2 ******************************************************************************
3 * @file stm32h7xx_ll_tim.c
4 * @author MCD Application Team
5 * @brief TIM LL module driver.
6 ******************************************************************************
9 * <h2><center>© Copyright (c) 2017 STMicroelectronics.
10 * All rights reserved.</center></h2>
12 * This software component is licensed by ST under BSD 3-Clause license,
13 * the "License"; You may not use this file except in compliance with the
14 * License. You may obtain a copy of the License at:
15 * opensource.org/licenses/BSD-3-Clause
17 ******************************************************************************
19 #if defined(USE_FULL_LL_DRIVER)
21 /* Includes ------------------------------------------------------------------*/
22 #include "stm32h7xx_ll_tim.h"
23 #include "stm32h7xx_ll_bus.h"
25 /** @addtogroup STM32H7xx_LL_Driver
29 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM12) || defined (TIM13) || defined (TIM14) || defined (TIM15) || defined (TIM16) || defined (TIM17) || defined (TIM23) || defined (TIM24)
31 /** @addtogroup TIM_LL
35 /* Private types -------------------------------------------------------------*/
36 /* Private variables ---------------------------------------------------------*/
37 /* Private constants ---------------------------------------------------------*/
38 /* Private macros ------------------------------------------------------------*/
39 /** @addtogroup TIM_LL_Private_Macros
42 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
43 || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
44 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
45 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
46 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
48 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
49 || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
50 || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
52 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
53 || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
54 || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
55 || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
56 || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
57 || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
58 || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
59 || ((__VALUE__) == LL_TIM_OCMODE_PWM2) \
60 || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM1) \
61 || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM2) \
62 || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM1) \
63 || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM2) \
64 || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM1) \
65 || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM2))
67 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
68 || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
70 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
71 || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
73 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
74 || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
76 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
77 || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
78 || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
80 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
81 || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
82 || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
83 || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
85 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
86 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
87 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
88 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
89 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
90 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
91 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
92 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
93 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
94 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
95 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
96 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
97 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
98 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
99 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
100 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
102 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
103 || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
104 || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))
106 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
107 || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
108 || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))
110 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
111 || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
113 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
114 || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
116 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
117 || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
119 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
120 || ((__VALUE__) == LL_TIM_LOCKLEVEL_1) \
121 || ((__VALUE__) == LL_TIM_LOCKLEVEL_2) \
122 || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
124 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
125 || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
127 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
128 || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
130 #define IS_LL_TIM_BREAK_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1) \
131 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N2) \
132 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N4) \
133 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N8) \
134 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N6) \
135 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N8) \
136 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N6) \
137 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N8) \
138 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N6) \
139 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N8) \
140 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N5) \
141 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N6) \
142 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N8) \
143 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N5) \
144 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N6) \
145 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N8))
147 #define IS_LL_TIM_BREAK2_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_DISABLE) \
148 || ((__VALUE__) == LL_TIM_BREAK2_ENABLE))
150 #define IS_LL_TIM_BREAK2_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_POLARITY_LOW) \
151 || ((__VALUE__) == LL_TIM_BREAK2_POLARITY_HIGH))
153 #define IS_LL_TIM_BREAK2_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1) \
154 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N2) \
155 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N4) \
156 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N8) \
157 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N6) \
158 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N8) \
159 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N6) \
160 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N8) \
161 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N6) \
162 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N8) \
163 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N5) \
164 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N6) \
165 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N8) \
166 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N5) \
167 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N6) \
168 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N8))
170 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
171 || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
177 /* Private function prototypes -----------------------------------------------*/
178 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
181 static ErrorStatus
OC1Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
);
182 static ErrorStatus
OC2Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
);
183 static ErrorStatus
OC3Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
);
184 static ErrorStatus
OC4Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
);
185 static ErrorStatus
OC5Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
);
186 static ErrorStatus
OC6Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
);
187 static ErrorStatus
IC1Config(TIM_TypeDef
*TIMx
, LL_TIM_IC_InitTypeDef
*TIM_ICInitStruct
);
188 static ErrorStatus
IC2Config(TIM_TypeDef
*TIMx
, LL_TIM_IC_InitTypeDef
*TIM_ICInitStruct
);
189 static ErrorStatus
IC3Config(TIM_TypeDef
*TIMx
, LL_TIM_IC_InitTypeDef
*TIM_ICInitStruct
);
190 static ErrorStatus
IC4Config(TIM_TypeDef
*TIMx
, LL_TIM_IC_InitTypeDef
*TIM_ICInitStruct
);
195 /* Exported functions --------------------------------------------------------*/
196 /** @addtogroup TIM_LL_Exported_Functions
200 /** @addtogroup TIM_LL_EF_Init
205 * @brief Set TIMx registers to their reset values.
206 * @param TIMx Timer instance
207 * @retval An ErrorStatus enumeration value:
208 * - SUCCESS: TIMx registers are de-initialized
209 * - ERROR: invalid TIMx instance
211 ErrorStatus
LL_TIM_DeInit(TIM_TypeDef
*TIMx
)
213 ErrorStatus result
= SUCCESS
;
215 /* Check the parameters */
216 assert_param(IS_TIM_INSTANCE(TIMx
));
220 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1
);
221 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1
);
224 else if (TIMx
== TIM2
)
226 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2
);
227 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2
);
231 else if (TIMx
== TIM3
)
233 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3
);
234 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3
);
238 else if (TIMx
== TIM4
)
240 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4
);
241 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4
);
245 else if (TIMx
== TIM5
)
247 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5
);
248 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5
);
252 else if (TIMx
== TIM6
)
254 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6
);
255 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6
);
259 else if (TIMx
== TIM7
)
261 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7
);
262 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7
);
266 else if (TIMx
== TIM8
)
268 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8
);
269 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8
);
273 else if (TIMx
== TIM12
)
275 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM12
);
276 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM12
);
280 else if (TIMx
== TIM13
)
282 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM13
);
283 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM13
);
287 else if (TIMx
== TIM14
)
289 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM14
);
290 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM14
);
294 else if (TIMx
== TIM15
)
296 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM15
);
297 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM15
);
301 else if (TIMx
== TIM16
)
303 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM16
);
304 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM16
);
308 else if (TIMx
== TIM17
)
310 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM17
);
311 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM17
);
323 * @brief Set the fields of the time base unit configuration data structure
324 * to their default values.
325 * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
328 void LL_TIM_StructInit(LL_TIM_InitTypeDef
*TIM_InitStruct
)
330 /* Set the default configuration */
331 TIM_InitStruct
->Prescaler
= (uint16_t)0x0000;
332 TIM_InitStruct
->CounterMode
= LL_TIM_COUNTERMODE_UP
;
333 TIM_InitStruct
->Autoreload
= 0xFFFFFFFFU
;
334 TIM_InitStruct
->ClockDivision
= LL_TIM_CLOCKDIVISION_DIV1
;
335 TIM_InitStruct
->RepetitionCounter
= 0x00000000U
;
339 * @brief Configure the TIMx time base unit.
340 * @param TIMx Timer Instance
341 * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (TIMx time base unit configuration data structure)
342 * @retval An ErrorStatus enumeration value:
343 * - SUCCESS: TIMx registers are de-initialized
344 * - ERROR: not applicable
346 ErrorStatus
LL_TIM_Init(TIM_TypeDef
*TIMx
, LL_TIM_InitTypeDef
*TIM_InitStruct
)
350 /* Check the parameters */
351 assert_param(IS_TIM_INSTANCE(TIMx
));
352 assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct
->CounterMode
));
353 assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct
->ClockDivision
));
355 tmpcr1
= LL_TIM_ReadReg(TIMx
, CR1
);
357 if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx
))
359 /* Select the Counter Mode */
360 MODIFY_REG(tmpcr1
, (TIM_CR1_DIR
| TIM_CR1_CMS
), TIM_InitStruct
->CounterMode
);
363 if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx
))
365 /* Set the clock division */
366 MODIFY_REG(tmpcr1
, TIM_CR1_CKD
, TIM_InitStruct
->ClockDivision
);
369 /* Write to TIMx CR1 */
370 LL_TIM_WriteReg(TIMx
, CR1
, tmpcr1
);
372 /* Set the Autoreload value */
373 LL_TIM_SetAutoReload(TIMx
, TIM_InitStruct
->Autoreload
);
375 /* Set the Prescaler value */
376 LL_TIM_SetPrescaler(TIMx
, TIM_InitStruct
->Prescaler
);
378 if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx
))
380 /* Set the Repetition Counter value */
381 LL_TIM_SetRepetitionCounter(TIMx
, TIM_InitStruct
->RepetitionCounter
);
384 /* Generate an update event to reload the Prescaler
385 and the repetition counter value (if applicable) immediately */
386 LL_TIM_GenerateEvent_UPDATE(TIMx
);
392 * @brief Set the fields of the TIMx output channel configuration data
393 * structure to their default values.
394 * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (the output channel configuration data structure)
397 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef
*TIM_OC_InitStruct
)
399 /* Set the default configuration */
400 TIM_OC_InitStruct
->OCMode
= LL_TIM_OCMODE_FROZEN
;
401 TIM_OC_InitStruct
->OCState
= LL_TIM_OCSTATE_DISABLE
;
402 TIM_OC_InitStruct
->OCNState
= LL_TIM_OCSTATE_DISABLE
;
403 TIM_OC_InitStruct
->CompareValue
= 0x00000000U
;
404 TIM_OC_InitStruct
->OCPolarity
= LL_TIM_OCPOLARITY_HIGH
;
405 TIM_OC_InitStruct
->OCNPolarity
= LL_TIM_OCPOLARITY_HIGH
;
406 TIM_OC_InitStruct
->OCIdleState
= LL_TIM_OCIDLESTATE_LOW
;
407 TIM_OC_InitStruct
->OCNIdleState
= LL_TIM_OCIDLESTATE_LOW
;
411 * @brief Configure the TIMx output channel.
412 * @param TIMx Timer Instance
413 * @param Channel This parameter can be one of the following values:
414 * @arg @ref LL_TIM_CHANNEL_CH1
415 * @arg @ref LL_TIM_CHANNEL_CH2
416 * @arg @ref LL_TIM_CHANNEL_CH3
417 * @arg @ref LL_TIM_CHANNEL_CH4
418 * @arg @ref LL_TIM_CHANNEL_CH5
419 * @arg @ref LL_TIM_CHANNEL_CH6
420 * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration data structure)
421 * @retval An ErrorStatus enumeration value:
422 * - SUCCESS: TIMx output channel is initialized
423 * - ERROR: TIMx output channel is not initialized
425 ErrorStatus
LL_TIM_OC_Init(TIM_TypeDef
*TIMx
, uint32_t Channel
, LL_TIM_OC_InitTypeDef
*TIM_OC_InitStruct
)
427 ErrorStatus result
= ERROR
;
431 case LL_TIM_CHANNEL_CH1
:
432 result
= OC1Config(TIMx
, TIM_OC_InitStruct
);
434 case LL_TIM_CHANNEL_CH2
:
435 result
= OC2Config(TIMx
, TIM_OC_InitStruct
);
437 case LL_TIM_CHANNEL_CH3
:
438 result
= OC3Config(TIMx
, TIM_OC_InitStruct
);
440 case LL_TIM_CHANNEL_CH4
:
441 result
= OC4Config(TIMx
, TIM_OC_InitStruct
);
443 case LL_TIM_CHANNEL_CH5
:
444 result
= OC5Config(TIMx
, TIM_OC_InitStruct
);
446 case LL_TIM_CHANNEL_CH6
:
447 result
= OC6Config(TIMx
, TIM_OC_InitStruct
);
457 * @brief Set the fields of the TIMx input channel configuration data
458 * structure to their default values.
459 * @param TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration data structure)
462 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef
*TIM_ICInitStruct
)
464 /* Set the default configuration */
465 TIM_ICInitStruct
->ICPolarity
= LL_TIM_IC_POLARITY_RISING
;
466 TIM_ICInitStruct
->ICActiveInput
= LL_TIM_ACTIVEINPUT_DIRECTTI
;
467 TIM_ICInitStruct
->ICPrescaler
= LL_TIM_ICPSC_DIV1
;
468 TIM_ICInitStruct
->ICFilter
= LL_TIM_IC_FILTER_FDIV1
;
472 * @brief Configure the TIMx input channel.
473 * @param TIMx Timer Instance
474 * @param Channel This parameter can be one of the following values:
475 * @arg @ref LL_TIM_CHANNEL_CH1
476 * @arg @ref LL_TIM_CHANNEL_CH2
477 * @arg @ref LL_TIM_CHANNEL_CH3
478 * @arg @ref LL_TIM_CHANNEL_CH4
479 * @param TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data structure)
480 * @retval An ErrorStatus enumeration value:
481 * - SUCCESS: TIMx output channel is initialized
482 * - ERROR: TIMx output channel is not initialized
484 ErrorStatus
LL_TIM_IC_Init(TIM_TypeDef
*TIMx
, uint32_t Channel
, LL_TIM_IC_InitTypeDef
*TIM_IC_InitStruct
)
486 ErrorStatus result
= ERROR
;
490 case LL_TIM_CHANNEL_CH1
:
491 result
= IC1Config(TIMx
, TIM_IC_InitStruct
);
493 case LL_TIM_CHANNEL_CH2
:
494 result
= IC2Config(TIMx
, TIM_IC_InitStruct
);
496 case LL_TIM_CHANNEL_CH3
:
497 result
= IC3Config(TIMx
, TIM_IC_InitStruct
);
499 case LL_TIM_CHANNEL_CH4
:
500 result
= IC4Config(TIMx
, TIM_IC_InitStruct
);
510 * @brief Fills each TIM_EncoderInitStruct field with its default value
511 * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface configuration data structure)
514 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef
*TIM_EncoderInitStruct
)
516 /* Set the default configuration */
517 TIM_EncoderInitStruct
->EncoderMode
= LL_TIM_ENCODERMODE_X2_TI1
;
518 TIM_EncoderInitStruct
->IC1Polarity
= LL_TIM_IC_POLARITY_RISING
;
519 TIM_EncoderInitStruct
->IC1ActiveInput
= LL_TIM_ACTIVEINPUT_DIRECTTI
;
520 TIM_EncoderInitStruct
->IC1Prescaler
= LL_TIM_ICPSC_DIV1
;
521 TIM_EncoderInitStruct
->IC1Filter
= LL_TIM_IC_FILTER_FDIV1
;
522 TIM_EncoderInitStruct
->IC2Polarity
= LL_TIM_IC_POLARITY_RISING
;
523 TIM_EncoderInitStruct
->IC2ActiveInput
= LL_TIM_ACTIVEINPUT_DIRECTTI
;
524 TIM_EncoderInitStruct
->IC2Prescaler
= LL_TIM_ICPSC_DIV1
;
525 TIM_EncoderInitStruct
->IC2Filter
= LL_TIM_IC_FILTER_FDIV1
;
529 * @brief Configure the encoder interface of the timer instance.
530 * @param TIMx Timer Instance
531 * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface configuration data structure)
532 * @retval An ErrorStatus enumeration value:
533 * - SUCCESS: TIMx registers are de-initialized
534 * - ERROR: not applicable
536 ErrorStatus
LL_TIM_ENCODER_Init(TIM_TypeDef
*TIMx
, LL_TIM_ENCODER_InitTypeDef
*TIM_EncoderInitStruct
)
541 /* Check the parameters */
542 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx
));
543 assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct
->EncoderMode
));
544 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct
->IC1Polarity
));
545 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct
->IC1ActiveInput
));
546 assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct
->IC1Prescaler
));
547 assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct
->IC1Filter
));
548 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct
->IC2Polarity
));
549 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct
->IC2ActiveInput
));
550 assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct
->IC2Prescaler
));
551 assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct
->IC2Filter
));
553 /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
554 TIMx
->CCER
&= (uint32_t)~(TIM_CCER_CC1E
| TIM_CCER_CC2E
);
556 /* Get the TIMx CCMR1 register value */
557 tmpccmr1
= LL_TIM_ReadReg(TIMx
, CCMR1
);
559 /* Get the TIMx CCER register value */
560 tmpccer
= LL_TIM_ReadReg(TIMx
, CCER
);
563 tmpccmr1
&= (uint32_t)~(TIM_CCMR1_CC1S
| TIM_CCMR1_IC1F
| TIM_CCMR1_IC1PSC
);
564 tmpccmr1
|= (uint32_t)(TIM_EncoderInitStruct
->IC1ActiveInput
>> 16U);
565 tmpccmr1
|= (uint32_t)(TIM_EncoderInitStruct
->IC1Filter
>> 16U);
566 tmpccmr1
|= (uint32_t)(TIM_EncoderInitStruct
->IC1Prescaler
>> 16U);
569 tmpccmr1
&= (uint32_t)~(TIM_CCMR1_CC2S
| TIM_CCMR1_IC2F
| TIM_CCMR1_IC2PSC
);
570 tmpccmr1
|= (uint32_t)(TIM_EncoderInitStruct
->IC2ActiveInput
>> 8U);
571 tmpccmr1
|= (uint32_t)(TIM_EncoderInitStruct
->IC2Filter
>> 8U);
572 tmpccmr1
|= (uint32_t)(TIM_EncoderInitStruct
->IC2Prescaler
>> 8U);
574 /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
575 tmpccer
&= (uint32_t)~(TIM_CCER_CC1P
| TIM_CCER_CC1NP
| TIM_CCER_CC2P
| TIM_CCER_CC2NP
);
576 tmpccer
|= (uint32_t)(TIM_EncoderInitStruct
->IC1Polarity
);
577 tmpccer
|= (uint32_t)(TIM_EncoderInitStruct
->IC2Polarity
<< 4U);
578 tmpccer
|= (uint32_t)(TIM_CCER_CC1E
| TIM_CCER_CC2E
);
580 /* Set encoder mode */
581 LL_TIM_SetEncoderMode(TIMx
, TIM_EncoderInitStruct
->EncoderMode
);
583 /* Write to TIMx CCMR1 */
584 LL_TIM_WriteReg(TIMx
, CCMR1
, tmpccmr1
);
586 /* Write to TIMx CCER */
587 LL_TIM_WriteReg(TIMx
, CCER
, tmpccer
);
593 * @brief Set the fields of the TIMx Hall sensor interface configuration data
594 * structure to their default values.
595 * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface configuration data structure)
598 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef
*TIM_HallSensorInitStruct
)
600 /* Set the default configuration */
601 TIM_HallSensorInitStruct
->IC1Polarity
= LL_TIM_IC_POLARITY_RISING
;
602 TIM_HallSensorInitStruct
->IC1Prescaler
= LL_TIM_ICPSC_DIV1
;
603 TIM_HallSensorInitStruct
->IC1Filter
= LL_TIM_IC_FILTER_FDIV1
;
604 TIM_HallSensorInitStruct
->CommutationDelay
= 0U;
608 * @brief Configure the Hall sensor interface of the timer instance.
609 * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
610 * to the TI1 input channel
611 * @note TIMx slave mode controller is configured in reset mode.
612 Selected internal trigger is TI1F_ED.
613 * @note Channel 1 is configured as input, IC1 is mapped on TRC.
614 * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
615 * between 2 changes on the inputs. It gives information about motor speed.
616 * @note Channel 2 is configured in output PWM 2 mode.
617 * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
618 * @note OC2REF is selected as trigger output on TRGO.
619 * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used
620 * when TIMx operates in Hall sensor interface mode.
621 * @param TIMx Timer Instance
622 * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor interface configuration data structure)
623 * @retval An ErrorStatus enumeration value:
624 * - SUCCESS: TIMx registers are de-initialized
625 * - ERROR: not applicable
627 ErrorStatus
LL_TIM_HALLSENSOR_Init(TIM_TypeDef
*TIMx
, LL_TIM_HALLSENSOR_InitTypeDef
*TIM_HallSensorInitStruct
)
634 /* Check the parameters */
635 assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx
));
636 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct
->IC1Polarity
));
637 assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct
->IC1Prescaler
));
638 assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct
->IC1Filter
));
640 /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
641 TIMx
->CCER
&= (uint32_t)~(TIM_CCER_CC1E
| TIM_CCER_CC2E
);
643 /* Get the TIMx CR2 register value */
644 tmpcr2
= LL_TIM_ReadReg(TIMx
, CR2
);
646 /* Get the TIMx CCMR1 register value */
647 tmpccmr1
= LL_TIM_ReadReg(TIMx
, CCMR1
);
649 /* Get the TIMx CCER register value */
650 tmpccer
= LL_TIM_ReadReg(TIMx
, CCER
);
652 /* Get the TIMx SMCR register value */
653 tmpsmcr
= LL_TIM_ReadReg(TIMx
, SMCR
);
655 /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
656 tmpcr2
|= TIM_CR2_TI1S
;
658 /* OC2REF signal is used as trigger output (TRGO) */
659 tmpcr2
|= LL_TIM_TRGO_OC2REF
;
661 /* Configure the slave mode controller */
662 tmpsmcr
&= (uint32_t)~(TIM_SMCR_TS
| TIM_SMCR_SMS
);
663 tmpsmcr
|= LL_TIM_TS_TI1F_ED
;
664 tmpsmcr
|= LL_TIM_SLAVEMODE_RESET
;
666 /* Configure input channel 1 */
667 tmpccmr1
&= (uint32_t)~(TIM_CCMR1_CC1S
| TIM_CCMR1_IC1F
| TIM_CCMR1_IC1PSC
);
668 tmpccmr1
|= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC
>> 16U);
669 tmpccmr1
|= (uint32_t)(TIM_HallSensorInitStruct
->IC1Filter
>> 16U);
670 tmpccmr1
|= (uint32_t)(TIM_HallSensorInitStruct
->IC1Prescaler
>> 16U);
672 /* Configure input channel 2 */
673 tmpccmr1
&= (uint32_t)~(TIM_CCMR1_OC2M
| TIM_CCMR1_OC2FE
| TIM_CCMR1_OC2PE
| TIM_CCMR1_OC2CE
);
674 tmpccmr1
|= (uint32_t)(LL_TIM_OCMODE_PWM2
<< 8U);
676 /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
677 tmpccer
&= (uint32_t)~(TIM_CCER_CC1P
| TIM_CCER_CC1NP
| TIM_CCER_CC2P
| TIM_CCER_CC2NP
);
678 tmpccer
|= (uint32_t)(TIM_HallSensorInitStruct
->IC1Polarity
);
679 tmpccer
|= (uint32_t)(TIM_CCER_CC1E
| TIM_CCER_CC2E
);
681 /* Write to TIMx CR2 */
682 LL_TIM_WriteReg(TIMx
, CR2
, tmpcr2
);
684 /* Write to TIMx SMCR */
685 LL_TIM_WriteReg(TIMx
, SMCR
, tmpsmcr
);
687 /* Write to TIMx CCMR1 */
688 LL_TIM_WriteReg(TIMx
, CCMR1
, tmpccmr1
);
690 /* Write to TIMx CCER */
691 LL_TIM_WriteReg(TIMx
, CCER
, tmpccer
);
693 /* Write to TIMx CCR2 */
694 LL_TIM_OC_SetCompareCH2(TIMx
, TIM_HallSensorInitStruct
->CommutationDelay
);
700 * @brief Set the fields of the Break and Dead Time configuration data structure
701 * to their default values.
702 * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
705 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef
*TIM_BDTRInitStruct
)
707 /* Set the default configuration */
708 TIM_BDTRInitStruct
->OSSRState
= LL_TIM_OSSR_DISABLE
;
709 TIM_BDTRInitStruct
->OSSIState
= LL_TIM_OSSI_DISABLE
;
710 TIM_BDTRInitStruct
->LockLevel
= LL_TIM_LOCKLEVEL_OFF
;
711 TIM_BDTRInitStruct
->DeadTime
= (uint8_t)0x00;
712 TIM_BDTRInitStruct
->BreakState
= LL_TIM_BREAK_DISABLE
;
713 TIM_BDTRInitStruct
->BreakPolarity
= LL_TIM_BREAK_POLARITY_LOW
;
714 TIM_BDTRInitStruct
->BreakFilter
= LL_TIM_BREAK_FILTER_FDIV1
;
715 TIM_BDTRInitStruct
->Break2State
= LL_TIM_BREAK2_DISABLE
;
716 TIM_BDTRInitStruct
->Break2Polarity
= LL_TIM_BREAK2_POLARITY_LOW
;
717 TIM_BDTRInitStruct
->Break2Filter
= LL_TIM_BREAK2_FILTER_FDIV1
;
718 TIM_BDTRInitStruct
->AutomaticOutput
= LL_TIM_AUTOMATICOUTPUT_DISABLE
;
722 * @brief Configure the Break and Dead Time feature of the timer instance.
723 * @note As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR
724 * and DTG[7:0] can be write-locked depending on the LOCK configuration, it
725 * can be necessary to configure all of them during the first write access to
726 * the TIMx_BDTR register.
727 * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
728 * a timer instance provides a break input.
729 * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
730 * a timer instance provides a second break input.
731 * @param TIMx Timer Instance
732 * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
733 * @retval An ErrorStatus enumeration value:
734 * - SUCCESS: Break and Dead Time is initialized
735 * - ERROR: not applicable
737 ErrorStatus
LL_TIM_BDTR_Init(TIM_TypeDef
*TIMx
, LL_TIM_BDTR_InitTypeDef
*TIM_BDTRInitStruct
)
739 uint32_t tmpbdtr
= 0;
741 /* Check the parameters */
742 assert_param(IS_TIM_BREAK_INSTANCE(TIMx
));
743 assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct
->OSSRState
));
744 assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct
->OSSIState
));
745 assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct
->LockLevel
));
746 assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct
->BreakState
));
747 assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct
->BreakPolarity
));
748 assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct
->AutomaticOutput
));
750 /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
751 the OSSI State, the dead time value and the Automatic Output Enable Bit */
753 /* Set the BDTR bits */
754 MODIFY_REG(tmpbdtr
, TIM_BDTR_DTG
, TIM_BDTRInitStruct
->DeadTime
);
755 MODIFY_REG(tmpbdtr
, TIM_BDTR_LOCK
, TIM_BDTRInitStruct
->LockLevel
);
756 MODIFY_REG(tmpbdtr
, TIM_BDTR_OSSI
, TIM_BDTRInitStruct
->OSSIState
);
757 MODIFY_REG(tmpbdtr
, TIM_BDTR_OSSR
, TIM_BDTRInitStruct
->OSSRState
);
758 MODIFY_REG(tmpbdtr
, TIM_BDTR_BKE
, TIM_BDTRInitStruct
->BreakState
);
759 MODIFY_REG(tmpbdtr
, TIM_BDTR_BKP
, TIM_BDTRInitStruct
->BreakPolarity
);
760 MODIFY_REG(tmpbdtr
, TIM_BDTR_AOE
, TIM_BDTRInitStruct
->AutomaticOutput
);
761 MODIFY_REG(tmpbdtr
, TIM_BDTR_MOE
, TIM_BDTRInitStruct
->AutomaticOutput
);
762 if (IS_TIM_ADVANCED_INSTANCE(TIMx
))
764 assert_param(IS_LL_TIM_BREAK_FILTER(TIM_BDTRInitStruct
->BreakFilter
));
765 MODIFY_REG(tmpbdtr
, TIM_BDTR_BKF
, TIM_BDTRInitStruct
->BreakFilter
);
768 if (IS_TIM_BKIN2_INSTANCE(TIMx
))
770 assert_param(IS_LL_TIM_BREAK2_STATE(TIM_BDTRInitStruct
->Break2State
));
771 assert_param(IS_LL_TIM_BREAK2_POLARITY(TIM_BDTRInitStruct
->Break2Polarity
));
772 assert_param(IS_LL_TIM_BREAK2_FILTER(TIM_BDTRInitStruct
->Break2Filter
));
774 /* Set the BREAK2 input related BDTR bit-fields */
775 MODIFY_REG(tmpbdtr
, TIM_BDTR_BK2F
, (TIM_BDTRInitStruct
->Break2Filter
));
776 MODIFY_REG(tmpbdtr
, TIM_BDTR_BK2E
, TIM_BDTRInitStruct
->Break2State
);
777 MODIFY_REG(tmpbdtr
, TIM_BDTR_BK2P
, TIM_BDTRInitStruct
->Break2Polarity
);
781 LL_TIM_WriteReg(TIMx
, BDTR
, tmpbdtr
);
793 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
794 * @brief Private functions
798 * @brief Configure the TIMx output channel 1.
799 * @param TIMx Timer Instance
800 * @param TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
801 * @retval An ErrorStatus enumeration value:
802 * - SUCCESS: TIMx registers are de-initialized
803 * - ERROR: not applicable
805 static ErrorStatus
OC1Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
)
811 /* Check the parameters */
812 assert_param(IS_TIM_CC1_INSTANCE(TIMx
));
813 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct
->OCMode
));
814 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCState
));
815 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCPolarity
));
816 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCNState
));
817 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCNPolarity
));
819 /* Disable the Channel 1: Reset the CC1E Bit */
820 CLEAR_BIT(TIMx
->CCER
, TIM_CCER_CC1E
);
822 /* Get the TIMx CCER register value */
823 tmpccer
= LL_TIM_ReadReg(TIMx
, CCER
);
825 /* Get the TIMx CR2 register value */
826 tmpcr2
= LL_TIM_ReadReg(TIMx
, CR2
);
828 /* Get the TIMx CCMR1 register value */
829 tmpccmr1
= LL_TIM_ReadReg(TIMx
, CCMR1
);
831 /* Reset Capture/Compare selection Bits */
832 CLEAR_BIT(tmpccmr1
, TIM_CCMR1_CC1S
);
834 /* Set the Output Compare Mode */
835 MODIFY_REG(tmpccmr1
, TIM_CCMR1_OC1M
, TIM_OCInitStruct
->OCMode
);
837 /* Set the Output Compare Polarity */
838 MODIFY_REG(tmpccer
, TIM_CCER_CC1P
, TIM_OCInitStruct
->OCPolarity
);
840 /* Set the Output State */
841 MODIFY_REG(tmpccer
, TIM_CCER_CC1E
, TIM_OCInitStruct
->OCState
);
843 if (IS_TIM_BREAK_INSTANCE(TIMx
))
845 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCNIdleState
));
846 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCIdleState
));
848 /* Set the complementary output Polarity */
849 MODIFY_REG(tmpccer
, TIM_CCER_CC1NP
, TIM_OCInitStruct
->OCNPolarity
<< 2U);
851 /* Set the complementary output State */
852 MODIFY_REG(tmpccer
, TIM_CCER_CC1NE
, TIM_OCInitStruct
->OCNState
<< 2U);
854 /* Set the Output Idle state */
855 MODIFY_REG(tmpcr2
, TIM_CR2_OIS1
, TIM_OCInitStruct
->OCIdleState
);
857 /* Set the complementary output Idle state */
858 MODIFY_REG(tmpcr2
, TIM_CR2_OIS1N
, TIM_OCInitStruct
->OCNIdleState
<< 1U);
861 /* Write to TIMx CR2 */
862 LL_TIM_WriteReg(TIMx
, CR2
, tmpcr2
);
864 /* Write to TIMx CCMR1 */
865 LL_TIM_WriteReg(TIMx
, CCMR1
, tmpccmr1
);
867 /* Set the Capture Compare Register value */
868 LL_TIM_OC_SetCompareCH1(TIMx
, TIM_OCInitStruct
->CompareValue
);
870 /* Write to TIMx CCER */
871 LL_TIM_WriteReg(TIMx
, CCER
, tmpccer
);
877 * @brief Configure the TIMx output channel 2.
878 * @param TIMx Timer Instance
879 * @param TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
880 * @retval An ErrorStatus enumeration value:
881 * - SUCCESS: TIMx registers are de-initialized
882 * - ERROR: not applicable
884 static ErrorStatus
OC2Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
)
890 /* Check the parameters */
891 assert_param(IS_TIM_CC2_INSTANCE(TIMx
));
892 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct
->OCMode
));
893 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCState
));
894 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCPolarity
));
895 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCNState
));
896 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCNPolarity
));
898 /* Disable the Channel 2: Reset the CC2E Bit */
899 CLEAR_BIT(TIMx
->CCER
, TIM_CCER_CC2E
);
901 /* Get the TIMx CCER register value */
902 tmpccer
= LL_TIM_ReadReg(TIMx
, CCER
);
904 /* Get the TIMx CR2 register value */
905 tmpcr2
= LL_TIM_ReadReg(TIMx
, CR2
);
907 /* Get the TIMx CCMR1 register value */
908 tmpccmr1
= LL_TIM_ReadReg(TIMx
, CCMR1
);
910 /* Reset Capture/Compare selection Bits */
911 CLEAR_BIT(tmpccmr1
, TIM_CCMR1_CC2S
);
913 /* Select the Output Compare Mode */
914 MODIFY_REG(tmpccmr1
, TIM_CCMR1_OC2M
, TIM_OCInitStruct
->OCMode
<< 8U);
916 /* Set the Output Compare Polarity */
917 MODIFY_REG(tmpccer
, TIM_CCER_CC2P
, TIM_OCInitStruct
->OCPolarity
<< 4U);
919 /* Set the Output State */
920 MODIFY_REG(tmpccer
, TIM_CCER_CC2E
, TIM_OCInitStruct
->OCState
<< 4U);
922 if (IS_TIM_BREAK_INSTANCE(TIMx
))
924 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCNIdleState
));
925 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCIdleState
));
927 /* Set the complementary output Polarity */
928 MODIFY_REG(tmpccer
, TIM_CCER_CC2NP
, TIM_OCInitStruct
->OCNPolarity
<< 6U);
930 /* Set the complementary output State */
931 MODIFY_REG(tmpccer
, TIM_CCER_CC2NE
, TIM_OCInitStruct
->OCNState
<< 6U);
933 /* Set the Output Idle state */
934 MODIFY_REG(tmpcr2
, TIM_CR2_OIS2
, TIM_OCInitStruct
->OCIdleState
<< 2U);
936 /* Set the complementary output Idle state */
937 MODIFY_REG(tmpcr2
, TIM_CR2_OIS2N
, TIM_OCInitStruct
->OCNIdleState
<< 3U);
940 /* Write to TIMx CR2 */
941 LL_TIM_WriteReg(TIMx
, CR2
, tmpcr2
);
943 /* Write to TIMx CCMR1 */
944 LL_TIM_WriteReg(TIMx
, CCMR1
, tmpccmr1
);
946 /* Set the Capture Compare Register value */
947 LL_TIM_OC_SetCompareCH2(TIMx
, TIM_OCInitStruct
->CompareValue
);
949 /* Write to TIMx CCER */
950 LL_TIM_WriteReg(TIMx
, CCER
, tmpccer
);
956 * @brief Configure the TIMx output channel 3.
957 * @param TIMx Timer Instance
958 * @param TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
959 * @retval An ErrorStatus enumeration value:
960 * - SUCCESS: TIMx registers are de-initialized
961 * - ERROR: not applicable
963 static ErrorStatus
OC3Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
)
969 /* Check the parameters */
970 assert_param(IS_TIM_CC3_INSTANCE(TIMx
));
971 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct
->OCMode
));
972 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCState
));
973 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCPolarity
));
974 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCNState
));
975 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCNPolarity
));
977 /* Disable the Channel 3: Reset the CC3E Bit */
978 CLEAR_BIT(TIMx
->CCER
, TIM_CCER_CC3E
);
980 /* Get the TIMx CCER register value */
981 tmpccer
= LL_TIM_ReadReg(TIMx
, CCER
);
983 /* Get the TIMx CR2 register value */
984 tmpcr2
= LL_TIM_ReadReg(TIMx
, CR2
);
986 /* Get the TIMx CCMR2 register value */
987 tmpccmr2
= LL_TIM_ReadReg(TIMx
, CCMR2
);
989 /* Reset Capture/Compare selection Bits */
990 CLEAR_BIT(tmpccmr2
, TIM_CCMR2_CC3S
);
992 /* Select the Output Compare Mode */
993 MODIFY_REG(tmpccmr2
, TIM_CCMR2_OC3M
, TIM_OCInitStruct
->OCMode
);
995 /* Set the Output Compare Polarity */
996 MODIFY_REG(tmpccer
, TIM_CCER_CC3P
, TIM_OCInitStruct
->OCPolarity
<< 8U);
998 /* Set the Output State */
999 MODIFY_REG(tmpccer
, TIM_CCER_CC3E
, TIM_OCInitStruct
->OCState
<< 8U);
1001 if (IS_TIM_BREAK_INSTANCE(TIMx
))
1003 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCNIdleState
));
1004 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCIdleState
));
1006 /* Set the complementary output Polarity */
1007 MODIFY_REG(tmpccer
, TIM_CCER_CC3NP
, TIM_OCInitStruct
->OCNPolarity
<< 10U);
1009 /* Set the complementary output State */
1010 MODIFY_REG(tmpccer
, TIM_CCER_CC3NE
, TIM_OCInitStruct
->OCNState
<< 10U);
1012 /* Set the Output Idle state */
1013 MODIFY_REG(tmpcr2
, TIM_CR2_OIS3
, TIM_OCInitStruct
->OCIdleState
<< 4U);
1015 /* Set the complementary output Idle state */
1016 MODIFY_REG(tmpcr2
, TIM_CR2_OIS3N
, TIM_OCInitStruct
->OCNIdleState
<< 5U);
1019 /* Write to TIMx CR2 */
1020 LL_TIM_WriteReg(TIMx
, CR2
, tmpcr2
);
1022 /* Write to TIMx CCMR2 */
1023 LL_TIM_WriteReg(TIMx
, CCMR2
, tmpccmr2
);
1025 /* Set the Capture Compare Register value */
1026 LL_TIM_OC_SetCompareCH3(TIMx
, TIM_OCInitStruct
->CompareValue
);
1028 /* Write to TIMx CCER */
1029 LL_TIM_WriteReg(TIMx
, CCER
, tmpccer
);
1035 * @brief Configure the TIMx output channel 4.
1036 * @param TIMx Timer Instance
1037 * @param TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
1038 * @retval An ErrorStatus enumeration value:
1039 * - SUCCESS: TIMx registers are de-initialized
1040 * - ERROR: not applicable
1042 static ErrorStatus
OC4Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
)
1048 /* Check the parameters */
1049 assert_param(IS_TIM_CC4_INSTANCE(TIMx
));
1050 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct
->OCMode
));
1051 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCState
));
1052 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCPolarity
));
1053 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCNPolarity
));
1054 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCNState
));
1056 /* Disable the Channel 4: Reset the CC4E Bit */
1057 CLEAR_BIT(TIMx
->CCER
, TIM_CCER_CC4E
);
1059 /* Get the TIMx CCER register value */
1060 tmpccer
= LL_TIM_ReadReg(TIMx
, CCER
);
1062 /* Get the TIMx CR2 register value */
1063 tmpcr2
= LL_TIM_ReadReg(TIMx
, CR2
);
1065 /* Get the TIMx CCMR2 register value */
1066 tmpccmr2
= LL_TIM_ReadReg(TIMx
, CCMR2
);
1068 /* Reset Capture/Compare selection Bits */
1069 CLEAR_BIT(tmpccmr2
, TIM_CCMR2_CC4S
);
1071 /* Select the Output Compare Mode */
1072 MODIFY_REG(tmpccmr2
, TIM_CCMR2_OC4M
, TIM_OCInitStruct
->OCMode
<< 8U);
1074 /* Set the Output Compare Polarity */
1075 MODIFY_REG(tmpccer
, TIM_CCER_CC4P
, TIM_OCInitStruct
->OCPolarity
<< 12U);
1077 /* Set the Output State */
1078 MODIFY_REG(tmpccer
, TIM_CCER_CC4E
, TIM_OCInitStruct
->OCState
<< 12U);
1080 if (IS_TIM_BREAK_INSTANCE(TIMx
))
1082 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCNIdleState
));
1083 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCIdleState
));
1085 /* Set the Output Idle state */
1086 MODIFY_REG(tmpcr2
, TIM_CR2_OIS4
, TIM_OCInitStruct
->OCIdleState
<< 6U);
1089 /* Write to TIMx CR2 */
1090 LL_TIM_WriteReg(TIMx
, CR2
, tmpcr2
);
1092 /* Write to TIMx CCMR2 */
1093 LL_TIM_WriteReg(TIMx
, CCMR2
, tmpccmr2
);
1095 /* Set the Capture Compare Register value */
1096 LL_TIM_OC_SetCompareCH4(TIMx
, TIM_OCInitStruct
->CompareValue
);
1098 /* Write to TIMx CCER */
1099 LL_TIM_WriteReg(TIMx
, CCER
, tmpccer
);
1105 * @brief Configure the TIMx output channel 5.
1106 * @param TIMx Timer Instance
1107 * @param TIM_OCInitStruct pointer to the the TIMx output channel 5 configuration data structure
1108 * @retval An ErrorStatus enumeration value:
1109 * - SUCCESS: TIMx registers are de-initialized
1110 * - ERROR: not applicable
1112 static ErrorStatus
OC5Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
)
1117 /* Check the parameters */
1118 assert_param(IS_TIM_CC5_INSTANCE(TIMx
));
1119 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct
->OCMode
));
1120 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCState
));
1121 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCPolarity
));
1122 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCNPolarity
));
1123 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCNState
));
1125 /* Disable the Channel 5: Reset the CC5E Bit */
1126 CLEAR_BIT(TIMx
->CCER
, TIM_CCER_CC5E
);
1128 /* Get the TIMx CCER register value */
1129 tmpccer
= LL_TIM_ReadReg(TIMx
, CCER
);
1131 /* Get the TIMx CCMR3 register value */
1132 tmpccmr3
= LL_TIM_ReadReg(TIMx
, CCMR3
);
1134 /* Select the Output Compare Mode */
1135 MODIFY_REG(tmpccmr3
, TIM_CCMR3_OC5M
, TIM_OCInitStruct
->OCMode
);
1137 /* Set the Output Compare Polarity */
1138 MODIFY_REG(tmpccer
, TIM_CCER_CC5P
, TIM_OCInitStruct
->OCPolarity
<< 16U);
1140 /* Set the Output State */
1141 MODIFY_REG(tmpccer
, TIM_CCER_CC5E
, TIM_OCInitStruct
->OCState
<< 16U);
1143 if (IS_TIM_BREAK_INSTANCE(TIMx
))
1145 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCNIdleState
));
1146 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCIdleState
));
1148 /* Set the Output Idle state */
1149 MODIFY_REG(TIMx
->CR2
, TIM_CR2_OIS5
, TIM_OCInitStruct
->OCIdleState
<< 8U);
1153 /* Write to TIMx CCMR3 */
1154 LL_TIM_WriteReg(TIMx
, CCMR3
, tmpccmr3
);
1156 /* Set the Capture Compare Register value */
1157 LL_TIM_OC_SetCompareCH5(TIMx
, TIM_OCInitStruct
->CompareValue
);
1159 /* Write to TIMx CCER */
1160 LL_TIM_WriteReg(TIMx
, CCER
, tmpccer
);
1166 * @brief Configure the TIMx output channel 6.
1167 * @param TIMx Timer Instance
1168 * @param TIM_OCInitStruct pointer to the the TIMx output channel 6 configuration data structure
1169 * @retval An ErrorStatus enumeration value:
1170 * - SUCCESS: TIMx registers are de-initialized
1171 * - ERROR: not applicable
1173 static ErrorStatus
OC6Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
)
1178 /* Check the parameters */
1179 assert_param(IS_TIM_CC6_INSTANCE(TIMx
));
1180 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct
->OCMode
));
1181 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCState
));
1182 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCPolarity
));
1183 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCNPolarity
));
1184 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCNState
));
1186 /* Disable the Channel 5: Reset the CC6E Bit */
1187 CLEAR_BIT(TIMx
->CCER
, TIM_CCER_CC6E
);
1189 /* Get the TIMx CCER register value */
1190 tmpccer
= LL_TIM_ReadReg(TIMx
, CCER
);
1192 /* Get the TIMx CCMR3 register value */
1193 tmpccmr3
= LL_TIM_ReadReg(TIMx
, CCMR3
);
1195 /* Select the Output Compare Mode */
1196 MODIFY_REG(tmpccmr3
, TIM_CCMR3_OC6M
, TIM_OCInitStruct
->OCMode
<< 8U);
1198 /* Set the Output Compare Polarity */
1199 MODIFY_REG(tmpccer
, TIM_CCER_CC6P
, TIM_OCInitStruct
->OCPolarity
<< 20U);
1201 /* Set the Output State */
1202 MODIFY_REG(tmpccer
, TIM_CCER_CC6E
, TIM_OCInitStruct
->OCState
<< 20U);
1204 if (IS_TIM_BREAK_INSTANCE(TIMx
))
1206 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCNIdleState
));
1207 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCIdleState
));
1209 /* Set the Output Idle state */
1210 MODIFY_REG(TIMx
->CR2
, TIM_CR2_OIS6
, TIM_OCInitStruct
->OCIdleState
<< 10U);
1213 /* Write to TIMx CCMR3 */
1214 LL_TIM_WriteReg(TIMx
, CCMR3
, tmpccmr3
);
1216 /* Set the Capture Compare Register value */
1217 LL_TIM_OC_SetCompareCH6(TIMx
, TIM_OCInitStruct
->CompareValue
);
1219 /* Write to TIMx CCER */
1220 LL_TIM_WriteReg(TIMx
, CCER
, tmpccer
);
1226 * @brief Configure the TIMx input channel 1.
1227 * @param TIMx Timer Instance
1228 * @param TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1229 * @retval An ErrorStatus enumeration value:
1230 * - SUCCESS: TIMx registers are de-initialized
1231 * - ERROR: not applicable
1233 static ErrorStatus
IC1Config(TIM_TypeDef
*TIMx
, LL_TIM_IC_InitTypeDef
*TIM_ICInitStruct
)
1235 /* Check the parameters */
1236 assert_param(IS_TIM_CC1_INSTANCE(TIMx
));
1237 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct
->ICPolarity
));
1238 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct
->ICActiveInput
));
1239 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct
->ICPrescaler
));
1240 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct
->ICFilter
));
1242 /* Disable the Channel 1: Reset the CC1E Bit */
1243 TIMx
->CCER
&= (uint32_t)~TIM_CCER_CC1E
;
1245 /* Select the Input and set the filter and the prescaler value */
1246 MODIFY_REG(TIMx
->CCMR1
,
1247 (TIM_CCMR1_CC1S
| TIM_CCMR1_IC1F
| TIM_CCMR1_IC1PSC
),
1248 (TIM_ICInitStruct
->ICActiveInput
| TIM_ICInitStruct
->ICFilter
| TIM_ICInitStruct
->ICPrescaler
) >> 16U);
1250 /* Select the Polarity and set the CC1E Bit */
1251 MODIFY_REG(TIMx
->CCER
,
1252 (TIM_CCER_CC1P
| TIM_CCER_CC1NP
),
1253 (TIM_ICInitStruct
->ICPolarity
| TIM_CCER_CC1E
));
1259 * @brief Configure the TIMx input channel 2.
1260 * @param TIMx Timer Instance
1261 * @param TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1262 * @retval An ErrorStatus enumeration value:
1263 * - SUCCESS: TIMx registers are de-initialized
1264 * - ERROR: not applicable
1266 static ErrorStatus
IC2Config(TIM_TypeDef
*TIMx
, LL_TIM_IC_InitTypeDef
*TIM_ICInitStruct
)
1268 /* Check the parameters */
1269 assert_param(IS_TIM_CC2_INSTANCE(TIMx
));
1270 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct
->ICPolarity
));
1271 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct
->ICActiveInput
));
1272 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct
->ICPrescaler
));
1273 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct
->ICFilter
));
1275 /* Disable the Channel 2: Reset the CC2E Bit */
1276 TIMx
->CCER
&= (uint32_t)~TIM_CCER_CC2E
;
1278 /* Select the Input and set the filter and the prescaler value */
1279 MODIFY_REG(TIMx
->CCMR1
,
1280 (TIM_CCMR1_CC2S
| TIM_CCMR1_IC2F
| TIM_CCMR1_IC2PSC
),
1281 (TIM_ICInitStruct
->ICActiveInput
| TIM_ICInitStruct
->ICFilter
| TIM_ICInitStruct
->ICPrescaler
) >> 8U);
1283 /* Select the Polarity and set the CC2E Bit */
1284 MODIFY_REG(TIMx
->CCER
,
1285 (TIM_CCER_CC2P
| TIM_CCER_CC2NP
),
1286 ((TIM_ICInitStruct
->ICPolarity
<< 4U) | TIM_CCER_CC2E
));
1292 * @brief Configure the TIMx input channel 3.
1293 * @param TIMx Timer Instance
1294 * @param TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1295 * @retval An ErrorStatus enumeration value:
1296 * - SUCCESS: TIMx registers are de-initialized
1297 * - ERROR: not applicable
1299 static ErrorStatus
IC3Config(TIM_TypeDef
*TIMx
, LL_TIM_IC_InitTypeDef
*TIM_ICInitStruct
)
1301 /* Check the parameters */
1302 assert_param(IS_TIM_CC3_INSTANCE(TIMx
));
1303 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct
->ICPolarity
));
1304 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct
->ICActiveInput
));
1305 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct
->ICPrescaler
));
1306 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct
->ICFilter
));
1308 /* Disable the Channel 3: Reset the CC3E Bit */
1309 TIMx
->CCER
&= (uint32_t)~TIM_CCER_CC3E
;
1311 /* Select the Input and set the filter and the prescaler value */
1312 MODIFY_REG(TIMx
->CCMR2
,
1313 (TIM_CCMR2_CC3S
| TIM_CCMR2_IC3F
| TIM_CCMR2_IC3PSC
),
1314 (TIM_ICInitStruct
->ICActiveInput
| TIM_ICInitStruct
->ICFilter
| TIM_ICInitStruct
->ICPrescaler
) >> 16U);
1316 /* Select the Polarity and set the CC3E Bit */
1317 MODIFY_REG(TIMx
->CCER
,
1318 (TIM_CCER_CC3P
| TIM_CCER_CC3NP
),
1319 ((TIM_ICInitStruct
->ICPolarity
<< 8U) | TIM_CCER_CC3E
));
1325 * @brief Configure the TIMx input channel 4.
1326 * @param TIMx Timer Instance
1327 * @param TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1328 * @retval An ErrorStatus enumeration value:
1329 * - SUCCESS: TIMx registers are de-initialized
1330 * - ERROR: not applicable
1332 static ErrorStatus
IC4Config(TIM_TypeDef
*TIMx
, LL_TIM_IC_InitTypeDef
*TIM_ICInitStruct
)
1334 /* Check the parameters */
1335 assert_param(IS_TIM_CC4_INSTANCE(TIMx
));
1336 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct
->ICPolarity
));
1337 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct
->ICActiveInput
));
1338 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct
->ICPrescaler
));
1339 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct
->ICFilter
));
1341 /* Disable the Channel 4: Reset the CC4E Bit */
1342 TIMx
->CCER
&= (uint32_t)~TIM_CCER_CC4E
;
1344 /* Select the Input and set the filter and the prescaler value */
1345 MODIFY_REG(TIMx
->CCMR2
,
1346 (TIM_CCMR2_CC4S
| TIM_CCMR2_IC4F
| TIM_CCMR2_IC4PSC
),
1347 (TIM_ICInitStruct
->ICActiveInput
| TIM_ICInitStruct
->ICFilter
| TIM_ICInitStruct
->ICPrescaler
) >> 8U);
1349 /* Select the Polarity and set the CC2E Bit */
1350 MODIFY_REG(TIMx
->CCER
,
1351 (TIM_CCER_CC4P
| TIM_CCER_CC4NP
),
1352 ((TIM_ICInitStruct
->ICPolarity
<< 12U) | TIM_CCER_CC4E
));
1366 #endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM12 || TIM13 ||TIM14 || TIM15 || TIM16 || TIM17 || TIM23 || TIM24 */
1372 #endif /* USE_FULL_LL_DRIVER */
1374 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/