Merge pull request #11190 from mathiasvr/pr-arraylen
[betaflight.git] / src / test / unit / alignsensor_unittest.cc
blob03d8689a1dc38ade92d8facd32e61f9a55ec5b07
1 /*
2 * This file is part of Cleanflight.
4 * Cleanflight is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 3 of the License, or
7 * (at your option) any later version.
9 * Cleanflight is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
18 #include <math.h>
19 #include <stdint.h>
20 #include <time.h>
22 extern "C" {
23 #include "common/axis.h"
24 #include "common/sensor_alignment.h"
25 #include "common/sensor_alignment_impl.h"
26 #include "common/utils.h"
27 #include "drivers/sensor.h"
28 #include "sensors/boardalignment.h"
29 #include "sensors/sensors.h"
32 #include "gtest/gtest.h"
35 * This test file contains an independent method of rotating a vector.
36 * The output of alignSensor() is compared to the output of the test
37 * rotation method.
39 * For each alignment condition (ALIGN_CW0, CW90, etc) the source vector under
40 * test is set to a unit vector along each axis (x-axis, y-axis, z-axis)
41 * plus one additional random vector is tested.
44 #define DEG2RAD 0.01745329251
46 static void rotateVector(int32_t mat[3][3], float vec[3], float *out)
48 float tmp[3];
50 for(int i=0; i<3; i++) {
51 tmp[i] = 0;
52 for(int j=0; j<3; j++) {
53 tmp[i] += mat[j][i] * vec[j];
57 out[0]=tmp[0];
58 out[1]=tmp[1];
59 out[2]=tmp[2];
63 //static void initXAxisRotation(int32_t mat[][3], int32_t angle)
64 //{
65 // mat[0][0] = 1;
66 // mat[0][1] = 0;
67 // mat[0][2] = 0;
68 // mat[1][0] = 0;
69 // mat[1][1] = cos(angle*DEG2RAD);
70 // mat[1][2] = -sin(angle*DEG2RAD);
71 // mat[2][0] = 0;
72 // mat[2][1] = sin(angle*DEG2RAD);
73 // mat[2][2] = cos(angle*DEG2RAD);
74 //}
76 static void initYAxisRotation(int32_t mat[][3], int32_t angle)
78 mat[0][0] = cos(angle*DEG2RAD);
79 mat[0][1] = 0;
80 mat[0][2] = sin(angle*DEG2RAD);
81 mat[1][0] = 0;
82 mat[1][1] = 1;
83 mat[1][2] = 0;
84 mat[2][0] = -sin(angle*DEG2RAD);
85 mat[2][1] = 0;
86 mat[2][2] = cos(angle*DEG2RAD);
89 static void initZAxisRotation(int32_t mat[][3], int32_t angle)
91 mat[0][0] = cos(angle*DEG2RAD);
92 mat[0][1] = -sin(angle*DEG2RAD);
93 mat[0][2] = 0;
94 mat[1][0] = sin(angle*DEG2RAD);
95 mat[1][1] = cos(angle*DEG2RAD);
96 mat[1][2] = 0;
97 mat[2][0] = 0;
98 mat[2][1] = 0;
99 mat[2][2] = 1;
102 #define TOL 1e-5 // TOLERANCE
104 static void alignSensorViaMatrixFromRotation(float *dest, sensor_align_e alignment)
106 fp_rotationMatrix_t sensorRotationMatrix;
108 sensorAlignment_t sensorAlignment;
110 buildAlignmentFromStandardAlignment(&sensorAlignment, alignment);
112 buildRotationMatrixFromAlignment(&sensorAlignment, &sensorRotationMatrix);
114 alignSensorViaMatrix(dest, &sensorRotationMatrix);
117 static void testCW(sensor_align_e rotation, int32_t angle)
119 float src[XYZ_AXIS_COUNT];
120 float test[XYZ_AXIS_COUNT];
122 // unit vector along x-axis
123 src[X] = 1;
124 src[Y] = 0;
125 src[Z] = 0;
127 int32_t matrix[3][3];
128 initZAxisRotation(matrix, angle);
129 rotateVector(matrix, src, test);
131 alignSensorViaMatrixFromRotation(src, rotation);
132 EXPECT_NEAR(test[X], src[X], TOL) << "X-Unit alignment does not match in X-Axis. " << test[X] << " " << src[X];
133 EXPECT_NEAR(test[Y], src[Y], TOL) << "X-Unit alignment does not match in Y-Axis. " << test[Y] << " " << src[Y];
134 EXPECT_NEAR(test[Z], src[Z], TOL) << "X-Unit alignment does not match in Z-Axis. " << test[Z] << " " << src[Z];
136 // unit vector along y-axis
137 src[X] = 0;
138 src[Y] = 1;
139 src[Z] = 0;
141 rotateVector(matrix, src, test);
142 alignSensorViaMatrixFromRotation(src, rotation);
143 EXPECT_NEAR(test[X], src[X], TOL) << "Y-Unit alignment does not match in X-Axis. " << test[X] << " " << src[X];
144 EXPECT_NEAR(test[Y], src[Y], TOL) << "Y-Unit alignment does not match in Y-Axis. " << test[Y] << " " << src[Y];
145 EXPECT_NEAR(test[Z], src[Z], TOL) << "Y-Unit alignment does not match in Z-Axis. " << test[Z] << " " << src[Z];
147 // unit vector along z-axis
148 src[X] = 0;
149 src[Y] = 0;
150 src[Z] = 1;
152 rotateVector(matrix, src, test);
153 alignSensorViaMatrixFromRotation(src, rotation);
154 EXPECT_NEAR(test[X], src[X], TOL) << "Z-Unit alignment does not match in X-Axis. " << test[X] << " " << src[X];
155 EXPECT_NEAR(test[Y], src[Y], TOL) << "Z-Unit alignment does not match in Y-Axis. " << test[Y] << " " << src[Y];
156 EXPECT_NEAR(test[Z], src[Z], TOL) << "Z-Unit alignment does not match in Z-Axis. " << test[Z] << " " << src[Z];
158 // random vector to test
159 src[X] = rand() % 5;
160 src[Y] = rand() % 5;
161 src[Z] = rand() % 5;
163 rotateVector(matrix, src, test);
164 alignSensorViaMatrixFromRotation(src, rotation);
165 EXPECT_NEAR(test[X], src[X], TOL) << "Random alignment does not match in X-Axis. " << test[X] << " " << src[X];
166 EXPECT_NEAR(test[Y], src[Y], TOL) << "Random alignment does not match in Y-Axis. " << test[Y] << " " << src[Y];
167 EXPECT_NEAR(test[Z], src[Z], TOL) << "Random alignment does not match in Z-Axis. " << test[Z] << " " << src[Z];
171 * Since the order of flip and rotation matters, these tests make the
172 * assumption that the 'flip' occurs first, followed by clockwise rotation
174 static void testCWFlip(sensor_align_e rotation, int32_t angle)
176 float src[XYZ_AXIS_COUNT];
177 float test[XYZ_AXIS_COUNT];
179 // unit vector along x-axis
180 src[X] = 1;
181 src[Y] = 0;
182 src[Z] = 0;
184 int32_t matrix[3][3];
185 initYAxisRotation(matrix, 180);
186 rotateVector(matrix, src, test);
187 initZAxisRotation(matrix, angle);
188 rotateVector(matrix, test, test);
190 alignSensorViaMatrixFromRotation(src, rotation);
192 EXPECT_NEAR(test[X], src[X], TOL) << "X-Unit alignment does not match in X-Axis. " << test[X] << " " << src[X];
193 EXPECT_NEAR(test[Y], src[Y], TOL) << "X-Unit alignment does not match in Y-Axis. " << test[Y] << " " << src[Y];
194 EXPECT_NEAR(test[Z], src[Z], TOL) << "X-Unit alignment does not match in Z-Axis. " << test[Z] << " " << src[Z];
196 // unit vector along y-axis
197 src[X] = 0;
198 src[Y] = 1;
199 src[Z] = 0;
201 initYAxisRotation(matrix, 180);
202 rotateVector(matrix, src, test);
203 initZAxisRotation(matrix, angle);
204 rotateVector(matrix, test, test);
206 alignSensorViaMatrixFromRotation(src, rotation);
208 EXPECT_NEAR(test[X], src[X], TOL) << "Y-Unit alignment does not match in X-Axis. " << test[X] << " " << src[X];
209 EXPECT_NEAR(test[Y], src[Y], TOL) << "Y-Unit alignment does not match in Y-Axis. " << test[Y] << " " << src[Y];
210 EXPECT_NEAR(test[Z], src[Z], TOL) << "Y-Unit alignment does not match in Z-Axis. " << test[Z] << " " << src[Z];
212 // unit vector along z-axis
213 src[X] = 0;
214 src[Y] = 0;
215 src[Z] = 1;
217 initYAxisRotation(matrix, 180);
218 rotateVector(matrix, src, test);
219 initZAxisRotation(matrix, angle);
220 rotateVector(matrix, test, test);
222 alignSensorViaMatrixFromRotation(src, rotation);
224 EXPECT_NEAR(test[X], src[X], TOL) << "Z-Unit alignment does not match in X-Axis. " << test[X] << " " << src[X];
225 EXPECT_NEAR(test[Y], src[Y], TOL) << "Z-Unit alignment does not match in Y-Axis. " << test[Y] << " " << src[Y];
226 EXPECT_NEAR(test[Z], src[Z], TOL) << "Z-Unit alignment does not match in Z-Axis. " << test[Z] << " " << src[Z];
228 // random vector to test
229 src[X] = rand() % 5;
230 src[Y] = rand() % 5;
231 src[Z] = rand() % 5;
233 initYAxisRotation(matrix, 180);
234 rotateVector(matrix, src, test);
235 initZAxisRotation(matrix, angle);
236 rotateVector(matrix, test, test);
238 alignSensorViaMatrixFromRotation(src, rotation);
240 EXPECT_NEAR(test[X], src[X], TOL) << "Random alignment does not match in X-Axis. " << test[X] << " " << src[X];
241 EXPECT_NEAR(test[Y], src[Y], TOL) << "Random alignment does not match in Y-Axis. " << test[Y] << " " << src[Y];
242 EXPECT_NEAR(test[Z], src[Z], TOL) << "Random alignment does not match in Z-Axis. " << test[Z] << " " << src[Z];
246 TEST(AlignSensorTest, ClockwiseZeroDegrees)
248 srand(time(NULL));
249 testCW(CW0_DEG, 0);
252 TEST(AlignSensorTest, ClockwiseNinetyDegrees)
254 testCW(CW90_DEG, 90);
257 TEST(AlignSensorTest, ClockwiseOneEightyDegrees)
259 testCW(CW180_DEG, 180);
262 TEST(AlignSensorTest, ClockwiseTwoSeventyDegrees)
264 testCW(CW270_DEG, 270);
267 TEST(AlignSensorTest, ClockwiseZeroDegreesFlip)
269 testCWFlip(CW0_DEG_FLIP, 0);
272 TEST(AlignSensorTest, ClockwiseNinetyDegreesFlip)
274 testCWFlip(CW90_DEG_FLIP, 90);
277 TEST(AlignSensorTest, ClockwiseOneEightyDegreesFlip)
279 testCWFlip(CW180_DEG_FLIP, 180);
282 TEST(AlignSensorTest, ClockwiseTwoSeventyDegreesFlip)
284 testCWFlip(CW270_DEG_FLIP, 270);
287 static void testBuildAlignmentWithStandardAlignment(sensor_align_e alignment, sensorAlignment_t expectedSensorAlignment)
289 sensorAlignment_t sensorAlignment = SENSOR_ALIGNMENT(6, 6, 6);
291 buildAlignmentFromStandardAlignment(&sensorAlignment, alignment);
293 for (unsigned i = 0; i < ARRAYLEN(sensorAlignment.raw); i++) {
294 EXPECT_EQ(expectedSensorAlignment.raw[i], sensorAlignment.raw[i]) << "Sensor alignment was not updated. alignment: " << alignment;
298 TEST(AlignSensorTest, AttemptBuildAlignmentWithStandardAlignment)
300 testBuildAlignmentWithStandardAlignment(CW0_DEG, CUSTOM_ALIGN_CW0_DEG);
301 testBuildAlignmentWithStandardAlignment(CW90_DEG, CUSTOM_ALIGN_CW90_DEG);
302 testBuildAlignmentWithStandardAlignment(CW180_DEG, CUSTOM_ALIGN_CW180_DEG);
303 testBuildAlignmentWithStandardAlignment(CW270_DEG, CUSTOM_ALIGN_CW270_DEG);
304 testBuildAlignmentWithStandardAlignment(CW0_DEG_FLIP, CUSTOM_ALIGN_CW0_DEG_FLIP);
305 testBuildAlignmentWithStandardAlignment(CW90_DEG_FLIP, CUSTOM_ALIGN_CW90_DEG_FLIP);
306 testBuildAlignmentWithStandardAlignment(CW180_DEG_FLIP, CUSTOM_ALIGN_CW180_DEG_FLIP);
307 testBuildAlignmentWithStandardAlignment(CW270_DEG_FLIP, CUSTOM_ALIGN_CW270_DEG_FLIP);
310 TEST(AlignSensorTest, AttemptBuildAlignmentFromCustomAlignment)
312 sensorAlignment_t sensorAlignment = SENSOR_ALIGNMENT(1, 2, 3);
314 buildAlignmentFromStandardAlignment(&sensorAlignment, ALIGN_CUSTOM);
316 sensorAlignment_t expectedSensorAlignment = SENSOR_ALIGNMENT(1, 2, 3);
318 for (unsigned i = 0; i < ARRAYLEN(sensorAlignment.raw); i++) {
319 EXPECT_EQ(expectedSensorAlignment.raw[i], sensorAlignment.raw[i]) << "Custom alignment should not be updated.";
323 TEST(AlignSensorTest, AttemptBuildAlignmentFromDefaultAlignment)
325 sensorAlignment_t sensorAlignment = SENSOR_ALIGNMENT(1, 2, 3);
327 buildAlignmentFromStandardAlignment(&sensorAlignment, ALIGN_DEFAULT);
329 sensorAlignment_t expectedSensorAlignment = SENSOR_ALIGNMENT(1, 2, 3);
331 for (unsigned i = 0; i < ARRAYLEN(sensorAlignment.raw); i++) {
332 EXPECT_EQ(expectedSensorAlignment.raw[i], sensorAlignment.raw[i]) << "Default alignment should not be updated.";
336 TEST(AlignSensorTest, AlignmentBitmasks)
338 uint8_t bits;
340 bits = ALIGNMENT_TO_BITMASK(CW0_DEG);
341 EXPECT_EQ(0x0, bits); // 000000
342 EXPECT_EQ(0, ALIGNMENT_YAW_ROTATIONS(bits));
343 EXPECT_EQ(0, ALIGNMENT_PITCH_ROTATIONS(bits));
344 EXPECT_EQ(0, ALIGNMENT_ROLL_ROTATIONS(bits));
346 EXPECT_EQ(0, ALIGNMENT_AXIS_ROTATIONS(bits, FD_YAW));
347 EXPECT_EQ(0, ALIGNMENT_AXIS_ROTATIONS(bits, FD_PITCH));
348 EXPECT_EQ(0, ALIGNMENT_AXIS_ROTATIONS(bits, FD_ROLL));
350 bits = ALIGNMENT_TO_BITMASK(CW90_DEG);
351 EXPECT_EQ(0x1, bits); // 000001
352 EXPECT_EQ(1, ALIGNMENT_YAW_ROTATIONS(bits));
353 EXPECT_EQ(0, ALIGNMENT_PITCH_ROTATIONS(bits));
354 EXPECT_EQ(0, ALIGNMENT_ROLL_ROTATIONS(bits));
356 EXPECT_EQ(1, ALIGNMENT_AXIS_ROTATIONS(bits, FD_YAW));
357 EXPECT_EQ(0, ALIGNMENT_AXIS_ROTATIONS(bits, FD_PITCH));
358 EXPECT_EQ(0, ALIGNMENT_AXIS_ROTATIONS(bits, FD_ROLL));
360 bits = ALIGNMENT_TO_BITMASK(CW180_DEG);
361 EXPECT_EQ(0x2, bits); // 000010
362 EXPECT_EQ(2, ALIGNMENT_YAW_ROTATIONS(bits));
363 EXPECT_EQ(0, ALIGNMENT_PITCH_ROTATIONS(bits));
364 EXPECT_EQ(0, ALIGNMENT_ROLL_ROTATIONS(bits));
366 EXPECT_EQ(2, ALIGNMENT_AXIS_ROTATIONS(bits, FD_YAW));
367 EXPECT_EQ(0, ALIGNMENT_AXIS_ROTATIONS(bits, FD_PITCH));
368 EXPECT_EQ(0, ALIGNMENT_AXIS_ROTATIONS(bits, FD_ROLL));
370 bits = ALIGNMENT_TO_BITMASK(CW270_DEG);
371 EXPECT_EQ(0x3, bits); // 000011
372 EXPECT_EQ(3, ALIGNMENT_YAW_ROTATIONS(bits));
373 EXPECT_EQ(0, ALIGNMENT_PITCH_ROTATIONS(bits));
374 EXPECT_EQ(0, ALIGNMENT_ROLL_ROTATIONS(bits));
376 EXPECT_EQ(3, ALIGNMENT_AXIS_ROTATIONS(bits, FD_YAW));
377 EXPECT_EQ(0, ALIGNMENT_AXIS_ROTATIONS(bits, FD_PITCH));
378 EXPECT_EQ(0, ALIGNMENT_AXIS_ROTATIONS(bits, FD_ROLL));
380 bits = ALIGNMENT_TO_BITMASK(CW0_DEG_FLIP);
381 EXPECT_EQ(0x8, bits); // 001000
382 EXPECT_EQ(0, ALIGNMENT_YAW_ROTATIONS(bits));
383 EXPECT_EQ(2, ALIGNMENT_PITCH_ROTATIONS(bits));
384 EXPECT_EQ(0, ALIGNMENT_ROLL_ROTATIONS(bits));
386 EXPECT_EQ(0, ALIGNMENT_AXIS_ROTATIONS(bits, FD_YAW));
387 EXPECT_EQ(2, ALIGNMENT_AXIS_ROTATIONS(bits, FD_PITCH));
388 EXPECT_EQ(0, ALIGNMENT_AXIS_ROTATIONS(bits, FD_ROLL));
390 bits = ALIGNMENT_TO_BITMASK(CW90_DEG_FLIP);
391 EXPECT_EQ(0x9, bits); // 001001
392 EXPECT_EQ(1, ALIGNMENT_YAW_ROTATIONS(bits));
393 EXPECT_EQ(2, ALIGNMENT_PITCH_ROTATIONS(bits));
394 EXPECT_EQ(0, ALIGNMENT_ROLL_ROTATIONS(bits));
396 EXPECT_EQ(1, ALIGNMENT_AXIS_ROTATIONS(bits, FD_YAW));
397 EXPECT_EQ(2, ALIGNMENT_AXIS_ROTATIONS(bits, FD_PITCH));
398 EXPECT_EQ(0, ALIGNMENT_AXIS_ROTATIONS(bits, FD_ROLL));
400 bits = ALIGNMENT_TO_BITMASK(CW180_DEG_FLIP);
401 EXPECT_EQ(0xA, bits); // 001010
402 EXPECT_EQ(2, ALIGNMENT_YAW_ROTATIONS(bits));
403 EXPECT_EQ(2, ALIGNMENT_PITCH_ROTATIONS(bits));
404 EXPECT_EQ(0, ALIGNMENT_ROLL_ROTATIONS(bits));
406 EXPECT_EQ(2, ALIGNMENT_AXIS_ROTATIONS(bits, FD_YAW));
407 EXPECT_EQ(2, ALIGNMENT_AXIS_ROTATIONS(bits, FD_PITCH));
408 EXPECT_EQ(0, ALIGNMENT_AXIS_ROTATIONS(bits, FD_ROLL));
410 bits = ALIGNMENT_TO_BITMASK(CW270_DEG_FLIP);
411 EXPECT_EQ(0xB, bits); // 001011
412 EXPECT_EQ(3, ALIGNMENT_YAW_ROTATIONS(bits));
413 EXPECT_EQ(2, ALIGNMENT_PITCH_ROTATIONS(bits));
414 EXPECT_EQ(0, ALIGNMENT_ROLL_ROTATIONS(bits));
416 EXPECT_EQ(3, ALIGNMENT_AXIS_ROTATIONS(bits, FD_YAW));
417 EXPECT_EQ(2, ALIGNMENT_AXIS_ROTATIONS(bits, FD_PITCH));
418 EXPECT_EQ(0, ALIGNMENT_AXIS_ROTATIONS(bits, FD_ROLL));