Add biquad crossfading
[betaflight.git] / src / main / flight / pid.c
bloba76452305abc889a731394da05b011ec1c635433
1 /*
2 * This file is part of Cleanflight and Betaflight.
4 * Cleanflight and Betaflight are free software. You can redistribute
5 * this software and/or modify this software under the terms of the
6 * GNU General Public License as published by the Free Software
7 * Foundation, either version 3 of the License, or (at your option)
8 * any later version.
10 * Cleanflight and Betaflight are distributed in the hope that they
11 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
12 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 * See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this software.
18 * If not, see <http://www.gnu.org/licenses/>.
21 #include <stdbool.h>
22 #include <stdint.h>
23 #include <string.h>
24 #include <math.h>
26 #include "platform.h"
28 #include "build/build_config.h"
29 #include "build/debug.h"
31 #include "common/axis.h"
32 #include "common/filter.h"
34 #include "config/config_reset.h"
35 #include "config/simplified_tuning.h"
37 #include "drivers/pwm_output.h"
38 #include "drivers/sound_beeper.h"
39 #include "drivers/time.h"
41 #include "fc/controlrate_profile.h"
42 #include "fc/core.h"
43 #include "fc/rc.h"
44 #include "fc/rc_controls.h"
45 #include "fc/runtime_config.h"
47 #include "flight/gps_rescue.h"
48 #include "flight/imu.h"
49 #include "flight/mixer.h"
50 #include "flight/rpm_filter.h"
51 #include "flight/feedforward.h"
53 #include "io/gps.h"
55 #include "pg/pg.h"
56 #include "pg/pg_ids.h"
58 #include "sensors/acceleration.h"
59 #include "sensors/battery.h"
60 #include "sensors/gyro.h"
62 #include "pid.h"
64 typedef enum {
65 LEVEL_MODE_OFF = 0,
66 LEVEL_MODE_R,
67 LEVEL_MODE_RP,
68 } levelMode_e;
70 const char pidNames[] =
71 "ROLL;"
72 "PITCH;"
73 "YAW;"
74 "LEVEL;"
75 "MAG;";
77 FAST_DATA_ZERO_INIT uint32_t targetPidLooptime;
78 FAST_DATA_ZERO_INIT pidAxisData_t pidData[XYZ_AXIS_COUNT];
79 FAST_DATA_ZERO_INIT pidRuntime_t pidRuntime;
81 #if defined(USE_ABSOLUTE_CONTROL)
82 STATIC_UNIT_TESTED FAST_DATA_ZERO_INIT float axisError[XYZ_AXIS_COUNT];
83 #endif
85 #if defined(USE_THROTTLE_BOOST)
86 FAST_DATA_ZERO_INIT float throttleBoost;
87 pt1Filter_t throttleLpf;
88 #endif
90 PG_REGISTER_WITH_RESET_TEMPLATE(pidConfig_t, pidConfig, PG_PID_CONFIG, 2);
92 #if defined(STM32F1)
93 #define PID_PROCESS_DENOM_DEFAULT 8
94 #elif defined(STM32F3)
95 #define PID_PROCESS_DENOM_DEFAULT 4
96 #elif defined(STM32F411xE)
97 #define PID_PROCESS_DENOM_DEFAULT 2
98 #else
99 #define PID_PROCESS_DENOM_DEFAULT 1
100 #endif
102 #ifdef USE_RUNAWAY_TAKEOFF
103 PG_RESET_TEMPLATE(pidConfig_t, pidConfig,
104 .pid_process_denom = PID_PROCESS_DENOM_DEFAULT,
105 .runaway_takeoff_prevention = true,
106 .runaway_takeoff_deactivate_throttle = 20, // throttle level % needed to accumulate deactivation time
107 .runaway_takeoff_deactivate_delay = 500 // Accumulated time (in milliseconds) before deactivation in successful takeoff
109 #else
110 PG_RESET_TEMPLATE(pidConfig_t, pidConfig,
111 .pid_process_denom = PID_PROCESS_DENOM_DEFAULT
113 #endif
115 #ifdef USE_ACRO_TRAINER
116 #define ACRO_TRAINER_LOOKAHEAD_RATE_LIMIT 500.0f // Max gyro rate for lookahead time scaling
117 #define ACRO_TRAINER_SETPOINT_LIMIT 1000.0f // Limit the correcting setpoint
118 #endif // USE_ACRO_TRAINER
120 #define CRASH_RECOVERY_DETECTION_DELAY_US 1000000 // 1 second delay before crash recovery detection is active after entering a self-level mode
122 #define LAUNCH_CONTROL_YAW_ITERM_LIMIT 50 // yaw iterm windup limit when launch mode is "FULL" (all axes)
124 PG_REGISTER_ARRAY_WITH_RESET_FN(pidProfile_t, PID_PROFILE_COUNT, pidProfiles, PG_PID_PROFILE, 2);
126 void resetPidProfile(pidProfile_t *pidProfile)
128 RESET_CONFIG(pidProfile_t, pidProfile,
129 .pid = {
130 [PID_ROLL] = PID_ROLL_DEFAULT,
131 [PID_PITCH] = PID_PITCH_DEFAULT,
132 [PID_YAW] = PID_YAW_DEFAULT,
133 [PID_LEVEL] = { 50, 50, 75, 0 },
134 [PID_MAG] = { 40, 0, 0, 0 },
136 .pidSumLimit = PIDSUM_LIMIT,
137 .pidSumLimitYaw = PIDSUM_LIMIT_YAW,
138 .yaw_lowpass_hz = 0,
139 .dterm_notch_hz = 0,
140 .dterm_notch_cutoff = 0,
141 .itermWindupPointPercent = 100,
142 .pidAtMinThrottle = PID_STABILISATION_ON,
143 .levelAngleLimit = 55,
144 .feedforwardTransition = 0,
145 .yawRateAccelLimit = 0,
146 .rateAccelLimit = 0,
147 .itermThrottleThreshold = 250,
148 .itermAcceleratorGain = 3500,
149 .crash_time = 500, // ms
150 .crash_delay = 0, // ms
151 .crash_recovery_angle = 10, // degrees
152 .crash_recovery_rate = 100, // degrees/second
153 .crash_dthreshold = 50, // degrees/second/second
154 .crash_gthreshold = 400, // degrees/second
155 .crash_setpoint_threshold = 350, // degrees/second
156 .crash_recovery = PID_CRASH_RECOVERY_OFF, // off by default
157 .horizon_tilt_effect = 75,
158 .horizon_tilt_expert_mode = false,
159 .crash_limit_yaw = 200,
160 .itermLimit = 400,
161 .throttle_boost = 5,
162 .throttle_boost_cutoff = 15,
163 .iterm_rotation = false,
164 .iterm_relax = ITERM_RELAX_RP,
165 .iterm_relax_cutoff = ITERM_RELAX_CUTOFF_DEFAULT,
166 .iterm_relax_type = ITERM_RELAX_SETPOINT,
167 .acro_trainer_angle_limit = 20,
168 .acro_trainer_lookahead_ms = 50,
169 .acro_trainer_debug_axis = FD_ROLL,
170 .acro_trainer_gain = 75,
171 .abs_control_gain = 0,
172 .abs_control_limit = 90,
173 .abs_control_error_limit = 20,
174 .abs_control_cutoff = 11,
175 .antiGravityMode = ANTI_GRAVITY_SMOOTH,
176 .dterm_lowpass_hz = 150, // NOTE: dynamic lpf is enabled by default so this setting is actually
177 // overridden and the static lowpass 1 is disabled. We can't set this
178 // value to 0 otherwise Configurator versions 10.4 and earlier will also
179 // reset the lowpass filter type to PT1 overriding the desired BIQUAD setting.
180 .dterm_lowpass2_hz = DTERM_LOWPASS_2_HZ_DEFAULT, // second Dterm LPF ON by default
181 .dterm_filter_type = FILTER_PT1,
182 .dterm_filter2_type = FILTER_PT1,
183 .dyn_lpf_dterm_min_hz = DYN_LPF_DTERM_MIN_HZ_DEFAULT,
184 .dyn_lpf_dterm_max_hz = DYN_LPF_DTERM_MAX_HZ_DEFAULT,
185 .launchControlMode = LAUNCH_CONTROL_MODE_NORMAL,
186 .launchControlThrottlePercent = 20,
187 .launchControlAngleLimit = 0,
188 .launchControlGain = 40,
189 .launchControlAllowTriggerReset = true,
190 .use_integrated_yaw = false,
191 .integrated_yaw_relax = 200,
192 .thrustLinearization = 0,
193 .d_min = D_MIN_DEFAULT,
194 .d_min_gain = 37,
195 .d_min_advance = 20,
196 .motor_output_limit = 100,
197 .auto_profile_cell_count = AUTO_PROFILE_CELL_COUNT_STAY,
198 .transient_throttle_limit = 0,
199 .profileName = { 0 },
200 .dyn_idle_min_rpm = 0,
201 .dyn_idle_p_gain = 50,
202 .dyn_idle_i_gain = 50,
203 .dyn_idle_d_gain = 50,
204 .dyn_idle_max_increase = 150,
205 .feedforward_averaging = FEEDFORWARD_AVERAGING_OFF,
206 .feedforward_max_rate_limit = 100,
207 .feedforward_smooth_factor = 37,
208 .feedforward_jitter_factor = 7,
209 .feedforward_boost = 15,
210 .dyn_lpf_curve_expo = 5,
211 .level_race_mode = false,
212 .vbat_sag_compensation = 0,
213 .simplified_pids_mode = PID_SIMPLIFIED_TUNING_OFF,
214 .simplified_master_multiplier = SIMPLIFIED_TUNING_DEFAULT,
215 .simplified_roll_pitch_ratio = SIMPLIFIED_TUNING_DEFAULT,
216 .simplified_i_gain = SIMPLIFIED_TUNING_DEFAULT,
217 .simplified_pd_ratio = SIMPLIFIED_TUNING_DEFAULT,
218 .simplified_pd_gain = SIMPLIFIED_TUNING_DEFAULT,
219 .simplified_dmin_ratio = SIMPLIFIED_TUNING_DEFAULT,
220 .simplified_feedforward_gain = SIMPLIFIED_TUNING_DEFAULT,
221 .simplified_dterm_filter = false,
222 .simplified_dterm_filter_multiplier = SIMPLIFIED_TUNING_DEFAULT,
224 #ifndef USE_D_MIN
225 pidProfile->pid[PID_ROLL].D = 30;
226 pidProfile->pid[PID_PITCH].D = 32;
227 #endif
230 void pgResetFn_pidProfiles(pidProfile_t *pidProfiles)
232 for (int i = 0; i < PID_PROFILE_COUNT; i++) {
233 resetPidProfile(&pidProfiles[i]);
237 // Scale factors to make best use of range with D_LPF debugging, aiming for max +/-16K as debug values are 16 bit
238 #define D_LPF_RAW_SCALE 25
239 #define D_LPF_FILT_SCALE 22
242 void pidSetItermAccelerator(float newItermAccelerator)
244 pidRuntime.itermAccelerator = newItermAccelerator;
247 bool pidOsdAntiGravityActive(void)
249 return (pidRuntime.itermAccelerator > pidRuntime.antiGravityOsdCutoff);
252 void pidStabilisationState(pidStabilisationState_e pidControllerState)
254 pidRuntime.pidStabilisationEnabled = (pidControllerState == PID_STABILISATION_ON) ? true : false;
257 const angle_index_t rcAliasToAngleIndexMap[] = { AI_ROLL, AI_PITCH };
259 float pidGetFfBoostFactor()
261 return pidRuntime.ffBoostFactor;
264 #ifdef USE_FEEDFORWARD
265 float pidGetFfSmoothFactor()
267 return pidRuntime.ffSmoothFactor;
270 float pidGetFfJitterFactor()
272 return pidRuntime.ffJitterFactor;
274 #endif
276 void pidResetIterm(void)
278 for (int axis = 0; axis < 3; axis++) {
279 pidData[axis].I = 0.0f;
280 #if defined(USE_ABSOLUTE_CONTROL)
281 axisError[axis] = 0.0f;
282 #endif
286 void pidUpdateAntiGravityThrottleFilter(float throttle)
288 if (pidRuntime.antiGravityMode == ANTI_GRAVITY_SMOOTH) {
289 // calculate a boost factor for P in the same way as for I when throttle changes quickly
290 const float antiGravityThrottleLpf = pt1FilterApply(&pidRuntime.antiGravityThrottleLpf, throttle);
291 // focus P boost on low throttle range only
292 if (throttle < 0.5f) {
293 pidRuntime.antiGravityPBoost = 0.5f - throttle;
294 } else {
295 pidRuntime.antiGravityPBoost = 0.0f;
297 // use lowpass to identify start of a throttle up, use this to reduce boost at start by half
298 if (antiGravityThrottleLpf < throttle) {
299 pidRuntime.antiGravityPBoost *= 0.5f;
301 // high-passed throttle focuses boost on faster throttle changes
302 pidRuntime.antiGravityThrottleHpf = fabsf(throttle - antiGravityThrottleLpf);
303 pidRuntime.antiGravityPBoost = pidRuntime.antiGravityPBoost * pidRuntime.antiGravityThrottleHpf;
304 // smooth the P boost at 3hz to remove the jagged edges and prolong the effect after throttle stops
305 pidRuntime.antiGravityPBoost = pt1FilterApply(&pidRuntime.antiGravitySmoothLpf, pidRuntime.antiGravityPBoost);
309 #ifdef USE_ACRO_TRAINER
310 void pidAcroTrainerInit(void)
312 pidRuntime.acroTrainerAxisState[FD_ROLL] = 0;
313 pidRuntime.acroTrainerAxisState[FD_PITCH] = 0;
315 #endif // USE_ACRO_TRAINER
317 #ifdef USE_THRUST_LINEARIZATION
318 float pidCompensateThrustLinearization(float throttle)
320 if (pidRuntime.thrustLinearization != 0.0f) {
321 // for whoops where a lot of TL is needed, allow more throttle boost
322 const float throttleReversed = (1.0f - throttle);
323 throttle /= 1.0f + pidRuntime.throttleCompensateAmount * powf(throttleReversed, 2);
325 return throttle;
328 float pidApplyThrustLinearization(float motorOutput)
330 if (pidRuntime.thrustLinearization != 0.0f) {
331 if (motorOutput > 0.0f) {
332 const float motorOutputReversed = (1.0f - motorOutput);
333 motorOutput *= 1.0f + powf(motorOutputReversed, 2) * pidRuntime.thrustLinearization;
336 return motorOutput;
338 #endif
340 #if defined(USE_ACC)
341 // calculate the stick deflection while applying level mode expo
342 static float getLevelModeRcDeflection(uint8_t axis)
344 const float stickDeflection = getRcDeflection(axis);
345 if (axis < FD_YAW) {
346 const float expof = currentControlRateProfile->levelExpo[axis] / 100.0f;
347 return power3(stickDeflection) * expof + stickDeflection * (1 - expof);
348 } else {
349 return stickDeflection;
353 // calculates strength of horizon leveling; 0 = none, 1.0 = most leveling
354 STATIC_UNIT_TESTED float calcHorizonLevelStrength(void)
356 // start with 1.0 at center stick, 0.0 at max stick deflection:
357 float horizonLevelStrength = 1.0f - MAX(fabsf(getLevelModeRcDeflection(FD_ROLL)), fabsf(getLevelModeRcDeflection(FD_PITCH)));
359 // 0 at level, 90 at vertical, 180 at inverted (degrees):
360 const float currentInclination = MAX(ABS(attitude.values.roll), ABS(attitude.values.pitch)) / 10.0f;
362 // horizonTiltExpertMode: 0 = leveling always active when sticks centered,
363 // 1 = leveling can be totally off when inverted
364 if (pidRuntime.horizonTiltExpertMode) {
365 if (pidRuntime.horizonTransition > 0 && pidRuntime.horizonCutoffDegrees > 0) {
366 // if d_level > 0 and horizonTiltEffect < 175
367 // horizonCutoffDegrees: 0 to 125 => 270 to 90 (represents where leveling goes to zero)
368 // inclinationLevelRatio (0.0 to 1.0) is smaller (less leveling)
369 // for larger inclinations; 0.0 at horizonCutoffDegrees value:
370 const float inclinationLevelRatio = constrainf((pidRuntime.horizonCutoffDegrees-currentInclination) / pidRuntime.horizonCutoffDegrees, 0, 1);
371 // apply configured horizon sensitivity:
372 // when stick is near center (horizonLevelStrength ~= 1.0)
373 // H_sensitivity value has little effect,
374 // when stick is deflected (horizonLevelStrength near 0.0)
375 // H_sensitivity value has more effect:
376 horizonLevelStrength = (horizonLevelStrength - 1) * 100 / pidRuntime.horizonTransition + 1;
377 // apply inclination ratio, which may lower leveling
378 // to zero regardless of stick position:
379 horizonLevelStrength *= inclinationLevelRatio;
380 } else { // d_level=0 or horizon_tilt_effect>=175 means no leveling
381 horizonLevelStrength = 0;
383 } else { // horizon_tilt_expert_mode = 0 (leveling always active when sticks centered)
384 float sensitFact;
385 if (pidRuntime.horizonFactorRatio < 1.01f) { // if horizonTiltEffect > 0
386 // horizonFactorRatio: 1.0 to 0.0 (larger means more leveling)
387 // inclinationLevelRatio (0.0 to 1.0) is smaller (less leveling)
388 // for larger inclinations, goes to 1.0 at inclination==level:
389 const float inclinationLevelRatio = (180 - currentInclination) / 180 * (1.0f - pidRuntime.horizonFactorRatio) + pidRuntime.horizonFactorRatio;
390 // apply ratio to configured horizon sensitivity:
391 sensitFact = pidRuntime.horizonTransition * inclinationLevelRatio;
392 } else { // horizonTiltEffect=0 for "old" functionality
393 sensitFact = pidRuntime.horizonTransition;
396 if (sensitFact <= 0) { // zero means no leveling
397 horizonLevelStrength = 0;
398 } else {
399 // when stick is near center (horizonLevelStrength ~= 1.0)
400 // sensitFact value has little effect,
401 // when stick is deflected (horizonLevelStrength near 0.0)
402 // sensitFact value has more effect:
403 horizonLevelStrength = ((horizonLevelStrength - 1) * (100 / sensitFact)) + 1;
406 return constrainf(horizonLevelStrength, 0, 1);
409 // Use the FAST_CODE_NOINLINE directive to avoid this code from being inlined into ITCM RAM to avoid overflow.
410 // The impact is possibly slightly slower performance on F7/H7 but they have more than enough
411 // processing power that it should be a non-issue.
412 STATIC_UNIT_TESTED FAST_CODE_NOINLINE float pidLevel(int axis, const pidProfile_t *pidProfile, const rollAndPitchTrims_t *angleTrim, float currentPidSetpoint) {
413 // calculate error angle and limit the angle to the max inclination
414 // rcDeflection is in range [-1.0, 1.0]
415 float angle = pidProfile->levelAngleLimit * getLevelModeRcDeflection(axis);
416 #ifdef USE_GPS_RESCUE
417 angle += gpsRescueAngle[axis] / 100; // ANGLE IS IN CENTIDEGREES
418 #endif
419 angle = constrainf(angle, -pidProfile->levelAngleLimit, pidProfile->levelAngleLimit);
420 const float errorAngle = angle - ((attitude.raw[axis] - angleTrim->raw[axis]) / 10.0f);
421 if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(GPS_RESCUE_MODE)) {
422 // ANGLE mode - control is angle based
423 currentPidSetpoint = errorAngle * pidRuntime.levelGain;
424 } else {
425 // HORIZON mode - mix of ANGLE and ACRO modes
426 // mix in errorAngle to currentPidSetpoint to add a little auto-level feel
427 const float horizonLevelStrength = calcHorizonLevelStrength();
428 currentPidSetpoint = currentPidSetpoint + (errorAngle * pidRuntime.horizonGain * horizonLevelStrength);
430 return currentPidSetpoint;
433 static void handleCrashRecovery(
434 const pidCrashRecovery_e crash_recovery, const rollAndPitchTrims_t *angleTrim,
435 const int axis, const timeUs_t currentTimeUs, const float gyroRate, float *currentPidSetpoint, float *errorRate)
437 if (pidRuntime.inCrashRecoveryMode && cmpTimeUs(currentTimeUs, pidRuntime.crashDetectedAtUs) > pidRuntime.crashTimeDelayUs) {
438 if (crash_recovery == PID_CRASH_RECOVERY_BEEP) {
439 BEEP_ON;
441 if (axis == FD_YAW) {
442 *errorRate = constrainf(*errorRate, -pidRuntime.crashLimitYaw, pidRuntime.crashLimitYaw);
443 } else {
444 // on roll and pitch axes calculate currentPidSetpoint and errorRate to level the aircraft to recover from crash
445 if (sensors(SENSOR_ACC)) {
446 // errorAngle is deviation from horizontal
447 const float errorAngle = -(attitude.raw[axis] - angleTrim->raw[axis]) / 10.0f;
448 *currentPidSetpoint = errorAngle * pidRuntime.levelGain;
449 *errorRate = *currentPidSetpoint - gyroRate;
452 // reset iterm, since accumulated error before crash is now meaningless
453 // and iterm windup during crash recovery can be extreme, especially on yaw axis
454 pidData[axis].I = 0.0f;
455 if (cmpTimeUs(currentTimeUs, pidRuntime.crashDetectedAtUs) > pidRuntime.crashTimeLimitUs
456 || (getMotorMixRange() < 1.0f
457 && fabsf(gyro.gyroADCf[FD_ROLL]) < pidRuntime.crashRecoveryRate
458 && fabsf(gyro.gyroADCf[FD_PITCH]) < pidRuntime.crashRecoveryRate
459 && fabsf(gyro.gyroADCf[FD_YAW]) < pidRuntime.crashRecoveryRate)) {
460 if (sensors(SENSOR_ACC)) {
461 // check aircraft nearly level
462 if (ABS(attitude.raw[FD_ROLL] - angleTrim->raw[FD_ROLL]) < pidRuntime.crashRecoveryAngleDeciDegrees
463 && ABS(attitude.raw[FD_PITCH] - angleTrim->raw[FD_PITCH]) < pidRuntime.crashRecoveryAngleDeciDegrees) {
464 pidRuntime.inCrashRecoveryMode = false;
465 BEEP_OFF;
467 } else {
468 pidRuntime.inCrashRecoveryMode = false;
469 BEEP_OFF;
475 static void detectAndSetCrashRecovery(
476 const pidCrashRecovery_e crash_recovery, const int axis,
477 const timeUs_t currentTimeUs, const float delta, const float errorRate)
479 // if crash recovery is on and accelerometer enabled and there is no gyro overflow, then check for a crash
480 // no point in trying to recover if the crash is so severe that the gyro overflows
481 if ((crash_recovery || FLIGHT_MODE(GPS_RESCUE_MODE)) && !gyroOverflowDetected()) {
482 if (ARMING_FLAG(ARMED)) {
483 if (getMotorMixRange() >= 1.0f && !pidRuntime.inCrashRecoveryMode
484 && fabsf(delta) > pidRuntime.crashDtermThreshold
485 && fabsf(errorRate) > pidRuntime.crashGyroThreshold
486 && fabsf(getSetpointRate(axis)) < pidRuntime.crashSetpointThreshold) {
487 if (crash_recovery == PID_CRASH_RECOVERY_DISARM) {
488 setArmingDisabled(ARMING_DISABLED_CRASH_DETECTED);
489 disarm(DISARM_REASON_CRASH_PROTECTION);
490 } else {
491 pidRuntime.inCrashRecoveryMode = true;
492 pidRuntime.crashDetectedAtUs = currentTimeUs;
495 if (pidRuntime.inCrashRecoveryMode && cmpTimeUs(currentTimeUs, pidRuntime.crashDetectedAtUs) < pidRuntime.crashTimeDelayUs && (fabsf(errorRate) < pidRuntime.crashGyroThreshold
496 || fabsf(getSetpointRate(axis)) > pidRuntime.crashSetpointThreshold)) {
497 pidRuntime.inCrashRecoveryMode = false;
498 BEEP_OFF;
500 } else if (pidRuntime.inCrashRecoveryMode) {
501 pidRuntime.inCrashRecoveryMode = false;
502 BEEP_OFF;
506 #endif // USE_ACC
508 #ifdef USE_ACRO_TRAINER
510 int acroTrainerSign(float x)
512 return x > 0 ? 1 : -1;
515 // Acro Trainer - Manipulate the setPoint to limit axis angle while in acro mode
516 // There are three states:
517 // 1. Current angle has exceeded limit
518 // Apply correction to return to limit (similar to pidLevel)
519 // 2. Future overflow has been projected based on current angle and gyro rate
520 // Manage the setPoint to control the gyro rate as the actual angle approaches the limit (try to prevent overshoot)
521 // 3. If no potential overflow is detected, then return the original setPoint
523 // Use the FAST_CODE_NOINLINE directive to avoid this code from being inlined into ITCM RAM. We accept the
524 // performance decrease when Acro Trainer mode is active under the assumption that user is unlikely to be
525 // expecting ultimate flight performance at very high loop rates when in this mode.
526 static FAST_CODE_NOINLINE float applyAcroTrainer(int axis, const rollAndPitchTrims_t *angleTrim, float setPoint)
528 float ret = setPoint;
530 if (!FLIGHT_MODE(ANGLE_MODE) && !FLIGHT_MODE(HORIZON_MODE) && !FLIGHT_MODE(GPS_RESCUE_MODE)) {
531 bool resetIterm = false;
532 float projectedAngle = 0;
533 const int setpointSign = acroTrainerSign(setPoint);
534 const float currentAngle = (attitude.raw[axis] - angleTrim->raw[axis]) / 10.0f;
535 const int angleSign = acroTrainerSign(currentAngle);
537 if ((pidRuntime.acroTrainerAxisState[axis] != 0) && (pidRuntime.acroTrainerAxisState[axis] != setpointSign)) { // stick has reversed - stop limiting
538 pidRuntime.acroTrainerAxisState[axis] = 0;
541 // Limit and correct the angle when it exceeds the limit
542 if ((fabsf(currentAngle) > pidRuntime.acroTrainerAngleLimit) && (pidRuntime.acroTrainerAxisState[axis] == 0)) {
543 if (angleSign == setpointSign) {
544 pidRuntime.acroTrainerAxisState[axis] = angleSign;
545 resetIterm = true;
549 if (pidRuntime.acroTrainerAxisState[axis] != 0) {
550 ret = constrainf(((pidRuntime.acroTrainerAngleLimit * angleSign) - currentAngle) * pidRuntime.acroTrainerGain, -ACRO_TRAINER_SETPOINT_LIMIT, ACRO_TRAINER_SETPOINT_LIMIT);
551 } else {
553 // Not currently over the limit so project the angle based on current angle and
554 // gyro angular rate using a sliding window based on gyro rate (faster rotation means larger window.
555 // If the projected angle exceeds the limit then apply limiting to minimize overshoot.
556 // Calculate the lookahead window by scaling proportionally with gyro rate from 0-500dps
557 float checkInterval = constrainf(fabsf(gyro.gyroADCf[axis]) / ACRO_TRAINER_LOOKAHEAD_RATE_LIMIT, 0.0f, 1.0f) * pidRuntime.acroTrainerLookaheadTime;
558 projectedAngle = (gyro.gyroADCf[axis] * checkInterval) + currentAngle;
559 const int projectedAngleSign = acroTrainerSign(projectedAngle);
560 if ((fabsf(projectedAngle) > pidRuntime.acroTrainerAngleLimit) && (projectedAngleSign == setpointSign)) {
561 ret = ((pidRuntime.acroTrainerAngleLimit * projectedAngleSign) - projectedAngle) * pidRuntime.acroTrainerGain;
562 resetIterm = true;
566 if (resetIterm) {
567 pidData[axis].I = 0;
570 if (axis == pidRuntime.acroTrainerDebugAxis) {
571 DEBUG_SET(DEBUG_ACRO_TRAINER, 0, lrintf(currentAngle * 10.0f));
572 DEBUG_SET(DEBUG_ACRO_TRAINER, 1, pidRuntime.acroTrainerAxisState[axis]);
573 DEBUG_SET(DEBUG_ACRO_TRAINER, 2, lrintf(ret));
574 DEBUG_SET(DEBUG_ACRO_TRAINER, 3, lrintf(projectedAngle * 10.0f));
578 return ret;
580 #endif // USE_ACRO_TRAINER
582 static float accelerationLimit(int axis, float currentPidSetpoint)
584 static float previousSetpoint[XYZ_AXIS_COUNT];
585 const float currentVelocity = currentPidSetpoint - previousSetpoint[axis];
587 if (fabsf(currentVelocity) > pidRuntime.maxVelocity[axis]) {
588 currentPidSetpoint = (currentVelocity > 0) ? previousSetpoint[axis] + pidRuntime.maxVelocity[axis] : previousSetpoint[axis] - pidRuntime.maxVelocity[axis];
591 previousSetpoint[axis] = currentPidSetpoint;
592 return currentPidSetpoint;
595 static void rotateVector(float v[XYZ_AXIS_COUNT], float rotation[XYZ_AXIS_COUNT])
597 // rotate v around rotation vector rotation
598 // rotation in radians, all elements must be small
599 for (int i = 0; i < XYZ_AXIS_COUNT; i++) {
600 int i_1 = (i + 1) % 3;
601 int i_2 = (i + 2) % 3;
602 float newV = v[i_1] + v[i_2] * rotation[i];
603 v[i_2] -= v[i_1] * rotation[i];
604 v[i_1] = newV;
608 STATIC_UNIT_TESTED void rotateItermAndAxisError()
610 if (pidRuntime.itermRotation
611 #if defined(USE_ABSOLUTE_CONTROL)
612 || pidRuntime.acGain > 0 || debugMode == DEBUG_AC_ERROR
613 #endif
615 const float gyroToAngle = pidRuntime.dT * RAD;
616 float rotationRads[XYZ_AXIS_COUNT];
617 for (int i = FD_ROLL; i <= FD_YAW; i++) {
618 rotationRads[i] = gyro.gyroADCf[i] * gyroToAngle;
620 #if defined(USE_ABSOLUTE_CONTROL)
621 if (pidRuntime.acGain > 0 || debugMode == DEBUG_AC_ERROR) {
622 rotateVector(axisError, rotationRads);
624 #endif
625 if (pidRuntime.itermRotation) {
626 float v[XYZ_AXIS_COUNT];
627 for (int i = 0; i < XYZ_AXIS_COUNT; i++) {
628 v[i] = pidData[i].I;
630 rotateVector(v, rotationRads );
631 for (int i = 0; i < XYZ_AXIS_COUNT; i++) {
632 pidData[i].I = v[i];
638 #ifdef USE_RC_SMOOTHING_FILTER
639 float FAST_CODE applyRcSmoothingFeedforwardFilter(int axis, float pidSetpointDelta)
641 float ret = pidSetpointDelta;
642 if (axis == pidRuntime.rcSmoothingDebugAxis) {
643 DEBUG_SET(DEBUG_RC_SMOOTHING, 1, lrintf(pidSetpointDelta * 100.0f));
645 if (pidRuntime.feedforwardLpfInitialized) {
646 ret = pt3FilterApply(&pidRuntime.feedforwardPt3[axis], pidSetpointDelta);
647 if (axis == pidRuntime.rcSmoothingDebugAxis) {
648 DEBUG_SET(DEBUG_RC_SMOOTHING, 2, lrintf(ret * 100.0f));
651 return ret;
653 #endif // USE_RC_SMOOTHING_FILTER
655 #if defined(USE_ITERM_RELAX)
656 #if defined(USE_ABSOLUTE_CONTROL)
657 STATIC_UNIT_TESTED void applyAbsoluteControl(const int axis, const float gyroRate, float *currentPidSetpoint, float *itermErrorRate)
659 if (pidRuntime.acGain > 0 || debugMode == DEBUG_AC_ERROR) {
660 const float setpointLpf = pt1FilterApply(&pidRuntime.acLpf[axis], *currentPidSetpoint);
661 const float setpointHpf = fabsf(*currentPidSetpoint - setpointLpf);
662 float acErrorRate = 0;
663 const float gmaxac = setpointLpf + 2 * setpointHpf;
664 const float gminac = setpointLpf - 2 * setpointHpf;
665 if (gyroRate >= gminac && gyroRate <= gmaxac) {
666 const float acErrorRate1 = gmaxac - gyroRate;
667 const float acErrorRate2 = gminac - gyroRate;
668 if (acErrorRate1 * axisError[axis] < 0) {
669 acErrorRate = acErrorRate1;
670 } else {
671 acErrorRate = acErrorRate2;
673 if (fabsf(acErrorRate * pidRuntime.dT) > fabsf(axisError[axis]) ) {
674 acErrorRate = -axisError[axis] * pidRuntime.pidFrequency;
676 } else {
677 acErrorRate = (gyroRate > gmaxac ? gmaxac : gminac ) - gyroRate;
680 if (isAirmodeActivated()) {
681 axisError[axis] = constrainf(axisError[axis] + acErrorRate * pidRuntime.dT,
682 -pidRuntime.acErrorLimit, pidRuntime.acErrorLimit);
683 const float acCorrection = constrainf(axisError[axis] * pidRuntime.acGain, -pidRuntime.acLimit, pidRuntime.acLimit);
684 *currentPidSetpoint += acCorrection;
685 *itermErrorRate += acCorrection;
686 DEBUG_SET(DEBUG_AC_CORRECTION, axis, lrintf(acCorrection * 10));
687 if (axis == FD_ROLL) {
688 DEBUG_SET(DEBUG_ITERM_RELAX, 3, lrintf(acCorrection * 10));
691 DEBUG_SET(DEBUG_AC_ERROR, axis, lrintf(axisError[axis] * 10));
694 #endif
696 STATIC_UNIT_TESTED void applyItermRelax(const int axis, const float iterm,
697 const float gyroRate, float *itermErrorRate, float *currentPidSetpoint)
699 const float setpointLpf = pt1FilterApply(&pidRuntime.windupLpf[axis], *currentPidSetpoint);
700 const float setpointHpf = fabsf(*currentPidSetpoint - setpointLpf);
702 if (pidRuntime.itermRelax) {
703 if (axis < FD_YAW || pidRuntime.itermRelax == ITERM_RELAX_RPY || pidRuntime.itermRelax == ITERM_RELAX_RPY_INC) {
704 const float itermRelaxFactor = MAX(0, 1 - setpointHpf / ITERM_RELAX_SETPOINT_THRESHOLD);
705 const bool isDecreasingI =
706 ((iterm > 0) && (*itermErrorRate < 0)) || ((iterm < 0) && (*itermErrorRate > 0));
707 if ((pidRuntime.itermRelax >= ITERM_RELAX_RP_INC) && isDecreasingI) {
708 // Do Nothing, use the precalculed itermErrorRate
709 } else if (pidRuntime.itermRelaxType == ITERM_RELAX_SETPOINT) {
710 *itermErrorRate *= itermRelaxFactor;
711 } else if (pidRuntime.itermRelaxType == ITERM_RELAX_GYRO ) {
712 *itermErrorRate = fapplyDeadband(setpointLpf - gyroRate, setpointHpf);
713 } else {
714 *itermErrorRate = 0.0f;
717 if (axis == FD_ROLL) {
718 DEBUG_SET(DEBUG_ITERM_RELAX, 0, lrintf(setpointHpf));
719 DEBUG_SET(DEBUG_ITERM_RELAX, 1, lrintf(itermRelaxFactor * 100.0f));
720 DEBUG_SET(DEBUG_ITERM_RELAX, 2, lrintf(*itermErrorRate));
724 #if defined(USE_ABSOLUTE_CONTROL)
725 applyAbsoluteControl(axis, gyroRate, currentPidSetpoint, itermErrorRate);
726 #endif
729 #endif
731 #ifdef USE_AIRMODE_LPF
732 void pidUpdateAirmodeLpf(float currentOffset)
734 if (pidRuntime.airmodeThrottleOffsetLimit == 0.0f) {
735 return;
738 float offsetHpf = currentOffset * 2.5f;
739 offsetHpf = offsetHpf - pt1FilterApply(&pidRuntime.airmodeThrottleLpf2, offsetHpf);
741 // During high frequency oscillation 2 * currentOffset averages to the offset required to avoid mirroring of the waveform
742 pt1FilterApply(&pidRuntime.airmodeThrottleLpf1, offsetHpf);
743 // Bring offset up immediately so the filter only applies to the decline
744 if (currentOffset * pidRuntime.airmodeThrottleLpf1.state >= 0 && fabsf(currentOffset) > pidRuntime.airmodeThrottleLpf1.state) {
745 pidRuntime.airmodeThrottleLpf1.state = currentOffset;
747 pidRuntime.airmodeThrottleLpf1.state = constrainf(pidRuntime.airmodeThrottleLpf1.state, -pidRuntime.airmodeThrottleOffsetLimit, pidRuntime.airmodeThrottleOffsetLimit);
750 float pidGetAirmodeThrottleOffset()
752 return pidRuntime.airmodeThrottleLpf1.state;
754 #endif
756 #ifdef USE_LAUNCH_CONTROL
757 #define LAUNCH_CONTROL_MAX_RATE 100.0f
758 #define LAUNCH_CONTROL_MIN_RATE 5.0f
759 #define LAUNCH_CONTROL_ANGLE_WINDOW 10.0f // The remaining angle degrees where rate dampening starts
761 // Use the FAST_CODE_NOINLINE directive to avoid this code from being inlined into ITCM RAM to avoid overflow.
762 // The impact is possibly slightly slower performance on F7/H7 but they have more than enough
763 // processing power that it should be a non-issue.
764 static FAST_CODE_NOINLINE float applyLaunchControl(int axis, const rollAndPitchTrims_t *angleTrim)
766 float ret = 0.0f;
768 // Scale the rates based on stick deflection only. Fixed rates with a max of 100deg/sec
769 // reached at 50% stick deflection. This keeps the launch control positioning consistent
770 // regardless of the user's rates.
771 if ((axis == FD_PITCH) || (pidRuntime.launchControlMode != LAUNCH_CONTROL_MODE_PITCHONLY)) {
772 const float stickDeflection = constrainf(getRcDeflection(axis), -0.5f, 0.5f);
773 ret = LAUNCH_CONTROL_MAX_RATE * stickDeflection * 2;
776 #if defined(USE_ACC)
777 // If ACC is enabled and a limit angle is set, then try to limit forward tilt
778 // to that angle and slow down the rate as the limit is approached to reduce overshoot
779 if ((axis == FD_PITCH) && (pidRuntime.launchControlAngleLimit > 0) && (ret > 0)) {
780 const float currentAngle = (attitude.raw[axis] - angleTrim->raw[axis]) / 10.0f;
781 if (currentAngle >= pidRuntime.launchControlAngleLimit) {
782 ret = 0.0f;
783 } else {
784 //for the last 10 degrees scale the rate from the current input to 5 dps
785 const float angleDelta = pidRuntime.launchControlAngleLimit - currentAngle;
786 if (angleDelta <= LAUNCH_CONTROL_ANGLE_WINDOW) {
787 ret = scaleRangef(angleDelta, 0, LAUNCH_CONTROL_ANGLE_WINDOW, LAUNCH_CONTROL_MIN_RATE, ret);
791 #else
792 UNUSED(angleTrim);
793 #endif
795 return ret;
797 #endif
799 // Betaflight pid controller, which will be maintained in the future with additional features specialised for current (mini) multirotor usage.
800 // Based on 2DOF reference design (matlab)
801 void FAST_CODE pidController(const pidProfile_t *pidProfile, timeUs_t currentTimeUs)
803 static float previousGyroRateDterm[XYZ_AXIS_COUNT];
804 static float previousRawGyroRateDterm[XYZ_AXIS_COUNT];
806 #if defined(USE_ACC)
807 static timeUs_t levelModeStartTimeUs = 0;
808 static bool gpsRescuePreviousState = false;
809 #endif
811 const float tpaFactor = getThrottlePIDAttenuation();
813 #if defined(USE_ACC)
814 const rollAndPitchTrims_t *angleTrim = &accelerometerConfig()->accelerometerTrims;
815 #else
816 UNUSED(pidProfile);
817 UNUSED(currentTimeUs);
818 #endif
820 #ifdef USE_TPA_MODE
821 const float tpaFactorKp = (currentControlRateProfile->tpaMode == TPA_MODE_PD) ? tpaFactor : 1.0f;
822 #else
823 const float tpaFactorKp = tpaFactor;
824 #endif
826 #ifdef USE_YAW_SPIN_RECOVERY
827 const bool yawSpinActive = gyroYawSpinDetected();
828 #endif
830 const bool launchControlActive = isLaunchControlActive();
832 #if defined(USE_ACC)
833 const bool gpsRescueIsActive = FLIGHT_MODE(GPS_RESCUE_MODE);
834 levelMode_e levelMode;
835 if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE) || gpsRescueIsActive) {
836 if (pidRuntime.levelRaceMode && !gpsRescueIsActive) {
837 levelMode = LEVEL_MODE_R;
838 } else {
839 levelMode = LEVEL_MODE_RP;
841 } else {
842 levelMode = LEVEL_MODE_OFF;
845 // Keep track of when we entered a self-level mode so that we can
846 // add a guard time before crash recovery can activate.
847 // Also reset the guard time whenever GPS Rescue is activated.
848 if (levelMode) {
849 if ((levelModeStartTimeUs == 0) || (gpsRescueIsActive && !gpsRescuePreviousState)) {
850 levelModeStartTimeUs = currentTimeUs;
852 } else {
853 levelModeStartTimeUs = 0;
855 gpsRescuePreviousState = gpsRescueIsActive;
856 #endif
858 // Dynamic i component,
859 if ((pidRuntime.antiGravityMode == ANTI_GRAVITY_SMOOTH) && pidRuntime.antiGravityEnabled) {
860 // traditional itermAccelerator factor for iTerm
861 pidRuntime.itermAccelerator = pidRuntime.antiGravityThrottleHpf * 0.01f * pidRuntime.itermAcceleratorGain;
862 DEBUG_SET(DEBUG_ANTI_GRAVITY, 1, lrintf(pidRuntime.itermAccelerator * 1000));
863 // users AG Gain changes P boost
864 pidRuntime.antiGravityPBoost *= pidRuntime.itermAcceleratorGain;
865 // add some percentage of that slower, longer acting P boost factor to prolong AG effect on iTerm
866 pidRuntime.itermAccelerator += pidRuntime.antiGravityPBoost * 0.05f;
867 // set the final P boost amount
868 pidRuntime.antiGravityPBoost *= 0.02f;
869 } else {
870 pidRuntime.antiGravityPBoost = 0.0f;
872 DEBUG_SET(DEBUG_ANTI_GRAVITY, 0, lrintf(pidRuntime.itermAccelerator * 1000));
874 float agGain = pidRuntime.dT * pidRuntime.itermAccelerator * AG_KI;
876 // gradually scale back integration when above windup point
877 float dynCi = pidRuntime.dT;
878 if (pidRuntime.itermWindupPointInv > 1.0f) {
879 dynCi *= constrainf((1.0f - getMotorMixRange()) * pidRuntime.itermWindupPointInv, 0.0f, 1.0f);
882 // Precalculate gyro deta for D-term here, this allows loop unrolling
883 float gyroRateDterm[XYZ_AXIS_COUNT];
884 for (int axis = FD_ROLL; axis <= FD_YAW; ++axis) {
885 gyroRateDterm[axis] = gyro.gyroADCf[axis];
886 // -----calculate raw, unfiltered D component
888 // Divide rate change by dT to get differential (ie dr/dt).
889 // dT is fixed and calculated from the target PID loop time
890 // This is done to avoid DTerm spikes that occur with dynamically
891 // calculated deltaT whenever another task causes the PID
892 // loop execution to be delayed.
893 const float delta =
894 - (gyroRateDterm[axis] - previousRawGyroRateDterm[axis]) * pidRuntime.pidFrequency / D_LPF_RAW_SCALE;
895 previousRawGyroRateDterm[axis] = gyroRateDterm[axis];
897 // Log the unfiltered D
898 if (axis == FD_ROLL) {
899 DEBUG_SET(DEBUG_D_LPF, 0, lrintf(delta));
900 } else if (axis == FD_PITCH) {
901 DEBUG_SET(DEBUG_D_LPF, 1, lrintf(delta));
904 gyroRateDterm[axis] = pidRuntime.dtermNotchApplyFn((filter_t *) &pidRuntime.dtermNotch[axis], gyroRateDterm[axis]);
905 gyroRateDterm[axis] = pidRuntime.dtermLowpassApplyFn((filter_t *) &pidRuntime.dtermLowpass[axis], gyroRateDterm[axis]);
906 gyroRateDterm[axis] = pidRuntime.dtermLowpass2ApplyFn((filter_t *) &pidRuntime.dtermLowpass2[axis], gyroRateDterm[axis]);
909 rotateItermAndAxisError();
911 #ifdef USE_RPM_FILTER
912 rpmFilterUpdate();
913 #endif
915 #ifdef USE_FEEDFORWARD
916 bool newRcFrame = false;
917 if (getShouldUpdateFeedforward()) {
918 newRcFrame = true;
920 #endif
922 // ----------PID controller----------
923 for (int axis = FD_ROLL; axis <= FD_YAW; ++axis) {
925 float currentPidSetpoint = getSetpointRate(axis);
926 if (pidRuntime.maxVelocity[axis]) {
927 currentPidSetpoint = accelerationLimit(axis, currentPidSetpoint);
929 // Yaw control is GYRO based, direct sticks control is applied to rate PID
930 // When Race Mode is active PITCH control is also GYRO based in level or horizon mode
931 #if defined(USE_ACC)
932 switch (levelMode) {
933 case LEVEL_MODE_OFF:
935 break;
936 case LEVEL_MODE_R:
937 if (axis == FD_PITCH) {
938 break;
941 FALLTHROUGH;
942 case LEVEL_MODE_RP:
943 if (axis == FD_YAW) {
944 break;
946 currentPidSetpoint = pidLevel(axis, pidProfile, angleTrim, currentPidSetpoint);
948 #endif
950 #ifdef USE_ACRO_TRAINER
951 if ((axis != FD_YAW) && pidRuntime.acroTrainerActive && !pidRuntime.inCrashRecoveryMode && !launchControlActive) {
952 currentPidSetpoint = applyAcroTrainer(axis, angleTrim, currentPidSetpoint);
954 #endif // USE_ACRO_TRAINER
956 #ifdef USE_LAUNCH_CONTROL
957 if (launchControlActive) {
958 #if defined(USE_ACC)
959 currentPidSetpoint = applyLaunchControl(axis, angleTrim);
960 #else
961 currentPidSetpoint = applyLaunchControl(axis, NULL);
962 #endif
964 #endif
966 // Handle yaw spin recovery - zero the setpoint on yaw to aid in recovery
967 // It's not necessary to zero the set points for R/P because the PIDs will be zeroed below
968 #ifdef USE_YAW_SPIN_RECOVERY
969 if ((axis == FD_YAW) && yawSpinActive) {
970 currentPidSetpoint = 0.0f;
972 #endif // USE_YAW_SPIN_RECOVERY
974 // -----calculate error rate
975 const float gyroRate = gyro.gyroADCf[axis]; // Process variable from gyro output in deg/sec
976 float errorRate = currentPidSetpoint - gyroRate; // r - y
977 #if defined(USE_ACC)
978 handleCrashRecovery(
979 pidProfile->crash_recovery, angleTrim, axis, currentTimeUs, gyroRate,
980 &currentPidSetpoint, &errorRate);
981 #endif
983 const float previousIterm = pidData[axis].I;
984 float itermErrorRate = errorRate;
985 #ifdef USE_ABSOLUTE_CONTROL
986 float uncorrectedSetpoint = currentPidSetpoint;
987 #endif
989 #if defined(USE_ITERM_RELAX)
990 if (!launchControlActive && !pidRuntime.inCrashRecoveryMode) {
991 applyItermRelax(axis, previousIterm, gyroRate, &itermErrorRate, &currentPidSetpoint);
992 errorRate = currentPidSetpoint - gyroRate;
994 #endif
995 #ifdef USE_ABSOLUTE_CONTROL
996 float setpointCorrection = currentPidSetpoint - uncorrectedSetpoint;
997 #endif
999 // --------low-level gyro-based PID based on 2DOF PID controller. ----------
1000 // 2-DOF PID controller with optional filter on derivative term.
1001 // b = 1 and only c (feedforward weight) can be tuned (amount derivative on measurement or error).
1003 // -----calculate P component
1004 pidData[axis].P = pidRuntime.pidCoefficient[axis].Kp * errorRate * tpaFactorKp;
1005 if (axis == FD_YAW) {
1006 pidData[axis].P = pidRuntime.ptermYawLowpassApplyFn((filter_t *) &pidRuntime.ptermYawLowpass, pidData[axis].P);
1009 // -----calculate I component
1010 float Ki;
1011 float axisDynCi;
1012 #ifdef USE_LAUNCH_CONTROL
1013 // if launch control is active override the iterm gains and apply iterm windup protection to all axes
1014 if (launchControlActive) {
1015 Ki = pidRuntime.launchControlKi;
1016 axisDynCi = dynCi;
1017 } else
1018 #endif
1020 Ki = pidRuntime.pidCoefficient[axis].Ki;
1021 axisDynCi = (axis == FD_YAW) ? dynCi : pidRuntime.dT; // only apply windup protection to yaw
1024 pidData[axis].I = constrainf(previousIterm + (Ki * axisDynCi + agGain) * itermErrorRate, -pidRuntime.itermLimit, pidRuntime.itermLimit);
1026 // -----calculate pidSetpointDelta
1027 float pidSetpointDelta = 0;
1028 #ifdef USE_FEEDFORWARD
1029 pidSetpointDelta = feedforwardApply(axis, newRcFrame, pidRuntime.feedforwardAveraging);
1030 #endif
1031 pidRuntime.previousPidSetpoint[axis] = currentPidSetpoint;
1033 // -----calculate D component
1034 // disable D if launch control is active
1035 if ((pidRuntime.pidCoefficient[axis].Kd > 0) && !launchControlActive) {
1037 // Divide rate change by dT to get differential (ie dr/dt).
1038 // dT is fixed and calculated from the target PID loop time
1039 // This is done to avoid DTerm spikes that occur with dynamically
1040 // calculated deltaT whenever another task causes the PID
1041 // loop execution to be delayed.
1042 const float delta =
1043 - (gyroRateDterm[axis] - previousGyroRateDterm[axis]) * pidRuntime.pidFrequency;
1044 float preTpaData = pidRuntime.pidCoefficient[axis].Kd * delta;
1046 #if defined(USE_ACC)
1047 if (cmpTimeUs(currentTimeUs, levelModeStartTimeUs) > CRASH_RECOVERY_DETECTION_DELAY_US) {
1048 detectAndSetCrashRecovery(pidProfile->crash_recovery, axis, currentTimeUs, delta, errorRate);
1050 #endif
1052 #if defined(USE_D_MIN)
1053 float dMinFactor = 1.0f;
1054 if (pidRuntime.dMinPercent[axis] > 0) {
1055 float dMinGyroFactor = biquadFilterApply(&pidRuntime.dMinRange[axis], delta);
1056 dMinGyroFactor = fabsf(dMinGyroFactor) * pidRuntime.dMinGyroGain;
1057 const float dMinSetpointFactor = (fabsf(pidSetpointDelta)) * pidRuntime.dMinSetpointGain;
1058 dMinFactor = MAX(dMinGyroFactor, dMinSetpointFactor);
1059 dMinFactor = pidRuntime.dMinPercent[axis] + (1.0f - pidRuntime.dMinPercent[axis]) * dMinFactor;
1060 dMinFactor = pt1FilterApply(&pidRuntime.dMinLowpass[axis], dMinFactor);
1061 dMinFactor = MIN(dMinFactor, 1.0f);
1062 if (axis == FD_ROLL) {
1063 DEBUG_SET(DEBUG_D_MIN, 0, lrintf(dMinGyroFactor * 100));
1064 DEBUG_SET(DEBUG_D_MIN, 1, lrintf(dMinSetpointFactor * 100));
1065 DEBUG_SET(DEBUG_D_MIN, 2, lrintf(pidRuntime.pidCoefficient[axis].Kd * dMinFactor * 10 / DTERM_SCALE));
1066 } else if (axis == FD_PITCH) {
1067 DEBUG_SET(DEBUG_D_MIN, 3, lrintf(pidRuntime.pidCoefficient[axis].Kd * dMinFactor * 10 / DTERM_SCALE));
1071 // Apply the dMinFactor
1072 preTpaData *= dMinFactor;
1073 #endif
1074 pidData[axis].D = preTpaData * tpaFactor;
1076 // Log the value of D pre application of TPA
1077 preTpaData *= D_LPF_FILT_SCALE;
1079 if (axis == FD_ROLL) {
1080 DEBUG_SET(DEBUG_D_LPF, 2, lrintf(preTpaData));
1081 } else if (axis == FD_PITCH) {
1082 DEBUG_SET(DEBUG_D_LPF, 3, lrintf(preTpaData));
1084 } else {
1085 pidData[axis].D = 0;
1087 if (axis == FD_ROLL) {
1088 DEBUG_SET(DEBUG_D_LPF, 2, 0);
1089 } else if (axis == FD_PITCH) {
1090 DEBUG_SET(DEBUG_D_LPF, 3, 0);
1094 previousGyroRateDterm[axis] = gyroRateDterm[axis];
1096 // -----calculate feedforward component
1097 #ifdef USE_ABSOLUTE_CONTROL
1098 // include abs control correction in feedforward
1099 pidSetpointDelta += setpointCorrection - pidRuntime.oldSetpointCorrection[axis];
1100 pidRuntime.oldSetpointCorrection[axis] = setpointCorrection;
1101 #endif
1103 // Only enable feedforward for rate mode and if launch control is inactive
1104 const float feedforwardGain = (flightModeFlags || launchControlActive) ? 0.0f : pidRuntime.pidCoefficient[axis].Kf;
1105 if (feedforwardGain > 0) {
1106 // no transition if feedforwardTransition == 0
1107 float transition = pidRuntime.feedforwardTransition > 0 ? MIN(1.f, getRcDeflectionAbs(axis) * pidRuntime.feedforwardTransition) : 1;
1108 float feedForward = feedforwardGain * transition * pidSetpointDelta * pidRuntime.pidFrequency;
1110 #ifdef USE_FEEDFORWARD
1111 pidData[axis].F = shouldApplyFeedforwardLimits(axis) ?
1112 applyFeedforwardLimit(axis, feedForward, pidRuntime.pidCoefficient[axis].Kp, currentPidSetpoint) : feedForward;
1113 #else
1114 pidData[axis].F = feedForward;
1115 #endif
1116 #ifdef USE_RC_SMOOTHING_FILTER
1117 pidData[axis].F = applyRcSmoothingFeedforwardFilter(axis, pidData[axis].F);
1118 #endif // USE_RC_SMOOTHING_FILTER
1119 } else {
1120 pidData[axis].F = 0;
1123 #ifdef USE_YAW_SPIN_RECOVERY
1124 if (yawSpinActive) {
1125 pidData[axis].I = 0; // in yaw spin always disable I
1126 if (axis <= FD_PITCH) {
1127 // zero PIDs on pitch and roll leaving yaw P to correct spin
1128 pidData[axis].P = 0;
1129 pidData[axis].D = 0;
1130 pidData[axis].F = 0;
1133 #endif // USE_YAW_SPIN_RECOVERY
1135 #ifdef USE_LAUNCH_CONTROL
1136 // Disable P/I appropriately based on the launch control mode
1137 if (launchControlActive) {
1138 // if not using FULL mode then disable I accumulation on yaw as
1139 // yaw has a tendency to windup. Otherwise limit yaw iterm accumulation.
1140 const int launchControlYawItermLimit = (pidRuntime.launchControlMode == LAUNCH_CONTROL_MODE_FULL) ? LAUNCH_CONTROL_YAW_ITERM_LIMIT : 0;
1141 pidData[FD_YAW].I = constrainf(pidData[FD_YAW].I, -launchControlYawItermLimit, launchControlYawItermLimit);
1143 // for pitch-only mode we disable everything except pitch P/I
1144 if (pidRuntime.launchControlMode == LAUNCH_CONTROL_MODE_PITCHONLY) {
1145 pidData[FD_ROLL].P = 0;
1146 pidData[FD_ROLL].I = 0;
1147 pidData[FD_YAW].P = 0;
1148 // don't let I go negative (pitch backwards) as front motors are limited in the mixer
1149 pidData[FD_PITCH].I = MAX(0.0f, pidData[FD_PITCH].I);
1152 #endif
1153 // calculating the PID sum
1155 // P boost at the end of throttle chop
1156 // attenuate effect if turning more than 50 deg/s, half at 100 deg/s
1157 float agBoostAttenuator = fabsf(currentPidSetpoint) / 50.0f;
1158 agBoostAttenuator = MAX(agBoostAttenuator, 1.0f);
1159 const float agBoost = 1.0f + (pidRuntime.antiGravityPBoost / agBoostAttenuator);
1160 if (axis != FD_YAW) {
1161 pidData[axis].P *= agBoost;
1162 DEBUG_SET(DEBUG_ANTI_GRAVITY, axis + 2, lrintf(agBoost * 1000));
1165 const float pidSum = pidData[axis].P + pidData[axis].I + pidData[axis].D + pidData[axis].F;
1166 #ifdef USE_INTEGRATED_YAW_CONTROL
1167 if (axis == FD_YAW && pidRuntime.useIntegratedYaw) {
1168 pidData[axis].Sum += pidSum * pidRuntime.dT * 100.0f;
1169 pidData[axis].Sum -= pidData[axis].Sum * pidRuntime.integratedYawRelax / 100000.0f * pidRuntime.dT / 0.000125f;
1170 } else
1171 #endif
1173 pidData[axis].Sum = pidSum;
1177 // Disable PID control if at zero throttle or if gyro overflow detected
1178 // This may look very innefficient, but it is done on purpose to always show real CPU usage as in flight
1179 if (!pidRuntime.pidStabilisationEnabled || gyroOverflowDetected()) {
1180 for (int axis = FD_ROLL; axis <= FD_YAW; ++axis) {
1181 pidData[axis].P = 0;
1182 pidData[axis].I = 0;
1183 pidData[axis].D = 0;
1184 pidData[axis].F = 0;
1186 pidData[axis].Sum = 0;
1188 } else if (pidRuntime.zeroThrottleItermReset) {
1189 pidResetIterm();
1193 bool crashRecoveryModeActive(void)
1195 return pidRuntime.inCrashRecoveryMode;
1198 #ifdef USE_ACRO_TRAINER
1199 void pidSetAcroTrainerState(bool newState)
1201 if (pidRuntime.acroTrainerActive != newState) {
1202 if (newState) {
1203 pidAcroTrainerInit();
1205 pidRuntime.acroTrainerActive = newState;
1208 #endif // USE_ACRO_TRAINER
1210 void pidSetAntiGravityState(bool newState)
1212 if (newState != pidRuntime.antiGravityEnabled) {
1213 // reset the accelerator on state changes
1214 pidRuntime.itermAccelerator = 0.0f;
1216 pidRuntime.antiGravityEnabled = newState;
1219 bool pidAntiGravityEnabled(void)
1221 return pidRuntime.antiGravityEnabled;
1224 #ifdef USE_DYN_LPF
1225 void dynLpfDTermUpdate(float throttle)
1227 unsigned int cutoffFreq;
1228 if (pidRuntime.dynLpfFilter != DYN_LPF_NONE) {
1229 if (pidRuntime.dynLpfCurveExpo > 0) {
1230 cutoffFreq = dynLpfCutoffFreq(throttle, pidRuntime.dynLpfMin, pidRuntime.dynLpfMax, pidRuntime.dynLpfCurveExpo);
1231 } else {
1232 cutoffFreq = fmax(dynThrottle(throttle) * pidRuntime.dynLpfMax, pidRuntime.dynLpfMin);
1234 switch (pidRuntime.dynLpfFilter) {
1235 case DYN_LPF_PT1:
1236 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
1237 pt1FilterUpdateCutoff(&pidRuntime.dtermLowpass[axis].pt1Filter, pt1FilterGain(cutoffFreq, pidRuntime.dT));
1239 break;
1240 case DYN_LPF_BIQUAD:
1241 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
1242 biquadFilterUpdateLPF(&pidRuntime.dtermLowpass[axis].biquadFilter, cutoffFreq, targetPidLooptime);
1244 break;
1245 case DYN_LPF_PT2:
1246 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
1247 pt2FilterUpdateCutoff(&pidRuntime.dtermLowpass[axis].pt2Filter, pt2FilterGain(cutoffFreq, pidRuntime.dT));
1249 break;
1250 case DYN_LPF_PT3:
1251 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
1252 pt3FilterUpdateCutoff(&pidRuntime.dtermLowpass[axis].pt3Filter, pt3FilterGain(cutoffFreq, pidRuntime.dT));
1254 break;
1258 #endif
1260 float dynLpfCutoffFreq(float throttle, uint16_t dynLpfMin, uint16_t dynLpfMax, uint8_t expo) {
1261 const float expof = expo / 10.0f;
1262 static float curve;
1263 curve = throttle * (1 - throttle) * expof + throttle;
1264 return (dynLpfMax - dynLpfMin) * curve + dynLpfMin;
1267 void pidSetItermReset(bool enabled)
1269 pidRuntime.zeroThrottleItermReset = enabled;
1272 float pidGetPreviousSetpoint(int axis)
1274 return pidRuntime.previousPidSetpoint[axis];
1277 float pidGetDT()
1279 return pidRuntime.dT;
1282 float pidGetPidFrequency()
1284 return pidRuntime.pidFrequency;