Parse GPS DOP values (#11912)
[betaflight.git] / src / main / telemetry / srxl.c
blobcd244d81574fe24eaf9ff8ce8ca6b4adf51df2f5
1 /*
2 * This file is part of Cleanflight and Betaflight.
4 * Cleanflight and Betaflight are free software. You can redistribute
5 * this software and/or modify this software under the terms of the
6 * GNU General Public License as published by the Free Software
7 * Foundation, either version 3 of the License, or (at your option)
8 * any later version.
10 * Cleanflight and Betaflight are distributed in the hope that they
11 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
12 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 * See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this software.
18 * If not, see <http://www.gnu.org/licenses/>.
21 #include <stdbool.h>
22 #include <stdint.h>
23 #include <stdlib.h>
24 #include <string.h>
26 #include "platform.h"
28 #if defined(USE_TELEMETRY_SRXL)
30 #include "build/version.h"
32 #include "cms/cms.h"
34 #include "common/crc.h"
35 #include "common/streambuf.h"
36 #include "common/utils.h"
38 #include "config/config.h"
39 #include "config/feature.h"
41 #include "drivers/dshot.h"
42 #include "drivers/vtx_common.h"
44 #include "fc/rc_controls.h"
45 #include "fc/runtime_config.h"
47 #include "flight/imu.h"
48 #include "flight/mixer.h"
50 #include "io/displayport_srxl.h"
51 #include "io/gps.h"
52 #include "io/serial.h"
53 #include "io/vtx_smartaudio.h"
54 #include "io/vtx_tramp.h"
56 #include "pg/rx.h"
57 #include "pg/motor.h"
59 #include "rx/rx.h"
60 #include "rx/spektrum.h"
61 #include "io/spektrum_vtx_control.h"
62 #include "rx/srxl2.h"
64 #include "sensors/adcinternal.h"
65 #include "sensors/battery.h"
66 #include "sensors/esc_sensor.h"
68 #include "telemetry/telemetry.h"
70 #include "srxl.h"
72 #define SRXL_ADDRESS_FIRST 0xA5
73 #define SRXL_ADDRESS_SECOND 0x80
74 #define SRXL_PACKET_LENGTH 0x15
76 #define SRXL_FRAMETYPE_TELE_QOS 0x7F
77 #define SRXL_FRAMETYPE_TELE_RPM 0x7E
78 #define SRXL_FRAMETYPE_POWERBOX 0x0A
79 #define SRXL_FRAMETYPE_TELE_FP_MAH 0x34
80 #define TELE_DEVICE_VTX 0x0D // Video Transmitter Status
81 #define SRXL_FRAMETYPE_SID 0x00
82 #define SRXL_FRAMETYPE_GPS_LOC 0x16 // GPS Location Data (Eagle Tree)
83 #define SRXL_FRAMETYPE_GPS_STAT 0x17
85 static bool srxlTelemetryEnabled;
86 static bool srxl2 = false;
87 static uint8_t srxlFrame[SRXL_FRAME_SIZE_MAX];
89 static void srxlInitializeFrame(sbuf_t *dst)
91 if (srxl2) {
92 #if defined(USE_SERIALRX_SRXL2)
93 srxl2InitializeFrame(dst);
94 #endif
95 } else {
96 dst->ptr = srxlFrame;
97 dst->end = ARRAYEND(srxlFrame);
99 sbufWriteU8(dst, SRXL_ADDRESS_FIRST);
100 sbufWriteU8(dst, SRXL_ADDRESS_SECOND);
101 sbufWriteU8(dst, SRXL_PACKET_LENGTH);
105 static void srxlFinalize(sbuf_t *dst)
107 if (srxl2) {
108 #if defined(USE_SERIALRX_SRXL2)
109 srxl2FinalizeFrame(dst);
110 #endif
111 } else {
112 crc16_ccitt_sbuf_append(dst, &srxlFrame[3]); // start at byte 3, since CRC does not include device address and packet length
113 sbufSwitchToReader(dst, srxlFrame);
114 // write the telemetry frame to the receiver.
115 srxlRxWriteTelemetryData(sbufPtr(dst), sbufBytesRemaining(dst));
120 SRXL frame has the structure:
121 <0xA5><0x80><Length><16-byte telemetry packet><2 Byte CRC of payload>
122 The <Length> shall be 0x15 (length of the 16-byte telemetry packet + overhead).
126 typedef struct
128 UINT8 identifier; // Source device = 0x7F
129 UINT8 sID; // Secondary ID
130 UINT16 A;
131 UINT16 B;
132 UINT16 L;
133 UINT16 R;
134 UINT16 F;
135 UINT16 H;
136 UINT16 rxVoltage; // Volts, 0.01V increments
137 } STRU_TELE_QOS;
140 #define STRU_TELE_QOS_EMPTY_FIELDS_COUNT 14
141 #define STRU_TELE_QOS_EMPTY_FIELDS_VALUE 0xff
143 bool srxlFrameQos(sbuf_t *dst, timeUs_t currentTimeUs)
145 UNUSED(currentTimeUs);
147 sbufWriteU8(dst, SRXL_FRAMETYPE_TELE_QOS);
148 sbufWriteU8(dst, SRXL_FRAMETYPE_SID);
150 sbufFill(dst, STRU_TELE_QOS_EMPTY_FIELDS_VALUE, STRU_TELE_QOS_EMPTY_FIELDS_COUNT); // Clear remainder
152 // Mandatory frame, send it unconditionally.
153 return true;
158 typedef struct
160 UINT8 identifier; // Source device = 0x7E
161 UINT8 sID; // Secondary ID
162 UINT16 microseconds; // microseconds between pulse leading edges
163 UINT16 volts; // 0.01V increments
164 INT16 temperature; // degrees F
165 INT8 dBm_A, // Average signal for A antenna in dBm
166 INT8 dBm_B; // Average signal for B antenna in dBm.
167 // If only 1 antenna, set B = A
168 } STRU_TELE_RPM;
171 #define STRU_TELE_RPM_EMPTY_FIELDS_COUNT 8
172 #define STRU_TELE_RPM_EMPTY_FIELDS_VALUE 0xff
174 #define SPEKTRUM_RPM_UNUSED 0xffff
175 #define SPEKTRUM_TEMP_UNUSED 0x7fff
176 #define MICROSEC_PER_MINUTE 60000000
178 //Original range of 1 - 65534 uSec gives an RPM range of 915 - 60000000rpm, 60MegaRPM
179 #define SPEKTRUM_MIN_RPM 999 // Min RPM to show the user, indicating RPM is really below 999
180 #define SPEKTRUM_MAX_RPM 60000000
182 uint16_t getMotorAveragePeriod(void)
185 #if defined( USE_ESC_SENSOR_TELEMETRY) || defined( USE_DSHOT_TELEMETRY)
186 uint32_t rpm = 0;
187 uint16_t period_us = SPEKTRUM_RPM_UNUSED;
189 #if defined( USE_ESC_SENSOR_TELEMETRY)
190 escSensorData_t *escData = getEscSensorData(ESC_SENSOR_COMBINED);
191 if (escData != NULL) {
192 rpm = escData->rpm;
194 #endif
196 #if defined(USE_DSHOT_TELEMETRY)
197 // Calculate this way when no rpm from esc data
198 if (useDshotTelemetry && rpm == 0) {
199 rpm = getDshotAverageRpm();
201 #endif
203 if (rpm > SPEKTRUM_MIN_RPM && rpm < SPEKTRUM_MAX_RPM) {
204 period_us = MICROSEC_PER_MINUTE / rpm; // revs/minute -> microSeconds
205 } else {
206 period_us = MICROSEC_PER_MINUTE / SPEKTRUM_MIN_RPM;
209 return period_us;
210 #else
211 return SPEKTRUM_RPM_UNUSED;
212 #endif
215 bool srxlFrameRpm(sbuf_t *dst, timeUs_t currentTimeUs)
217 int16_t coreTemp = SPEKTRUM_TEMP_UNUSED;
218 #if defined(USE_ADC_INTERNAL)
219 coreTemp = getCoreTemperatureCelsius();
220 coreTemp = coreTemp * 9 / 5 + 32; // C -> F
221 #endif
223 UNUSED(currentTimeUs);
225 sbufWriteU8(dst, SRXL_FRAMETYPE_TELE_RPM);
226 sbufWriteU8(dst, SRXL_FRAMETYPE_SID);
227 sbufWriteU16BigEndian(dst, getMotorAveragePeriod()); // pulse leading edges
228 if (telemetryConfig()->report_cell_voltage) {
229 sbufWriteU16BigEndian(dst, getBatteryAverageCellVoltage()); // Cell voltage is in units of 0.01V
230 } else {
231 sbufWriteU16BigEndian(dst, getBatteryVoltage()); // vbat is in units of 0.01V
233 sbufWriteU16BigEndian(dst, coreTemp); // temperature
234 sbufFill(dst, STRU_TELE_RPM_EMPTY_FIELDS_VALUE, STRU_TELE_RPM_EMPTY_FIELDS_COUNT);
236 // Mandatory frame, send it unconditionally.
237 return true;
240 #if defined(USE_GPS)
242 // From Frsky implementation
243 static void GPStoDDDMM_MMMM(int32_t mwiigps, gpsCoordinateDDDMMmmmm_t *result)
245 int32_t absgps, deg, min;
246 absgps = abs(mwiigps);
247 deg = absgps / GPS_DEGREES_DIVIDER;
248 absgps = (absgps - deg * GPS_DEGREES_DIVIDER) * 60; // absgps = Minutes left * 10^7
249 min = absgps / GPS_DEGREES_DIVIDER; // minutes left
250 result->dddmm = deg * 100 + min;
251 result->mmmm = (absgps - min * GPS_DEGREES_DIVIDER) / 1000;
254 // BCD conversion
255 static uint32_t dec2bcd(uint16_t dec)
257 uint32_t result = 0;
258 uint8_t counter = 0;
260 while (dec) {
261 result |= (dec % 10) << counter * 4;
262 counter++;
263 dec /= 10;
265 return result;
269 typedef struct
271 UINT8 identifier; // Source device = 0x16
272 UINT8 sID; // Secondary ID
273 UINT16 altitudeLow; // BCD, meters, format 3.1 (Low order of altitude)
274 UINT32 latitude; // BCD, format 4.4, Degrees * 100 + minutes, less than 100 degrees
275 UINT32 longitude; // BCD, format 4.4 , Degrees * 100 + minutes, flag indicates > 99 degrees
276 UINT16 course; // BCD, 3.1
277 UINT8 HDOP; // BCD, format 1.1
278 UINT8 GPSflags; // see definitions below
279 } STRU_TELE_GPS_LOC;
282 // GPS flags definitions
283 #define GPS_FLAGS_IS_NORTH_BIT 0x01
284 #define GPS_FLAGS_IS_EAST_BIT 0x02
285 #define GPS_FLAGS_LONGITUDE_GREATER_99_BIT 0x04
286 #define GPS_FLAGS_GPS_FIX_VALID_BIT 0x08
287 #define GPS_FLAGS_GPS_DATA_RECEIVED_BIT 0x10
288 #define GPS_FLAGS_3D_FIX_BIT 0x20
289 #define GPS_FLAGS_NEGATIVE_ALT_BIT 0x80
291 bool srxlFrameGpsLoc(sbuf_t *dst, timeUs_t currentTimeUs)
293 UNUSED(currentTimeUs);
294 gpsCoordinateDDDMMmmmm_t coordinate;
295 uint32_t latitudeBcd, longitudeBcd, altitudeLo;
296 uint16_t altitudeLoBcd, groundCourseBcd, hdop;
297 uint8_t hdopBcd, gpsFlags;
299 if (!featureIsEnabled(FEATURE_GPS) || !STATE(GPS_FIX) || gpsSol.numSat < GPS_MIN_SAT_COUNT) {
300 return false;
303 // lattitude
304 GPStoDDDMM_MMMM(gpsSol.llh.lat, &coordinate);
305 latitudeBcd = (dec2bcd(coordinate.dddmm) << 16) | dec2bcd(coordinate.mmmm);
307 // longitude
308 GPStoDDDMM_MMMM(gpsSol.llh.lon, &coordinate);
309 longitudeBcd = (dec2bcd(coordinate.dddmm) << 16) | dec2bcd(coordinate.mmmm);
311 // altitude (low order)
312 altitudeLo = abs(gpsSol.llh.altCm) / 10;
313 altitudeLoBcd = dec2bcd(altitudeLo % 100000);
315 // Ground course
316 groundCourseBcd = dec2bcd(gpsSol.groundCourse);
318 // HDOP
319 hdop = gpsSol.dop.hdop / 10;
320 hdop = (hdop > 99) ? 99 : hdop;
321 hdopBcd = dec2bcd(hdop);
323 // flags
324 gpsFlags = GPS_FLAGS_GPS_DATA_RECEIVED_BIT | GPS_FLAGS_GPS_FIX_VALID_BIT | GPS_FLAGS_3D_FIX_BIT;
325 gpsFlags |= (gpsSol.llh.lat > 0) ? GPS_FLAGS_IS_NORTH_BIT : 0;
326 gpsFlags |= (gpsSol.llh.lon > 0) ? GPS_FLAGS_IS_EAST_BIT : 0;
327 gpsFlags |= (gpsSol.llh.altCm < 0) ? GPS_FLAGS_NEGATIVE_ALT_BIT : 0;
328 gpsFlags |= (gpsSol.llh.lon / GPS_DEGREES_DIVIDER > 99) ? GPS_FLAGS_LONGITUDE_GREATER_99_BIT : 0;
330 // SRXL frame
331 sbufWriteU8(dst, SRXL_FRAMETYPE_GPS_LOC);
332 sbufWriteU8(dst, SRXL_FRAMETYPE_SID);
333 sbufWriteU16(dst, altitudeLoBcd);
334 sbufWriteU32(dst, latitudeBcd);
335 sbufWriteU32(dst, longitudeBcd);
336 sbufWriteU16(dst, groundCourseBcd);
337 sbufWriteU8(dst, hdopBcd);
338 sbufWriteU8(dst, gpsFlags);
340 return true;
344 typedef struct
346 UINT8 identifier; // Source device = 0x17
347 UINT8 sID; // Secondary ID
348 UINT16 speed; // BCD, knots, format 3.1
349 UINT32 UTC; // BCD, format HH:MM:SS.S, format 6.1
350 UINT8 numSats; // BCD, 0-99
351 UINT8 altitudeHigh; // BCD, meters, format 2.0 (High bits alt)
352 } STRU_TELE_GPS_STAT;
355 #define STRU_TELE_GPS_STAT_EMPTY_FIELDS_VALUE 0xff
356 #define STRU_TELE_GPS_STAT_EMPTY_FIELDS_COUNT 6
357 #define SPEKTRUM_TIME_UNKNOWN 0xFFFFFFFF
359 bool srxlFrameGpsStat(sbuf_t *dst, timeUs_t currentTimeUs)
361 UNUSED(currentTimeUs);
362 uint32_t timeBcd;
363 uint16_t speedKnotsBcd, speedTmp;
364 uint8_t numSatBcd, altitudeHighBcd;
365 bool timeProvided = false;
367 if (!featureIsEnabled(FEATURE_GPS) || !STATE(GPS_FIX) || gpsSol.numSat < GPS_MIN_SAT_COUNT) {
368 return false;
371 // Number of sats and altitude (high bits)
372 numSatBcd = (gpsSol.numSat > 99) ? dec2bcd(99) : dec2bcd(gpsSol.numSat);
373 altitudeHighBcd = dec2bcd(gpsSol.llh.altCm / 100000);
375 // Speed (knots)
376 speedTmp = gpsSol.groundSpeed * 1944 / 1000;
377 speedKnotsBcd = (speedTmp > 9999) ? dec2bcd(9999) : dec2bcd(speedTmp);
379 #ifdef USE_RTC_TIME
380 dateTime_t dt;
381 // RTC
382 if (rtcHasTime()) {
383 rtcGetDateTime(&dt);
384 timeBcd = dec2bcd(dt.hours);
385 timeBcd = timeBcd << 8;
386 timeBcd = timeBcd | dec2bcd(dt.minutes);
387 timeBcd = timeBcd << 8;
388 timeBcd = timeBcd | dec2bcd(dt.seconds);
389 timeBcd = timeBcd << 4;
390 timeBcd = timeBcd | dec2bcd(dt.millis / 100);
391 timeProvided = true;
393 #endif
394 timeBcd = (timeProvided) ? timeBcd : SPEKTRUM_TIME_UNKNOWN;
396 // SRXL frame
397 sbufWriteU8(dst, SRXL_FRAMETYPE_GPS_STAT);
398 sbufWriteU8(dst, SRXL_FRAMETYPE_SID);
399 sbufWriteU16(dst, speedKnotsBcd);
400 sbufWriteU32(dst, timeBcd);
401 sbufWriteU8(dst, numSatBcd);
402 sbufWriteU8(dst, altitudeHighBcd);
403 sbufFill(dst, STRU_TELE_GPS_STAT_EMPTY_FIELDS_VALUE, STRU_TELE_GPS_STAT_EMPTY_FIELDS_COUNT);
405 return true;
408 #endif
411 typedef struct
413 UINT8 identifier; // Source device = 0x34
414 UINT8 sID; // Secondary ID
415 INT16 current_A; // Instantaneous current, 0.1A (0-3276.8A)
416 INT16 chargeUsed_A; // Integrated mAh used, 1mAh (0-32.766Ah)
417 UINT16 temp_A; // Temperature, 0.1C (0-150C, 0x7FFF indicates not populated)
418 INT16 current_B; // Instantaneous current, 0.1A (0-3276.8A)
419 INT16 chargeUsed_B; // Integrated mAh used, 1mAh (0-32.766Ah)
420 UINT16 temp_B; // Temperature, 0.1C (0-150C, 0x7FFF indicates not populated)
421 UINT16 spare; // Not used
422 } STRU_TELE_FP_MAH;
424 #define STRU_TELE_FP_EMPTY_FIELDS_COUNT 2
425 #define STRU_TELE_FP_EMPTY_FIELDS_VALUE 0xff
427 #define SPEKTRUM_AMPS_UNUSED 0x7fff
428 #define SPEKTRUM_AMPH_UNUSED 0x7fff
430 #define FP_MAH_KEEPALIVE_TIME_OUT 2000000 // 2s
432 bool srxlFrameFlightPackCurrent(sbuf_t *dst, timeUs_t currentTimeUs)
434 uint16_t amps = getAmperage() / 10;
435 uint16_t mah = getMAhDrawn();
436 static uint16_t sentAmps;
437 static uint16_t sentMah;
438 static timeUs_t lastTimeSentFPmAh = 0;
440 timeUs_t keepAlive = currentTimeUs - lastTimeSentFPmAh;
442 if ( amps != sentAmps ||
443 mah != sentMah ||
444 keepAlive > FP_MAH_KEEPALIVE_TIME_OUT ) {
446 sbufWriteU8(dst, SRXL_FRAMETYPE_TELE_FP_MAH);
447 sbufWriteU8(dst, SRXL_FRAMETYPE_SID);
448 sbufWriteU16(dst, amps);
449 sbufWriteU16(dst, mah);
450 sbufWriteU16(dst, SPEKTRUM_TEMP_UNUSED); // temp A
451 sbufWriteU16(dst, SPEKTRUM_AMPS_UNUSED); // Amps B
452 sbufWriteU16(dst, SPEKTRUM_AMPH_UNUSED); // mAH B
453 sbufWriteU16(dst, SPEKTRUM_TEMP_UNUSED); // temp B
455 sbufFill(dst, STRU_TELE_FP_EMPTY_FIELDS_VALUE, STRU_TELE_FP_EMPTY_FIELDS_COUNT);
457 sentAmps = amps;
458 sentMah = mah;
459 lastTimeSentFPmAh = currentTimeUs;
460 return true;
462 return false;
465 #if defined (USE_SPEKTRUM_CMS_TELEMETRY) && defined (USE_CMS)
467 // Betaflight CMS using Spektrum Tx telemetry TEXT_GEN sensor as display.
469 #define SPEKTRUM_SRXL_DEVICE_TEXTGEN (0x0C) // Text Generator
470 #define SPEKTRUM_SRXL_DEVICE_TEXTGEN_ROWS (9) // Text Generator ROWS
471 #define SPEKTRUM_SRXL_DEVICE_TEXTGEN_COLS (13) // Text Generator COLS
474 typedef struct
476 UINT8 identifier;
477 UINT8 sID; // Secondary ID
478 UINT8 lineNumber; // Line number to display (0 = title, 1-8 for general, 254 = Refresh backlight, 255 = Erase all text on screen)
479 char text[13]; // 0-terminated text when < 13 chars
480 } STRU_SPEKTRUM_SRXL_TEXTGEN;
483 #if ( SPEKTRUM_SRXL_TEXTGEN_BUFFER_COLS > SPEKTRUM_SRXL_DEVICE_TEXTGEN_COLS )
484 static char srxlTextBuff[SPEKTRUM_SRXL_TEXTGEN_BUFFER_ROWS][SPEKTRUM_SRXL_TEXTGEN_BUFFER_COLS];
485 static bool lineSent[SPEKTRUM_SRXL_TEXTGEN_BUFFER_ROWS];
486 #else
487 static char srxlTextBuff[SPEKTRUM_SRXL_DEVICE_TEXTGEN_ROWS][SPEKTRUM_SRXL_DEVICE_TEXTGEN_COLS];
488 static bool lineSent[SPEKTRUM_SRXL_DEVICE_TEXTGEN_ROWS];
489 #endif
491 //**************************************************************************
492 // API Running in external client task context. E.g. in the CMS task
493 int spektrumTmTextGenPutChar(uint8_t col, uint8_t row, char c)
495 if (row < SPEKTRUM_SRXL_TEXTGEN_BUFFER_ROWS && col < SPEKTRUM_SRXL_TEXTGEN_BUFFER_COLS) {
496 // Only update and force a tm transmision if something has actually changed.
497 if (srxlTextBuff[row][col] != c) {
498 srxlTextBuff[row][col] = c;
499 lineSent[row] = false;
502 return 0;
504 //**************************************************************************
506 bool srxlFrameText(sbuf_t *dst, timeUs_t currentTimeUs)
508 UNUSED(currentTimeUs);
509 static uint8_t lineNo = 0;
510 int lineCount = 0;
512 // Skip already sent lines...
513 while (lineSent[lineNo] &&
514 lineCount < SPEKTRUM_SRXL_DEVICE_TEXTGEN_ROWS) {
515 lineNo = (lineNo + 1) % SPEKTRUM_SRXL_DEVICE_TEXTGEN_ROWS;
516 lineCount++;
519 sbufWriteU8(dst, SPEKTRUM_SRXL_DEVICE_TEXTGEN);
520 sbufWriteU8(dst, SRXL_FRAMETYPE_SID);
521 sbufWriteU8(dst, lineNo);
522 sbufWriteData(dst, srxlTextBuff[lineNo], SPEKTRUM_SRXL_DEVICE_TEXTGEN_COLS);
524 lineSent[lineNo] = true;
525 lineNo = (lineNo + 1) % SPEKTRUM_SRXL_DEVICE_TEXTGEN_ROWS;
527 // Always send something, Always one user frame after the two mandatory frames
528 // I.e. All of the three frame prep routines QOS, RPM, TEXT should always return true
529 // too keep the "Waltz" sequence intact.
530 return true;
532 #endif
534 #if defined(USE_SPEKTRUM_VTX_TELEMETRY) && defined(USE_SPEKTRUM_VTX_CONTROL) && defined(USE_VTX_COMMON)
536 static uint8_t vtxDeviceType;
538 static void collectVtxTmData(spektrumVtx_t * vtx)
540 const vtxDevice_t *vtxDevice = vtxCommonDevice();
541 vtxDeviceType = vtxCommonGetDeviceType(vtxDevice);
543 // Collect all data from VTX, if VTX is ready
544 unsigned vtxStatus;
545 if (vtxDevice == NULL || !(vtxCommonGetBandAndChannel(vtxDevice, &vtx->band, &vtx->channel) &&
546 vtxCommonGetStatus(vtxDevice, &vtxStatus) &&
547 vtxCommonGetPowerIndex(vtxDevice, &vtx->power)) )
549 vtx->band = 0;
550 vtx->channel = 0;
551 vtx->power = 0;
552 vtx->pitMode = 0;
553 } else {
554 vtx->pitMode = (vtxStatus & VTX_STATUS_PIT_MODE) ? 1 : 0;
557 vtx->powerValue = 0;
558 #ifdef USE_SPEKTRUM_REGION_CODES
559 vtx->region = SpektrumRegion;
560 #else
561 vtx->region = SPEKTRUM_VTX_REGION_NONE;
562 #endif
565 // Reverse lookup, device power index to Spektrum power range index.
566 static void convertVtxPower(spektrumVtx_t * vtx)
568 uint8_t const * powerIndexTable = NULL;
570 vtxCommonLookupPowerValue(vtxCommonDevice(), vtx->power, &vtx->powerValue);
571 switch (vtxDeviceType) {
573 #if defined(USE_VTX_TRAMP)
574 case VTXDEV_TRAMP:
575 powerIndexTable = vtxTrampPi;
576 break;
577 #endif
578 #if defined(USE_VTX_SMARTAUDIO)
579 case VTXDEV_SMARTAUDIO:
580 powerIndexTable = vtxSaPi;
581 break;
582 #endif
583 #if defined(USE_VTX_RTC6705)
584 case VTXDEV_RTC6705:
585 powerIndexTable = vtxRTC6705Pi;
586 break;
587 #endif
589 case VTXDEV_UNKNOWN:
590 case VTXDEV_UNSUPPORTED:
591 default:
592 break;
596 if (powerIndexTable != NULL) {
597 for (int i = 0; i < SPEKTRUM_VTX_POWER_COUNT; i++)
598 if (powerIndexTable[i] >= vtx->power) {
599 vtx->power = i; // Translate device power index to Spektrum power index.
600 break;
605 static void convertVtxTmData(spektrumVtx_t * vtx)
607 // Convert from internal band indexes to Spektrum indexes
608 for (int i = 0; i < SPEKTRUM_VTX_BAND_COUNT; i++) {
609 if (spek2commonBand[i] == vtx->band) {
610 vtx->band = i;
611 break;
615 // De-bump channel no 1 based interally, 0-based in Spektrum.
616 vtx->channel--;
618 // Convert Power index to Spektrum ranges, different per brand.
619 convertVtxPower(vtx);
623 typedef struct
625 UINT8 identifier;
626 UINT8 sID; // Secondary ID
627 UINT8 band; // VTX Band (0 = Fatshark, 1 = Raceband, 2 = E, 3 = B, 4 = A, 5-7 = Reserved)
628 UINT8 channel; // VTX Channel (0-7)
629 UINT8 pit; // Pit/Race mode (0 = Race, 1 = Pit). Race = (normal operating) mode. Pit = (reduced power) mode. When PIT is set, it overrides all other power settings
630 UINT8 power; // VTX Power (0 = Off, 1 = 1mw to 14mW, 2 = 15mW to 25mW, 3 = 26mW to 99mW, 4 = 100mW to 299mW, 5 = 300mW to 600mW, 6 = 601mW+, 7 = manual control)
631 UINT16 powerDec; // VTX Power as a decimal 1mw/unit
632 UINT8 region; // Region (0 = USA, 1 = EU, 0xFF = N/A)
633 UINT8 rfu[7]; // reserved
634 } STRU_TELE_VTX;
637 #define STRU_TELE_VTX_EMPTY_COUNT 7
638 #define STRU_TELE_VTX_EMPTY_VALUE 0xff
640 #define VTX_KEEPALIVE_TIME_OUT 2000000 // uS
642 static bool srxlFrameVTX(sbuf_t *dst, timeUs_t currentTimeUs)
644 static timeUs_t lastTimeSentVtx = 0;
645 static spektrumVtx_t vtxSent;
647 spektrumVtx_t vtx;
648 collectVtxTmData(&vtx);
650 if ((vtxDeviceType != VTXDEV_UNKNOWN) && vtxDeviceType != VTXDEV_UNSUPPORTED) {
651 convertVtxTmData(&vtx);
653 if ((memcmp(&vtxSent, &vtx, sizeof(spektrumVtx_t)) != 0) ||
654 ((currentTimeUs - lastTimeSentVtx) > VTX_KEEPALIVE_TIME_OUT) ) {
655 // Fill in the VTX tm structure
656 sbufWriteU8(dst, TELE_DEVICE_VTX);
657 sbufWriteU8(dst, SRXL_FRAMETYPE_SID);
658 sbufWriteU8(dst, vtx.band);
659 sbufWriteU8(dst, vtx.channel);
660 sbufWriteU8(dst, vtx.pitMode);
661 sbufWriteU8(dst, vtx.power);
662 sbufWriteU16(dst, vtx.powerValue);
663 sbufWriteU8(dst, vtx.region);
665 sbufFill(dst, STRU_TELE_VTX_EMPTY_VALUE, STRU_TELE_VTX_EMPTY_COUNT);
667 memcpy(&vtxSent, &vtx, sizeof(spektrumVtx_t));
668 lastTimeSentVtx = currentTimeUs;
669 return true;
672 return false;
674 #endif // USE_SPEKTRUM_VTX_TELEMETRY && USE_SPEKTRUM_VTX_CONTROL && USE_VTX_COMMON
677 // Schedule array to decide how often each type of frame is sent
678 // The frames are scheduled in sets of 3 frames, 2 mandatory and 1 user frame.
679 // The user frame type is cycled for each set.
680 // Example. QOS, RPM,.CURRENT, QOS, RPM, TEXT. QOS, RPM, CURRENT, etc etc
682 #define SRXL_SCHEDULE_MANDATORY_COUNT 2 // Mandatory QOS and RPM sensors
684 #define SRXL_FP_MAH_COUNT 1
686 #if defined(USE_GPS)
687 #define SRXL_GPS_LOC_COUNT 1
688 #define SRXL_GPS_STAT_COUNT 1
689 #else
690 #define SRXL_GPS_LOC_COUNT 0
691 #define SRXL_GPS_STAT_COUNT 0
692 #endif
694 #if defined (USE_SPEKTRUM_CMS_TELEMETRY) && defined (USE_CMS)
695 #define SRXL_SCHEDULE_CMS_COUNT 1
696 #else
697 #define SRXL_SCHEDULE_CMS_COUNT 0
698 #endif
700 #if defined(USE_SPEKTRUM_VTX_TELEMETRY) && defined(USE_SPEKTRUM_VTX_CONTROL) && defined(USE_VTX_COMMON)
701 #define SRXL_VTX_TM_COUNT 1
702 #else
703 #define SRXL_VTX_TM_COUNT 0
704 #endif
706 #define SRXL_SCHEDULE_USER_COUNT (SRXL_FP_MAH_COUNT + SRXL_SCHEDULE_CMS_COUNT + SRXL_VTX_TM_COUNT + SRXL_GPS_LOC_COUNT + SRXL_GPS_STAT_COUNT)
707 #define SRXL_SCHEDULE_COUNT_MAX (SRXL_SCHEDULE_MANDATORY_COUNT + 1)
708 #define SRXL_TOTAL_COUNT (SRXL_SCHEDULE_MANDATORY_COUNT + SRXL_SCHEDULE_USER_COUNT)
710 typedef bool (*srxlScheduleFnPtr)(sbuf_t *dst, timeUs_t currentTimeUs);
712 const srxlScheduleFnPtr srxlScheduleFuncs[SRXL_TOTAL_COUNT] = {
713 /* must send srxlFrameQos, Rpm and then alternating items of our own */
714 srxlFrameQos,
715 srxlFrameRpm,
716 srxlFrameFlightPackCurrent,
717 #if defined(USE_GPS)
718 srxlFrameGpsStat,
719 srxlFrameGpsLoc,
720 #endif
721 #if defined(USE_SPEKTRUM_VTX_TELEMETRY) && defined(USE_SPEKTRUM_VTX_CONTROL) && defined(USE_VTX_COMMON)
722 srxlFrameVTX,
723 #endif
724 #if defined (USE_SPEKTRUM_CMS_TELEMETRY) && defined (USE_CMS)
725 srxlFrameText,
726 #endif
730 static void processSrxl(timeUs_t currentTimeUs)
732 static uint8_t srxlScheduleIndex = 0;
733 static uint8_t srxlScheduleUserIndex = 0;
735 sbuf_t srxlPayloadBuf;
736 sbuf_t *dst = &srxlPayloadBuf;
737 srxlScheduleFnPtr srxlFnPtr;
739 if (srxlScheduleIndex < SRXL_SCHEDULE_MANDATORY_COUNT) {
740 srxlFnPtr = srxlScheduleFuncs[srxlScheduleIndex];
741 } else {
742 srxlFnPtr = srxlScheduleFuncs[srxlScheduleIndex + srxlScheduleUserIndex];
743 srxlScheduleUserIndex = (srxlScheduleUserIndex + 1) % SRXL_SCHEDULE_USER_COUNT;
745 #if defined (USE_SPEKTRUM_CMS_TELEMETRY) && defined (USE_CMS)
746 // Boost CMS performance by sending nothing else but CMS Text frames when in a CMS menu.
747 // Sideeffect, all other reports are still not sent if user leaves CMS without a proper EXIT.
748 if (cmsInMenu &&
749 (pCurrentDisplay == &srxlDisplayPort)) {
750 srxlFnPtr = srxlFrameText;
752 #endif
756 if (srxlFnPtr) {
757 srxlInitializeFrame(dst);
758 if (srxlFnPtr(dst, currentTimeUs)) {
759 srxlFinalize(dst);
762 srxlScheduleIndex = (srxlScheduleIndex + 1) % SRXL_SCHEDULE_COUNT_MAX;
765 void initSrxlTelemetry(void)
767 // check if there is a serial port open for SRXL telemetry (ie opened by the SRXL RX)
768 // and feature is enabled, if so, set SRXL telemetry enabled
769 if (srxlRxIsActive()) {
770 srxlTelemetryEnabled = true;
771 srxl2 = false;
772 #if defined(USE_SERIALRX_SRXL2)
773 } else if (srxl2RxIsActive()) {
774 srxlTelemetryEnabled = true;
775 srxl2 = true;
776 #endif
777 } else {
778 srxlTelemetryEnabled = false;
779 srxl2 = false;
782 #if defined(USE_SPEKTRUM_CMS_TELEMETRY)
783 if (srxlTelemetryEnabled) {
784 srxlDisplayportRegister();
786 #endif
789 bool checkSrxlTelemetryState(void)
791 return srxlTelemetryEnabled;
795 * Called periodically by the scheduler
797 void handleSrxlTelemetry(timeUs_t currentTimeUs)
799 if (srxl2) {
800 #if defined(USE_SERIALRX_SRXL2)
801 if (srxl2TelemetryRequested()) {
802 processSrxl(currentTimeUs);
804 #endif
805 } else {
806 if (srxlTelemetryBufferEmpty()) {
807 processSrxl(currentTimeUs);
811 #endif