2 * This file is part of Cleanflight and Betaflight.
4 * Cleanflight and Betaflight are free software. You can redistribute
5 * this software and/or modify this software under the terms of the
6 * GNU General Public License as published by the Free Software
7 * Foundation, either version 3 of the License, or (at your option)
10 * Cleanflight and Betaflight are distributed in the hope that they
11 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
12 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 * See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this software.
18 * If not, see <http://www.gnu.org/licenses/>.
29 #include "common/utils.h"
30 #include "common/maths.h"
32 #include "drivers/bus.h"
33 #include "drivers/bus_spi.h"
34 #include "drivers/bus_spi_impl.h"
35 #include "drivers/dma.h"
36 #include "drivers/io.h"
37 #include "drivers/rcc.h"
40 #define SPI2_NSS_PIN PB12
41 #define SPI2_SCK_PIN PB13
42 #define SPI2_MISO_PIN PB14
43 #define SPI2_MOSI_PIN PB15
47 #define SPI3_NSS_PIN PA15
48 #define SPI3_SCK_PIN PB3
49 #define SPI3_MISO_PIN PB4
50 #define SPI3_MOSI_PIN PB5
54 #define SPI4_NSS_PIN PA15
55 #define SPI4_SCK_PIN PB3
56 #define SPI4_MISO_PIN PB4
57 #define SPI4_MOSI_PIN PB5
61 #define SPI1_NSS_PIN NONE
64 #define SPI2_NSS_PIN NONE
67 #define SPI3_NSS_PIN NONE
70 #define SPI4_NSS_PIN NONE
73 #define SPI_DEFAULT_TIMEOUT 10
76 #define IS_DTCM(p) (((uint32_t)p & 0xfffe0000) == 0x20000000)
77 #elif defined(STM32F7)
78 #define IS_DTCM(p) (((uint32_t)p & 0xffff0000) == 0x20000000)
79 #elif defined(STM32G4)
80 #define IS_CCM(p) ((((uint32_t)p & 0xffff8000) == 0x10000000) || (((uint32_t)p & 0xffff8000) == 0x20018000))
82 static LL_SPI_InitTypeDef defaultInit
=
84 .TransferDirection
= LL_SPI_FULL_DUPLEX
,
85 .Mode
= LL_SPI_MODE_MASTER
,
86 .DataWidth
= LL_SPI_DATAWIDTH_8BIT
,
87 .NSS
= LL_SPI_NSS_SOFT
,
88 .BaudRate
= LL_SPI_BAUDRATEPRESCALER_DIV8
,
89 .BitOrder
= LL_SPI_MSB_FIRST
,
90 .CRCCalculation
= LL_SPI_CRCCALCULATION_DISABLE
,
91 .ClockPolarity
= LL_SPI_POLARITY_HIGH
,
92 .ClockPhase
= LL_SPI_PHASE_2EDGE
,
95 static uint32_t spiDivisorToBRbits(SPI_TypeDef
*instance
, uint16_t divisor
)
98 // SPI2 and SPI3 are on APB1/AHB1 which PCLK is half that of APB2/AHB2.
100 if (instance
== SPI2
|| instance
== SPI3
) {
101 divisor
/= 2; // Safe for divisor == 0 or 1
107 divisor
= constrain(divisor
, 2, 256);
110 const uint32_t baudRatePrescaler
[8] = {
111 LL_SPI_BAUDRATEPRESCALER_DIV2
,
112 LL_SPI_BAUDRATEPRESCALER_DIV4
,
113 LL_SPI_BAUDRATEPRESCALER_DIV8
,
114 LL_SPI_BAUDRATEPRESCALER_DIV16
,
115 LL_SPI_BAUDRATEPRESCALER_DIV32
,
116 LL_SPI_BAUDRATEPRESCALER_DIV64
,
117 LL_SPI_BAUDRATEPRESCALER_DIV128
,
118 LL_SPI_BAUDRATEPRESCALER_DIV256
,
120 int prescalerIndex
= ffs(divisor
) - 2; // prescaler begins at "/2"
122 return baudRatePrescaler
[prescalerIndex
];
124 return (ffs(divisor
) - 2) << SPI_CR1_BR_Pos
;
128 void spiInitDevice(SPIDevice device
)
130 spiDevice_t
*spi
= &spiDevice
[device
];
137 RCC_ClockCmd(spi
->rcc
, ENABLE
);
138 RCC_ResetCmd(spi
->rcc
, ENABLE
);
140 IOInit(IOGetByTag(spi
->sck
), OWNER_SPI_SCK
, RESOURCE_INDEX(device
));
141 IOInit(IOGetByTag(spi
->miso
), OWNER_SPI_MISO
, RESOURCE_INDEX(device
));
142 IOInit(IOGetByTag(spi
->mosi
), OWNER_SPI_MOSI
, RESOURCE_INDEX(device
));
144 IOConfigGPIOAF(IOGetByTag(spi
->miso
), SPI_IO_AF_MISO_CFG
, spi
->misoAF
);
145 IOConfigGPIOAF(IOGetByTag(spi
->mosi
), SPI_IO_AF_CFG
, spi
->mosiAF
);
146 IOConfigGPIOAF(IOGetByTag(spi
->sck
), SPI_IO_AF_SCK_CFG_HIGH
, spi
->sckAF
);
148 LL_SPI_Disable(spi
->dev
);
149 LL_SPI_DeInit(spi
->dev
);
152 // Prevent glitching when SPI is disabled
153 LL_SPI_EnableGPIOControl(spi
->dev
);
155 LL_SPI_SetFIFOThreshold(spi
->dev
, LL_SPI_FIFO_TH_01DATA
);
156 LL_SPI_Init(spi
->dev
, &defaultInit
);
158 LL_SPI_SetRxFIFOThreshold(spi
->dev
, SPI_RXFIFO_THRESHOLD_QF
);
160 LL_SPI_Init(spi
->dev
, &defaultInit
);
161 LL_SPI_Enable(spi
->dev
);
165 void spiInternalResetDescriptors(busDevice_t
*bus
)
167 LL_DMA_InitTypeDef
*initTx
= bus
->initTx
;
169 LL_DMA_StructInit(initTx
);
170 #if defined(STM32G4) || defined(STM32H7)
171 initTx
->PeriphRequest
= bus
->dmaTx
->channel
;
173 initTx
->Channel
= bus
->dmaTx
->channel
;
175 initTx
->Mode
= LL_DMA_MODE_NORMAL
;
176 initTx
->Direction
= LL_DMA_DIRECTION_MEMORY_TO_PERIPH
;
178 initTx
->PeriphOrM2MSrcAddress
= (uint32_t)&bus
->busType_u
.spi
.instance
->TXDR
;
180 initTx
->PeriphOrM2MSrcAddress
= (uint32_t)&bus
->busType_u
.spi
.instance
->DR
;
182 initTx
->Priority
= LL_DMA_PRIORITY_LOW
;
183 initTx
->PeriphOrM2MSrcIncMode
= LL_DMA_PERIPH_NOINCREMENT
;
184 initTx
->PeriphOrM2MSrcDataSize
= LL_DMA_PDATAALIGN_BYTE
;
185 initTx
->MemoryOrM2MDstDataSize
= LL_DMA_MDATAALIGN_BYTE
;
188 LL_DMA_InitTypeDef
*initRx
= bus
->initRx
;
190 LL_DMA_StructInit(initRx
);
191 #if defined(STM32G4) || defined(STM32H7)
192 initRx
->PeriphRequest
= bus
->dmaRx
->channel
;
194 initRx
->Channel
= bus
->dmaRx
->channel
;
196 initRx
->Mode
= LL_DMA_MODE_NORMAL
;
197 initRx
->Direction
= LL_DMA_DIRECTION_PERIPH_TO_MEMORY
;
199 initRx
->PeriphOrM2MSrcAddress
= (uint32_t)&bus
->busType_u
.spi
.instance
->RXDR
;
201 initRx
->PeriphOrM2MSrcAddress
= (uint32_t)&bus
->busType_u
.spi
.instance
->DR
;
203 initRx
->Priority
= LL_DMA_PRIORITY_LOW
;
204 initRx
->PeriphOrM2MSrcIncMode
= LL_DMA_PERIPH_NOINCREMENT
;
205 initRx
->PeriphOrM2MSrcDataSize
= LL_DMA_PDATAALIGN_BYTE
;
209 void spiInternalResetStream(dmaChannelDescriptor_t
*descriptor
)
211 // Disable the stream
213 LL_DMA_DisableChannel(descriptor
->dma
, descriptor
->stream
);
214 while (LL_DMA_IsEnabledChannel(descriptor
->dma
, descriptor
->stream
));
216 LL_DMA_DisableStream(descriptor
->dma
, descriptor
->stream
);
217 while (LL_DMA_IsEnabledStream(descriptor
->dma
, descriptor
->stream
));
220 // Clear any pending interrupt flags
221 DMA_CLEAR_FLAG(descriptor
, DMA_IT_HTIF
| DMA_IT_TEIF
| DMA_IT_TCIF
);
225 static bool spiInternalReadWriteBufPolled(SPI_TypeDef
*instance
, const uint8_t *txData
, uint8_t *rxData
, int len
)
231 LL_SPI_SetTransferSize(instance
, txLen
);
232 LL_SPI_Enable(instance
);
233 LL_SPI_StartMasterTransfer(instance
);
234 while (txLen
|| rxLen
) {
235 if (txLen
&& LL_SPI_IsActiveFlag_TXP(instance
)) {
236 uint8_t b
= txData
? *(txData
++) : 0xFF;
237 LL_SPI_TransmitData8(instance
, b
);
241 if (rxLen
&& LL_SPI_IsActiveFlag_RXP(instance
)) {
242 uint8_t b
= LL_SPI_ReceiveData8(instance
);
249 while (!LL_SPI_IsActiveFlag_EOT(instance
));
250 LL_SPI_ClearFlag_TXTF(instance
);
251 LL_SPI_Disable(instance
);
253 // set 16-bit transfer
254 CLEAR_BIT(instance
->CR2
, SPI_RXFIFO_THRESHOLD
);
256 while (!LL_SPI_IsActiveFlag_TXE(instance
));
259 w
= *((uint16_t *)txData
);
264 LL_SPI_TransmitData16(instance
, w
);
266 while (!LL_SPI_IsActiveFlag_RXNE(instance
));
267 w
= LL_SPI_ReceiveData16(instance
);
269 *((uint16_t *)rxData
) = w
;
274 // set 8-bit transfer
275 SET_BIT(instance
->CR2
, SPI_RXFIFO_THRESHOLD
);
277 while (!LL_SPI_IsActiveFlag_TXE(instance
));
278 uint8_t b
= txData
? *(txData
++) : 0xFF;
279 LL_SPI_TransmitData8(instance
, b
);
281 while (!LL_SPI_IsActiveFlag_RXNE(instance
));
282 b
= LL_SPI_ReceiveData8(instance
);
293 void spiInternalInitStream(const extDevice_t
*dev
, bool preInit
)
295 STATIC_DMA_DATA_AUTO
uint8_t dummyTxByte
= 0xff;
296 STATIC_DMA_DATA_AUTO
uint8_t dummyRxByte
;
297 busDevice_t
*bus
= dev
->bus
;
299 busSegment_t
*segment
= bus
->curSegment
;
302 // Prepare the init structure for the next segment to reduce inter-segment interval
304 if(segment
->len
== 0) {
305 // There's no following segment
310 int len
= segment
->len
;
312 uint8_t *txData
= segment
->u
.buffers
.txData
;
313 LL_DMA_InitTypeDef
*initTx
= bus
->initTx
;
316 #ifdef __DCACHE_PRESENT
318 if ((txData
< &_dmaram_start__
) || (txData
>= &_dmaram_end__
)) {
320 // No need to flush DTCM memory
321 if (!IS_DTCM(txData
)) {
323 // Flush the D cache to ensure the data to be written is in main memory
324 SCB_CleanDCache_by_Addr(
325 (uint32_t *)((uint32_t)txData
& ~CACHE_LINE_MASK
),
326 (((uint32_t)txData
& CACHE_LINE_MASK
) + len
- 1 + CACHE_LINE_SIZE
) & ~CACHE_LINE_MASK
);
328 #endif // __DCACHE_PRESENT
329 initTx
->MemoryOrM2MDstAddress
= (uint32_t)txData
;
330 initTx
->MemoryOrM2MDstIncMode
= LL_DMA_MEMORY_INCREMENT
;
332 initTx
->MemoryOrM2MDstAddress
= (uint32_t)&dummyTxByte
;
333 initTx
->MemoryOrM2MDstIncMode
= LL_DMA_MEMORY_NOINCREMENT
;
335 initTx
->NbData
= len
;
337 #if !defined(STM32G4) && !defined(STM32H7)
338 if (dev
->bus
->dmaRx
) {
340 uint8_t *rxData
= segment
->u
.buffers
.rxData
;
341 LL_DMA_InitTypeDef
*initRx
= bus
->initRx
;
344 /* Flush the D cache for the start and end of the receive buffer as
345 * the cache will be invalidated after the transfer and any valid data
346 * just before/after must be in memory at that point
348 #ifdef __DCACHE_PRESENT
349 // No need to flush/invalidate DTCM memory
351 if ((rxData
< &_dmaram_start__
) || (rxData
>= &_dmaram_end__
)) {
353 // No need to flush DTCM memory
354 if (!IS_DTCM(rxData
)) {
356 SCB_CleanInvalidateDCache_by_Addr(
357 (uint32_t *)((uint32_t)rxData
& ~CACHE_LINE_MASK
),
358 (((uint32_t)rxData
& CACHE_LINE_MASK
) + len
- 1 + CACHE_LINE_SIZE
) & ~CACHE_LINE_MASK
);
360 #endif // __DCACHE_PRESENT
361 initRx
->MemoryOrM2MDstAddress
= (uint32_t)rxData
;
362 initRx
->MemoryOrM2MDstIncMode
= LL_DMA_MEMORY_INCREMENT
;
364 initRx
->MemoryOrM2MDstAddress
= (uint32_t)&dummyRxByte
;
365 initRx
->MemoryOrM2MDstIncMode
= LL_DMA_MEMORY_NOINCREMENT
;
367 initRx
->NbData
= len
;
368 #if !defined(STM32G4) && !defined(STM32H7)
373 void spiInternalStartDMA(const extDevice_t
*dev
)
375 busDevice_t
*bus
= dev
->bus
;
377 // Assert Chip Select
378 IOLo(dev
->busType_u
.spi
.csnPin
);
380 dmaChannelDescriptor_t
*dmaTx
= bus
->dmaTx
;
381 dmaChannelDescriptor_t
*dmaRx
= bus
->dmaRx
;
383 #if !defined(STM32G4) && !defined(STM32H7)
386 // Use the correct callback argument
387 dmaRx
->userParam
= (uint32_t)dev
;
389 // Clear transfer flags
390 DMA_CLEAR_FLAG(dmaTx
, DMA_IT_HTIF
| DMA_IT_TEIF
| DMA_IT_TCIF
);
391 DMA_CLEAR_FLAG(dmaRx
, DMA_IT_HTIF
| DMA_IT_TEIF
| DMA_IT_TCIF
);
394 // Disable channels to enable update
395 LL_DMA_DisableChannel(dmaTx
->dma
, dmaTx
->stream
);
396 LL_DMA_DisableChannel(dmaRx
->dma
, dmaRx
->stream
);
398 /* Use the Rx interrupt as this occurs once the SPI operation is complete whereas the Tx interrupt
399 * occurs earlier when the Tx FIFO is empty, but the SPI operation is still in progress
401 LL_DMA_EnableIT_TC(dmaRx
->dma
, dmaRx
->stream
);
404 LL_DMA_Init(dmaTx
->dma
, dmaTx
->stream
, bus
->initTx
);
405 LL_DMA_Init(dmaRx
->dma
, dmaRx
->stream
, bus
->initRx
);
407 LL_SPI_EnableDMAReq_RX(dev
->bus
->busType_u
.spi
.instance
);
410 LL_DMA_EnableChannel(dmaTx
->dma
, dmaTx
->stream
);
411 LL_DMA_EnableChannel(dmaRx
->dma
, dmaRx
->stream
);
413 LL_SPI_EnableDMAReq_TX(dev
->bus
->busType_u
.spi
.instance
);
415 DMA_Stream_TypeDef
*streamRegsTx
= (DMA_Stream_TypeDef
*)dmaTx
->ref
;
416 DMA_Stream_TypeDef
*streamRegsRx
= (DMA_Stream_TypeDef
*)dmaRx
->ref
;
418 // Disable streams to enable update
419 LL_DMA_WriteReg(streamRegsTx
, CR
, 0U);
420 LL_DMA_WriteReg(streamRegsRx
, CR
, 0U);
422 /* Use the Rx interrupt as this occurs once the SPI operation is complete whereas the Tx interrupt
423 * occurs earlier when the Tx FIFO is empty, but the SPI operation is still in progress
425 LL_EX_DMA_EnableIT_TC(streamRegsRx
);
428 LL_DMA_Init(dmaTx
->dma
, dmaTx
->stream
, bus
->initTx
);
429 LL_DMA_Init(dmaRx
->dma
, dmaRx
->stream
, bus
->initRx
);
433 * If the user enables the used peripheral before the corresponding DMA stream, a “FEIF”
434 * (FIFO Error Interrupt Flag) may be set due to the fact the DMA is not ready to provide
435 * the first required data to the peripheral (in case of memory-to-peripheral transfer).
438 // Enable the SPI DMA Tx & Rx requests
440 LL_SPI_SetTransferSize(dev
->bus
->busType_u
.spi
.instance
, dev
->bus
->curSegment
->len
);
441 LL_DMA_EnableStream(dmaTx
->dma
, dmaTx
->stream
);
442 LL_DMA_EnableStream(dmaRx
->dma
, dmaRx
->stream
);
443 SET_BIT(dev
->bus
->busType_u
.spi
.instance
->CFG1
, SPI_CFG1_RXDMAEN
| SPI_CFG1_TXDMAEN
);
444 LL_SPI_Enable(dev
->bus
->busType_u
.spi
.instance
);
445 LL_SPI_StartMasterTransfer(dev
->bus
->busType_u
.spi
.instance
);
448 LL_DMA_EnableStream(dmaTx
->dma
, dmaTx
->stream
);
449 LL_DMA_EnableStream(dmaRx
->dma
, dmaRx
->stream
);
451 SET_BIT(dev
->bus
->busType_u
.spi
.instance
->CR2
, SPI_CR2_TXDMAEN
| SPI_CR2_RXDMAEN
);
453 #if !defined(STM32G4) && !defined(STM32H7)
455 DMA_Stream_TypeDef
*streamRegsTx
= (DMA_Stream_TypeDef
*)dmaTx
->ref
;
457 // Use the correct callback argument
458 dmaTx
->userParam
= (uint32_t)dev
;
460 // Clear transfer flags
461 DMA_CLEAR_FLAG(dmaTx
, DMA_IT_HTIF
| DMA_IT_TEIF
| DMA_IT_TCIF
);
463 // Disable streams to enable update
464 LL_DMA_WriteReg(streamRegsTx
, CR
, 0U);
466 LL_EX_DMA_EnableIT_TC(streamRegsTx
);
469 LL_DMA_Init(dmaTx
->dma
, dmaTx
->stream
, bus
->initTx
);
473 * If the user enables the used peripheral before the corresponding DMA stream, a “FEIF”
474 * (FIFO Error Interrupt Flag) may be set due to the fact the DMA is not ready to provide
475 * the first required data to the peripheral (in case of memory-to-peripheral transfer).
478 // Enable the SPI DMA Tx request
480 LL_DMA_EnableStream(dmaTx
->dma
, dmaTx
->stream
);
482 SET_BIT(dev
->bus
->busType_u
.spi
.instance
->CR2
, SPI_CR2_TXDMAEN
);
488 void spiInternalStopDMA (const extDevice_t
*dev
)
490 busDevice_t
*bus
= dev
->bus
;
492 dmaChannelDescriptor_t
*dmaTx
= bus
->dmaTx
;
493 dmaChannelDescriptor_t
*dmaRx
= bus
->dmaRx
;
494 SPI_TypeDef
*instance
= bus
->busType_u
.spi
.instance
;
496 #if !defined(STM32G4) && !defined(STM32H7)
499 // Disable the DMA engine and SPI interface
501 LL_DMA_DisableChannel(dmaTx
->dma
, dmaTx
->stream
);
502 LL_DMA_DisableChannel(dmaRx
->dma
, dmaRx
->stream
);
504 LL_DMA_DisableStream(dmaRx
->dma
, dmaRx
->stream
);
505 LL_DMA_DisableStream(dmaTx
->dma
, dmaTx
->stream
);
508 // Clear transfer flags
509 DMA_CLEAR_FLAG(dmaRx
, DMA_IT_HTIF
| DMA_IT_TEIF
| DMA_IT_TCIF
);
511 LL_SPI_DisableDMAReq_TX(instance
);
512 LL_SPI_DisableDMAReq_RX(instance
);
514 LL_SPI_ClearFlag_TXTF(dev
->bus
->busType_u
.spi
.instance
);
515 LL_SPI_Disable(dev
->bus
->busType_u
.spi
.instance
);
517 #if !defined(STM32G4) && !defined(STM32H7)
519 SPI_TypeDef
*instance
= bus
->busType_u
.spi
.instance
;
521 // Ensure the current transmission is complete
522 while (LL_SPI_IsActiveFlag_BSY(instance
));
524 // Drain the RX buffer
525 while (LL_SPI_IsActiveFlag_RXNE(instance
)) {
529 // Disable the DMA engine and SPI interface
530 LL_DMA_DisableStream(dmaTx
->dma
, dmaTx
->stream
);
532 DMA_CLEAR_FLAG(dmaTx
, DMA_IT_HTIF
| DMA_IT_TEIF
| DMA_IT_TCIF
);
534 LL_SPI_DisableDMAReq_TX(instance
);
536 #if !defined(STM32G4) && !defined(STM32H7)
541 // DMA transfer setup and start
542 void spiSequenceStart(const extDevice_t
*dev
)
544 busDevice_t
*bus
= dev
->bus
;
545 SPI_TypeDef
*instance
= bus
->busType_u
.spi
.instance
;
546 spiDevice_t
*spi
= &spiDevice
[spiDeviceByInstance(instance
)];
547 bool dmaSafe
= dev
->useDMA
;
548 uint32_t xferLen
= 0;
549 uint32_t segmentCount
= 0;
551 bus
->initSegment
= true;
554 #if !defined(STM32H7)
555 LL_SPI_Disable(instance
);
558 if (dev
->busType_u
.spi
.speed
!= bus
->busType_u
.spi
.speed
) {
559 LL_SPI_SetBaudRatePrescaler(instance
, spiDivisorToBRbits(instance
, dev
->busType_u
.spi
.speed
));
560 bus
->busType_u
.spi
.speed
= dev
->busType_u
.spi
.speed
;
563 // Switch SPI clock polarity/phase if necessary
564 if (dev
->busType_u
.spi
.leadingEdge
!= bus
->busType_u
.spi
.leadingEdge
) {
565 if (dev
->busType_u
.spi
.leadingEdge
) {
566 IOConfigGPIOAF(IOGetByTag(spi
->sck
), SPI_IO_AF_SCK_CFG_LOW
, spi
->sckAF
);
567 LL_SPI_SetClockPhase(instance
, LL_SPI_PHASE_1EDGE
);
568 LL_SPI_SetClockPolarity(instance
, LL_SPI_POLARITY_LOW
);
571 IOConfigGPIOAF(IOGetByTag(spi
->sck
), SPI_IO_AF_SCK_CFG_HIGH
, spi
->sckAF
);
572 LL_SPI_SetClockPhase(instance
, LL_SPI_PHASE_2EDGE
);
573 LL_SPI_SetClockPolarity(instance
, LL_SPI_POLARITY_HIGH
);
576 bus
->busType_u
.spi
.leadingEdge
= dev
->busType_u
.spi
.leadingEdge
;
579 #if !defined(STM32H7)
580 LL_SPI_Enable(instance
);
583 /* Where data is being read into a buffer which is cached, where the start or end of that
584 * buffer is not cache aligned, there is a risk of corruption of other data in that cache line.
585 * After the read is complete, the cache lines covering the structure will be invalidated to ensure
586 * that the processor sees the read data, not what was in cache previously. Unfortunately if
587 * there is any other data in the area covered by those cache lines, at the start or end of the
588 * buffer, it too will be invalidated, so had the processor written to those locations during the DMA
589 * operation those written values will be lost.
592 // Check that any reads are cache aligned and of multiple cache lines in length
593 for (busSegment_t
*checkSegment
= bus
->curSegment
; checkSegment
->len
; checkSegment
++) {
594 // Check there is no receive data as only transmit DMA is available
595 if ((checkSegment
->u
.buffers
.rxData
) && (bus
->dmaRx
== (dmaChannelDescriptor_t
*)NULL
)) {
600 // Check if RX data can be DMAed
601 if ((checkSegment
->u
.buffers
.rxData
) &&
602 // DTCM can't be accessed by DMA1/2 on the H7
603 (IS_DTCM(checkSegment
->u
.buffers
.rxData
) ||
604 // Memory declared as DMA_RAM will have an address between &_dmaram_start__ and &_dmaram_end__
605 (((checkSegment
->u
.buffers
.rxData
< &_dmaram_start__
) || (checkSegment
->u
.buffers
.rxData
>= &_dmaram_end__
)) &&
606 (((uint32_t)checkSegment
->u
.buffers
.rxData
& (CACHE_LINE_SIZE
- 1)) || (checkSegment
->len
& (CACHE_LINE_SIZE
- 1)))))) {
610 // Check if TX data can be DMAed
611 else if ((checkSegment
->u
.buffers
.txData
) && IS_DTCM(checkSegment
->u
.buffers
.txData
)) {
615 #elif defined(STM32F7)
616 if ((checkSegment
->u
.buffers
.rxData
) &&
617 // DTCM is accessible and uncached on the F7
618 (!IS_DTCM(checkSegment
->u
.buffers
.rxData
) &&
619 (((uint32_t)checkSegment
->u
.buffers
.rxData
& (CACHE_LINE_SIZE
- 1)) || (checkSegment
->len
& (CACHE_LINE_SIZE
- 1))))) {
623 #elif defined(STM32G4)
624 // Check if RX data can be DMAed
625 if ((checkSegment
->u
.buffers
.rxData
) &&
626 // CCM can't be accessed by DMA1/2 on the G4
627 IS_CCM(checkSegment
->u
.buffers
.rxData
)) {
631 if ((checkSegment
->u
.buffers
.txData
) &&
632 // CCM can't be accessed by DMA1/2 on the G4
633 IS_CCM(checkSegment
->u
.buffers
.txData
)) {
638 // Note that these counts are only valid if dmaSafe is true
640 xferLen
+= checkSegment
->len
;
643 // Use DMA if possible
644 if (bus
->useDMA
&& dmaSafe
&& ((segmentCount
> 1) || (xferLen
> 8))) {
645 // Intialise the init structures for the first transfer
646 spiInternalInitStream(dev
, false);
648 // Start the transfers
649 spiInternalStartDMA(dev
);
651 // Manually work through the segment list performing a transfer for each
652 while (bus
->curSegment
->len
) {
653 // Assert Chip Select
654 IOLo(dev
->busType_u
.spi
.csnPin
);
656 spiInternalReadWriteBufPolled(
657 bus
->busType_u
.spi
.instance
,
658 bus
->curSegment
->u
.buffers
.txData
,
659 bus
->curSegment
->u
.buffers
.rxData
,
660 bus
->curSegment
->len
);
662 if (bus
->curSegment
->negateCS
) {
663 // Negate Chip Select
664 IOHi(dev
->busType_u
.spi
.csnPin
);
667 if (bus
->curSegment
->callback
) {
668 switch(bus
->curSegment
->callback(dev
->callbackArg
)) {
670 // Repeat the last DMA segment
675 bus
->curSegment
= (busSegment_t
*)BUS_SPI_FREE
;
680 // Advance to the next DMA segment
687 // If a following transaction has been linked, start it
688 if (bus
->curSegment
->u
.link
.dev
) {
689 const extDevice_t
*nextDev
= bus
->curSegment
->u
.link
.dev
;
690 busSegment_t
*nextSegments
= bus
->curSegment
->u
.link
.segments
;
691 busSegment_t
*endSegment
= bus
->curSegment
;
692 bus
->curSegment
= nextSegments
;
693 endSegment
->u
.link
.dev
= NULL
;
694 spiSequenceStart(nextDev
);
696 // The end of the segment list has been reached, so mark transactions as complete
697 bus
->curSegment
= (busSegment_t
*)BUS_SPI_FREE
;