set the complementary output Polarity */
890 MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
892 /* Set the complementary output State */
893 MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
895 /* Set the Output Idle state */
896 MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
898 /* Set the complementary output Idle state */
899 MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
902 /* Write to TIMx CR2 */
903 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
905 /* Write to TIMx CCMR1 */
906 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
908 /* Set the Capture Compare Register value */
909 LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
911 /* Write to TIMx CCER */
912 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
914 return SUCCESS;
918 * @brief Configure the TIMx output channel 3.
919 * @param TIMx Timer Instance
920 * @param TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
921 * @retval An ErrorStatus enumeration value:
922 * - SUCCESS: TIMx registers are de-initialized
923 * - ERROR: not applicable
925 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
927 uint32_t tmpccmr2 = 0U;
928 uint32_t tmpccer = 0U;
929 uint32_t tmpcr2 = 0U;
931 /* Check the parameters */
932 assert_param(IS_TIM_CC3_INSTANCE(TIMx));
933 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
934 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
935 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
936 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
937 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
939 /* Disable the Channel 3: Reset the CC3E Bit */
940 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
942 /* Get the TIMx CCER register value */
943 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
945 /* Get the TIMx CR2 register value */
946 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
948 /* Get the TIMx CCMR2 register value */
949 tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
951 /* Reset Capture/Compare selection Bits */
952 CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
954 /* Select the Output Compare Mode */
955 MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
957 /* Set the Output Compare Polarity */
958 MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
960 /* Set the Output State */
961 MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
963 if (IS_TIM_BREAK_INSTANCE(TIMx))
965 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
966 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
968 /* Set the complementary output Polarity */
969 MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
971 /* Set the complementary output State */
972 MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
974 /* Set the Output Idle state */
975 MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
977 /* Set the complementary output Idle state */
978 MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
981 /* Write to TIMx CR2 */
982 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
984 /* Write to TIMx CCMR2 */
985 LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
987 /* Set the Capture Compare Register value */
988 LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
990 /* Write to TIMx CCER */
991 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
993 return SUCCESS;
997 * @brief Configure the TIMx output channel 4.
998 * @param TIMx Timer Instance
999 * @param TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
1000 * @retval An ErrorStatus enumeration value:
1001 * - SUCCESS: TIMx registers are de-initialized
1002 * - ERROR: not applicable
1004 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1006 uint32_t tmpccmr2 = 0U;
1007 uint32_t tmpccer = 0U;
1008 uint32_t tmpcr2 = 0U;
1010 /* Check the parameters */
1011 assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1012 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1013 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1014 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1015 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1016 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1018 /* Disable the Channel 4: Reset the CC4E Bit */
1019 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
1021 /* Get the TIMx CCER register value */
1022 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1024 /* Get the TIMx CR2 register value */
1025 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
1027 /* Get the TIMx CCMR2 register value */
1028 tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1030 /* Reset Capture/Compare selection Bits */
1031 CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
1033 /* Select the Output Compare Mode */
1034 MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
1036 /* Set the Output Compare Polarity */
1037 MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
1039 /* Set the Output State */
1040 MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
1042 if (IS_TIM_BREAK_INSTANCE(TIMx))
1044 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1045 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1047 /* Set the Output Idle state */
1048 MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
1051 /* Write to TIMx CR2 */
1052 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1054 /* Write to TIMx CCMR2 */
1055 LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1057 /* Set the Capture Compare Register value */
1058 LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
1060 /* Write to TIMx CCER */
1061 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1063 return SUCCESS;
1068 * @brief Configure the TIMx input channel 1.
1069 * @param TIMx Timer Instance
1070 * @param TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1071 * @retval An ErrorStatus enumeration value:
1072 * - SUCCESS: TIMx registers are de-initialized
1073 * - ERROR: not applicable
1075 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1077 /* Check the parameters */
1078 assert_param(IS_TIM_CC1_INSTANCE(TIMx));
1079 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1080 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1081 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1082 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1084 /* Disable the Channel 1: Reset the CC1E Bit */
1085 TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
1087 /* Select the Input and set the filter and the prescaler value */
1088 MODIFY_REG(TIMx->CCMR1,
1089 (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
1090 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1092 /* Select the Polarity and set the CC1E Bit */
1093 MODIFY_REG(TIMx->CCER,
1094 (TIM_CCER_CC1P | TIM_CCER_CC1NP),
1095 (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
1097 return SUCCESS;
1101 * @brief Configure the TIMx input channel 2.
1102 * @param TIMx Timer Instance
1103 * @param TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1104 * @retval An ErrorStatus enumeration value:
1105 * - SUCCESS: TIMx registers are de-initialized
1106 * - ERROR: not applicable
1108 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1110 /* Check the parameters */
1111 assert_param(IS_TIM_CC2_INSTANCE(TIMx));
1112 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1113 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1114 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1115 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1117 /* Disable the Channel 2: Reset the CC2E Bit */
1118 TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
1120 /* Select the Input and set the filter and the prescaler value */
1121 MODIFY_REG(TIMx->CCMR1,
1122 (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
1123 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1125 /* Select the Polarity and set the CC2E Bit */
1126 MODIFY_REG(TIMx->CCER,
1127 (TIM_CCER_CC2P | TIM_CCER_CC2NP),
1128 ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1130 return SUCCESS;
1134 * @brief Configure the TIMx input channel 3.
1135 * @param TIMx Timer Instance
1136 * @param TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1137 * @retval An ErrorStatus enumeration value:
1138 * - SUCCESS: TIMx registers are de-initialized
1139 * - ERROR: not applicable
1141 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1143 /* Check the parameters */
1144 assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1145 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1146 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1147 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1148 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1150 /* Disable the Channel 3: Reset the CC3E Bit */
1151 TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
1153 /* Select the Input and set the filter and the prescaler value */
1154 MODIFY_REG(TIMx->CCMR2,
1155 (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
1156 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1158 /* Select the Polarity and set the CC3E Bit */
1159 MODIFY_REG(TIMx->CCER,
1160 (TIM_CCER_CC3P | TIM_CCER_CC3NP),
1161 ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1163 return SUCCESS;
1167 * @brief Configure the TIMx input channel 4.
1168 * @param TIMx Timer Instance
1169 * @param TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1170 * @retval An ErrorStatus enumeration value:
1171 * - SUCCESS: TIMx registers are de-initialized
1172 * - ERROR: not applicable
1174 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1176 /* Check the parameters */
1177 assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1178 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1179 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1180 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1181 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1183 /* Disable the Channel 4: Reset the CC4E Bit */
1184 TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
1186 /* Select the Input and set the filter and the prescaler value */
1187 MODIFY_REG(TIMx->CCMR2,
1188 (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
1189 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1191 /* Select the Polarity and set the CC4E Bit */
1192 MODIFY_REG(TIMx->CCER,
1193 TIM_CCER_CC4P,
1194 ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1196 return SUCCESS;
1201 * @}
1205 * @}
1208 #endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM9 || TIM10 || TIM11 || TIM12 || TIM13 || TIM14 || TIM15 || TIM16 || TIM17 */
1211 * @}
1214 #endif /* USE_FULL_LL_DRIVER */
1216 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/