Merge pull request #11270 from haslinghuis/rename_attr
[betaflight.git] / lib / main / STM32F4 / Drivers / STM32F4xx_StdPeriph_Driver / src / stm32f4xx_can.c
blob6334dce3bdcab1ce9df75ccae3898f71c1e4cddc
1 /**
2 ******************************************************************************
3 * @file stm32f4xx_can.c
4 * @author MCD Application Team
5 * @version V1.7.1
6 * @date 20-May-2016
7 * @brief This file provides firmware functions to manage the following
8 * functionalities of the Controller area network (CAN) peripheral:
9 * + Initialization and Configuration
10 * + CAN Frames Transmission
11 * + CAN Frames Reception
12 * + Operation modes switch
13 * + Error management
14 * + Interrupts and flags
16 @verbatim
17 ===============================================================================
18 ##### How to use this driver #####
19 ===============================================================================
20 [..]
21 (#) Enable the CAN controller interface clock using
22 RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN1, ENABLE); for CAN1
23 and RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN2, ENABLE); for CAN2
24 -@- In case you are using CAN2 only, you have to enable the CAN1 clock.
26 (#) CAN pins configuration
27 (++) Enable the clock for the CAN GPIOs using the following function:
28 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE);
29 (++) Connect the involved CAN pins to AF9 using the following function
30 GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_CANx);
31 (++) Configure these CAN pins in alternate function mode by calling
32 the function GPIO_Init();
34 (#) Initialize and configure the CAN using CAN_Init() and
35 CAN_FilterInit() functions.
37 (#) Transmit the desired CAN frame using CAN_Transmit() function.
39 (#) Check the transmission of a CAN frame using CAN_TransmitStatus()
40 function.
42 (#) Cancel the transmission of a CAN frame using CAN_CancelTransmit()
43 function.
45 (#) Receive a CAN frame using CAN_Receive() function.
47 (#) Release the receive FIFOs using CAN_FIFORelease() function.
49 (#) Return the number of pending received frames using
50 CAN_MessagePending() function.
52 (#) To control CAN events you can use one of the following two methods:
53 (++) Check on CAN flags using the CAN_GetFlagStatus() function.
54 (++) Use CAN interrupts through the function CAN_ITConfig() at
55 initialization phase and CAN_GetITStatus() function into
56 interrupt routines to check if the event has occurred or not.
57 After checking on a flag you should clear it using CAN_ClearFlag()
58 function. And after checking on an interrupt event you should
59 clear it using CAN_ClearITPendingBit() function.
61 @endverbatim
63 ******************************************************************************
64 * @attention
66 * <h2><center>&copy; COPYRIGHT 2016 STMicroelectronics</center></h2>
68 * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
69 * You may not use this file except in compliance with the License.
70 * You may obtain a copy of the License at:
72 * http://www.st.com/software_license_agreement_liberty_v2
74 * Unless required by applicable law or agreed to in writing, software
75 * distributed under the License is distributed on an "AS IS" BASIS,
76 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
77 * See the License for the specific language governing permissions and
78 * limitations under the License.
80 ******************************************************************************
83 /* Includes ------------------------------------------------------------------*/
84 #include "stm32f4xx_can.h"
85 #include "stm32f4xx_rcc.h"
87 /** @addtogroup STM32F4xx_StdPeriph_Driver
88 * @{
91 /** @defgroup CAN
92 * @brief CAN driver modules
93 * @{
94 */
95 /* Private typedef -----------------------------------------------------------*/
96 /* Private define ------------------------------------------------------------*/
98 /* CAN Master Control Register bits */
99 #define MCR_DBF ((uint32_t)0x00010000) /* software master reset */
101 /* CAN Mailbox Transmit Request */
102 #define TMIDxR_TXRQ ((uint32_t)0x00000001) /* Transmit mailbox request */
104 /* CAN Filter Master Register bits */
105 #define FMR_FINIT ((uint32_t)0x00000001) /* Filter init mode */
107 /* Time out for INAK bit */
108 #define INAK_TIMEOUT ((uint32_t)0x0000FFFF)
109 /* Time out for SLAK bit */
110 #define SLAK_TIMEOUT ((uint32_t)0x0000FFFF)
112 /* Flags in TSR register */
113 #define CAN_FLAGS_TSR ((uint32_t)0x08000000)
114 /* Flags in RF1R register */
115 #define CAN_FLAGS_RF1R ((uint32_t)0x04000000)
116 /* Flags in RF0R register */
117 #define CAN_FLAGS_RF0R ((uint32_t)0x02000000)
118 /* Flags in MSR register */
119 #define CAN_FLAGS_MSR ((uint32_t)0x01000000)
120 /* Flags in ESR register */
121 #define CAN_FLAGS_ESR ((uint32_t)0x00F00000)
123 /* Mailboxes definition */
124 #define CAN_TXMAILBOX_0 ((uint8_t)0x00)
125 #define CAN_TXMAILBOX_1 ((uint8_t)0x01)
126 #define CAN_TXMAILBOX_2 ((uint8_t)0x02)
128 #define CAN_MODE_MASK ((uint32_t) 0x00000003)
130 /* Private macro -------------------------------------------------------------*/
131 /* Private variables ---------------------------------------------------------*/
132 /* Private function prototypes -----------------------------------------------*/
133 /* Private functions ---------------------------------------------------------*/
134 static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit);
136 /** @defgroup CAN_Private_Functions
137 * @{
140 /** @defgroup CAN_Group1 Initialization and Configuration functions
141 * @brief Initialization and Configuration functions
143 @verbatim
144 ===============================================================================
145 ##### Initialization and Configuration functions #####
146 ===============================================================================
147 [..] This section provides functions allowing to
148 (+) Initialize the CAN peripherals : Prescaler, operating mode, the maximum
149 number of time quanta to perform resynchronization, the number of time
150 quanta in Bit Segment 1 and 2 and many other modes.
151 Refer to @ref CAN_InitTypeDef for more details.
152 (+) Configures the CAN reception filter.
153 (+) Select the start bank filter for slave CAN.
154 (+) Enables or disables the Debug Freeze mode for CAN
155 (+)Enables or disables the CAN Time Trigger Operation communication mode
157 @endverbatim
158 * @{
162 * @brief Deinitializes the CAN peripheral registers to their default reset values.
163 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
164 * @retval None.
166 void CAN_DeInit(CAN_TypeDef* CANx)
168 /* Check the parameters */
169 assert_param(IS_CAN_ALL_PERIPH(CANx));
171 if (CANx == CAN1)
173 /* Enable CAN1 reset state */
174 RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN1, ENABLE);
175 /* Release CAN1 from reset state */
176 RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN1, DISABLE);
178 else
180 /* Enable CAN2 reset state */
181 RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN2, ENABLE);
182 /* Release CAN2 from reset state */
183 RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN2, DISABLE);
188 * @brief Initializes the CAN peripheral according to the specified
189 * parameters in the CAN_InitStruct.
190 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
191 * @param CAN_InitStruct: pointer to a CAN_InitTypeDef structure that contains
192 * the configuration information for the CAN peripheral.
193 * @retval Constant indicates initialization succeed which will be
194 * CAN_InitStatus_Failed or CAN_InitStatus_Success.
196 uint8_t CAN_Init(CAN_TypeDef* CANx, CAN_InitTypeDef* CAN_InitStruct)
198 uint8_t InitStatus = CAN_InitStatus_Failed;
199 uint32_t wait_ack = 0x00000000;
200 /* Check the parameters */
201 assert_param(IS_CAN_ALL_PERIPH(CANx));
202 assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TTCM));
203 assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_ABOM));
204 assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_AWUM));
205 assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_NART));
206 assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_RFLM));
207 assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TXFP));
208 assert_param(IS_CAN_MODE(CAN_InitStruct->CAN_Mode));
209 assert_param(IS_CAN_SJW(CAN_InitStruct->CAN_SJW));
210 assert_param(IS_CAN_BS1(CAN_InitStruct->CAN_BS1));
211 assert_param(IS_CAN_BS2(CAN_InitStruct->CAN_BS2));
212 assert_param(IS_CAN_PRESCALER(CAN_InitStruct->CAN_Prescaler));
214 /* Exit from sleep mode */
215 CANx->MCR &= (~(uint32_t)CAN_MCR_SLEEP);
217 /* Request initialisation */
218 CANx->MCR |= CAN_MCR_INRQ ;
220 /* Wait the acknowledge */
221 while (((CANx->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) && (wait_ack != INAK_TIMEOUT))
223 wait_ack++;
226 /* Check acknowledge */
227 if ((CANx->MSR & CAN_MSR_INAK) != CAN_MSR_INAK)
229 InitStatus = CAN_InitStatus_Failed;
231 else
233 /* Set the time triggered communication mode */
234 if (CAN_InitStruct->CAN_TTCM == ENABLE)
236 CANx->MCR |= CAN_MCR_TTCM;
238 else
240 CANx->MCR &= ~(uint32_t)CAN_MCR_TTCM;
243 /* Set the automatic bus-off management */
244 if (CAN_InitStruct->CAN_ABOM == ENABLE)
246 CANx->MCR |= CAN_MCR_ABOM;
248 else
250 CANx->MCR &= ~(uint32_t)CAN_MCR_ABOM;
253 /* Set the automatic wake-up mode */
254 if (CAN_InitStruct->CAN_AWUM == ENABLE)
256 CANx->MCR |= CAN_MCR_AWUM;
258 else
260 CANx->MCR &= ~(uint32_t)CAN_MCR_AWUM;
263 /* Set the no automatic retransmission */
264 if (CAN_InitStruct->CAN_NART == ENABLE)
266 CANx->MCR |= CAN_MCR_NART;
268 else
270 CANx->MCR &= ~(uint32_t)CAN_MCR_NART;
273 /* Set the receive FIFO locked mode */
274 if (CAN_InitStruct->CAN_RFLM == ENABLE)
276 CANx->MCR |= CAN_MCR_RFLM;
278 else
280 CANx->MCR &= ~(uint32_t)CAN_MCR_RFLM;
283 /* Set the transmit FIFO priority */
284 if (CAN_InitStruct->CAN_TXFP == ENABLE)
286 CANx->MCR |= CAN_MCR_TXFP;
288 else
290 CANx->MCR &= ~(uint32_t)CAN_MCR_TXFP;
293 /* Set the bit timing register */
294 CANx->BTR = (uint32_t)((uint32_t)CAN_InitStruct->CAN_Mode << 30) | \
295 ((uint32_t)CAN_InitStruct->CAN_SJW << 24) | \
296 ((uint32_t)CAN_InitStruct->CAN_BS1 << 16) | \
297 ((uint32_t)CAN_InitStruct->CAN_BS2 << 20) | \
298 ((uint32_t)CAN_InitStruct->CAN_Prescaler - 1);
300 /* Request leave initialisation */
301 CANx->MCR &= ~(uint32_t)CAN_MCR_INRQ;
303 /* Wait the acknowledge */
304 wait_ack = 0;
306 while (((CANx->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) && (wait_ack != INAK_TIMEOUT))
308 wait_ack++;
311 /* ...and check acknowledged */
312 if ((CANx->MSR & CAN_MSR_INAK) == CAN_MSR_INAK)
314 InitStatus = CAN_InitStatus_Failed;
316 else
318 InitStatus = CAN_InitStatus_Success ;
322 /* At this step, return the status of initialization */
323 return InitStatus;
327 * @brief Configures the CAN reception filter according to the specified
328 * parameters in the CAN_FilterInitStruct.
329 * @param CAN_FilterInitStruct: pointer to a CAN_FilterInitTypeDef structure that
330 * contains the configuration information.
331 * @retval None
333 void CAN_FilterInit(CAN_FilterInitTypeDef* CAN_FilterInitStruct)
335 uint32_t filter_number_bit_pos = 0;
336 /* Check the parameters */
337 assert_param(IS_CAN_FILTER_NUMBER(CAN_FilterInitStruct->CAN_FilterNumber));
338 assert_param(IS_CAN_FILTER_MODE(CAN_FilterInitStruct->CAN_FilterMode));
339 assert_param(IS_CAN_FILTER_SCALE(CAN_FilterInitStruct->CAN_FilterScale));
340 assert_param(IS_CAN_FILTER_FIFO(CAN_FilterInitStruct->CAN_FilterFIFOAssignment));
341 assert_param(IS_FUNCTIONAL_STATE(CAN_FilterInitStruct->CAN_FilterActivation));
343 filter_number_bit_pos = ((uint32_t)1) << CAN_FilterInitStruct->CAN_FilterNumber;
345 /* Initialisation mode for the filter */
346 CAN1->FMR |= FMR_FINIT;
348 /* Filter Deactivation */
349 CAN1->FA1R &= ~(uint32_t)filter_number_bit_pos;
351 /* Filter Scale */
352 if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_16bit)
354 /* 16-bit scale for the filter */
355 CAN1->FS1R &= ~(uint32_t)filter_number_bit_pos;
357 /* First 16-bit identifier and First 16-bit mask */
358 /* Or First 16-bit identifier and Second 16-bit identifier */
359 CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 =
360 ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow) << 16) |
361 (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow);
363 /* Second 16-bit identifier and Second 16-bit mask */
364 /* Or Third 16-bit identifier and Fourth 16-bit identifier */
365 CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 =
366 ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
367 (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh);
370 if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_32bit)
372 /* 32-bit scale for the filter */
373 CAN1->FS1R |= filter_number_bit_pos;
374 /* 32-bit identifier or First 32-bit identifier */
375 CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 =
376 ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh) << 16) |
377 (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow);
378 /* 32-bit mask or Second 32-bit identifier */
379 CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 =
380 ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
381 (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow);
384 /* Filter Mode */
385 if (CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdMask)
387 /*Id/Mask mode for the filter*/
388 CAN1->FM1R &= ~(uint32_t)filter_number_bit_pos;
390 else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */
392 /*Identifier list mode for the filter*/
393 CAN1->FM1R |= (uint32_t)filter_number_bit_pos;
396 /* Filter FIFO assignment */
397 if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_Filter_FIFO0)
399 /* FIFO 0 assignation for the filter */
400 CAN1->FFA1R &= ~(uint32_t)filter_number_bit_pos;
403 if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_Filter_FIFO1)
405 /* FIFO 1 assignation for the filter */
406 CAN1->FFA1R |= (uint32_t)filter_number_bit_pos;
409 /* Filter activation */
410 if (CAN_FilterInitStruct->CAN_FilterActivation == ENABLE)
412 CAN1->FA1R |= filter_number_bit_pos;
415 /* Leave the initialisation mode for the filter */
416 CAN1->FMR &= ~FMR_FINIT;
420 * @brief Fills each CAN_InitStruct member with its default value.
421 * @param CAN_InitStruct: pointer to a CAN_InitTypeDef structure which ill be initialized.
422 * @retval None
424 void CAN_StructInit(CAN_InitTypeDef* CAN_InitStruct)
426 /* Reset CAN init structure parameters values */
428 /* Initialize the time triggered communication mode */
429 CAN_InitStruct->CAN_TTCM = DISABLE;
431 /* Initialize the automatic bus-off management */
432 CAN_InitStruct->CAN_ABOM = DISABLE;
434 /* Initialize the automatic wake-up mode */
435 CAN_InitStruct->CAN_AWUM = DISABLE;
437 /* Initialize the no automatic retransmission */
438 CAN_InitStruct->CAN_NART = DISABLE;
440 /* Initialize the receive FIFO locked mode */
441 CAN_InitStruct->CAN_RFLM = DISABLE;
443 /* Initialize the transmit FIFO priority */
444 CAN_InitStruct->CAN_TXFP = DISABLE;
446 /* Initialize the CAN_Mode member */
447 CAN_InitStruct->CAN_Mode = CAN_Mode_Normal;
449 /* Initialize the CAN_SJW member */
450 CAN_InitStruct->CAN_SJW = CAN_SJW_1tq;
452 /* Initialize the CAN_BS1 member */
453 CAN_InitStruct->CAN_BS1 = CAN_BS1_4tq;
455 /* Initialize the CAN_BS2 member */
456 CAN_InitStruct->CAN_BS2 = CAN_BS2_3tq;
458 /* Initialize the CAN_Prescaler member */
459 CAN_InitStruct->CAN_Prescaler = 1;
463 * @brief Select the start bank filter for slave CAN.
464 * @param CAN_BankNumber: Select the start slave bank filter from 1..27.
465 * @retval None
467 void CAN_SlaveStartBank(uint8_t CAN_BankNumber)
469 /* Check the parameters */
470 assert_param(IS_CAN_BANKNUMBER(CAN_BankNumber));
472 /* Enter Initialisation mode for the filter */
473 CAN1->FMR |= FMR_FINIT;
475 /* Select the start slave bank */
476 CAN1->FMR &= (uint32_t)0xFFFFC0F1 ;
477 CAN1->FMR |= (uint32_t)(CAN_BankNumber)<<8;
479 /* Leave Initialisation mode for the filter */
480 CAN1->FMR &= ~FMR_FINIT;
484 * @brief Enables or disables the DBG Freeze for CAN.
485 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
486 * @param NewState: new state of the CAN peripheral.
487 * This parameter can be: ENABLE (CAN reception/transmission is frozen
488 * during debug. Reception FIFOs can still be accessed/controlled normally)
489 * or DISABLE (CAN is working during debug).
490 * @retval None
492 void CAN_DBGFreeze(CAN_TypeDef* CANx, FunctionalState NewState)
494 /* Check the parameters */
495 assert_param(IS_CAN_ALL_PERIPH(CANx));
496 assert_param(IS_FUNCTIONAL_STATE(NewState));
498 if (NewState != DISABLE)
500 /* Enable Debug Freeze */
501 CANx->MCR |= MCR_DBF;
503 else
505 /* Disable Debug Freeze */
506 CANx->MCR &= ~MCR_DBF;
512 * @brief Enables or disables the CAN Time TriggerOperation communication mode.
513 * @note DLC must be programmed as 8 in order Time Stamp (2 bytes) to be
514 * sent over the CAN bus.
515 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
516 * @param NewState: Mode new state. This parameter can be: ENABLE or DISABLE.
517 * When enabled, Time stamp (TIME[15:0]) value is sent in the last two
518 * data bytes of the 8-byte message: TIME[7:0] in data byte 6 and TIME[15:8]
519 * in data byte 7.
520 * @retval None
522 void CAN_TTComModeCmd(CAN_TypeDef* CANx, FunctionalState NewState)
524 /* Check the parameters */
525 assert_param(IS_CAN_ALL_PERIPH(CANx));
526 assert_param(IS_FUNCTIONAL_STATE(NewState));
527 if (NewState != DISABLE)
529 /* Enable the TTCM mode */
530 CANx->MCR |= CAN_MCR_TTCM;
532 /* Set TGT bits */
533 CANx->sTxMailBox[0].TDTR |= ((uint32_t)CAN_TDT0R_TGT);
534 CANx->sTxMailBox[1].TDTR |= ((uint32_t)CAN_TDT1R_TGT);
535 CANx->sTxMailBox[2].TDTR |= ((uint32_t)CAN_TDT2R_TGT);
537 else
539 /* Disable the TTCM mode */
540 CANx->MCR &= (uint32_t)(~(uint32_t)CAN_MCR_TTCM);
542 /* Reset TGT bits */
543 CANx->sTxMailBox[0].TDTR &= ((uint32_t)~CAN_TDT0R_TGT);
544 CANx->sTxMailBox[1].TDTR &= ((uint32_t)~CAN_TDT1R_TGT);
545 CANx->sTxMailBox[2].TDTR &= ((uint32_t)~CAN_TDT2R_TGT);
549 * @}
553 /** @defgroup CAN_Group2 CAN Frames Transmission functions
554 * @brief CAN Frames Transmission functions
556 @verbatim
557 ===============================================================================
558 ##### CAN Frames Transmission functions #####
559 ===============================================================================
560 [..] This section provides functions allowing to
561 (+) Initiate and transmit a CAN frame message (if there is an empty mailbox).
562 (+) Check the transmission status of a CAN Frame
563 (+) Cancel a transmit request
565 @endverbatim
566 * @{
570 * @brief Initiates and transmits a CAN frame message.
571 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
572 * @param TxMessage: pointer to a structure which contains CAN Id, CAN DLC and CAN data.
573 * @retval The number of the mailbox that is used for transmission or
574 * CAN_TxStatus_NoMailBox if there is no empty mailbox.
576 uint8_t CAN_Transmit(CAN_TypeDef* CANx, CanTxMsg* TxMessage)
578 uint8_t transmit_mailbox = 0;
579 /* Check the parameters */
580 assert_param(IS_CAN_ALL_PERIPH(CANx));
581 assert_param(IS_CAN_IDTYPE(TxMessage->IDE));
582 assert_param(IS_CAN_RTR(TxMessage->RTR));
583 assert_param(IS_CAN_DLC(TxMessage->DLC));
585 /* Select one empty transmit mailbox */
586 if ((CANx->TSR&CAN_TSR_TME0) == CAN_TSR_TME0)
588 transmit_mailbox = 0;
590 else if ((CANx->TSR&CAN_TSR_TME1) == CAN_TSR_TME1)
592 transmit_mailbox = 1;
594 else if ((CANx->TSR&CAN_TSR_TME2) == CAN_TSR_TME2)
596 transmit_mailbox = 2;
598 else
600 transmit_mailbox = CAN_TxStatus_NoMailBox;
603 if (transmit_mailbox != CAN_TxStatus_NoMailBox)
605 /* Set up the Id */
606 CANx->sTxMailBox[transmit_mailbox].TIR &= TMIDxR_TXRQ;
607 if (TxMessage->IDE == CAN_Id_Standard)
609 assert_param(IS_CAN_STDID(TxMessage->StdId));
610 CANx->sTxMailBox[transmit_mailbox].TIR |= ((TxMessage->StdId << 21) | \
611 TxMessage->RTR);
613 else
615 assert_param(IS_CAN_EXTID(TxMessage->ExtId));
616 CANx->sTxMailBox[transmit_mailbox].TIR |= ((TxMessage->ExtId << 3) | \
617 TxMessage->IDE | \
618 TxMessage->RTR);
621 /* Set up the DLC */
622 TxMessage->DLC &= (uint8_t)0x0000000F;
623 CANx->sTxMailBox[transmit_mailbox].TDTR &= (uint32_t)0xFFFFFFF0;
624 CANx->sTxMailBox[transmit_mailbox].TDTR |= TxMessage->DLC;
626 /* Set up the data field */
627 CANx->sTxMailBox[transmit_mailbox].TDLR = (((uint32_t)TxMessage->Data[3] << 24) |
628 ((uint32_t)TxMessage->Data[2] << 16) |
629 ((uint32_t)TxMessage->Data[1] << 8) |
630 ((uint32_t)TxMessage->Data[0]));
631 CANx->sTxMailBox[transmit_mailbox].TDHR = (((uint32_t)TxMessage->Data[7] << 24) |
632 ((uint32_t)TxMessage->Data[6] << 16) |
633 ((uint32_t)TxMessage->Data[5] << 8) |
634 ((uint32_t)TxMessage->Data[4]));
635 /* Request transmission */
636 CANx->sTxMailBox[transmit_mailbox].TIR |= TMIDxR_TXRQ;
638 return transmit_mailbox;
642 * @brief Checks the transmission status of a CAN Frame.
643 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
644 * @param TransmitMailbox: the number of the mailbox that is used for transmission.
645 * @retval CAN_TxStatus_Ok if the CAN driver transmits the message,
646 * CAN_TxStatus_Failed in an other case.
648 uint8_t CAN_TransmitStatus(CAN_TypeDef* CANx, uint8_t TransmitMailbox)
650 uint32_t state = 0;
652 /* Check the parameters */
653 assert_param(IS_CAN_ALL_PERIPH(CANx));
654 assert_param(IS_CAN_TRANSMITMAILBOX(TransmitMailbox));
656 switch (TransmitMailbox)
658 case (CAN_TXMAILBOX_0):
659 state = CANx->TSR & (CAN_TSR_RQCP0 | CAN_TSR_TXOK0 | CAN_TSR_TME0);
660 break;
661 case (CAN_TXMAILBOX_1):
662 state = CANx->TSR & (CAN_TSR_RQCP1 | CAN_TSR_TXOK1 | CAN_TSR_TME1);
663 break;
664 case (CAN_TXMAILBOX_2):
665 state = CANx->TSR & (CAN_TSR_RQCP2 | CAN_TSR_TXOK2 | CAN_TSR_TME2);
666 break;
667 default:
668 state = CAN_TxStatus_Failed;
669 break;
671 switch (state)
673 /* transmit pending */
674 case (0x0): state = CAN_TxStatus_Pending;
675 break;
676 /* transmit failed */
677 case (CAN_TSR_RQCP0 | CAN_TSR_TME0): state = CAN_TxStatus_Failed;
678 break;
679 case (CAN_TSR_RQCP1 | CAN_TSR_TME1): state = CAN_TxStatus_Failed;
680 break;
681 case (CAN_TSR_RQCP2 | CAN_TSR_TME2): state = CAN_TxStatus_Failed;
682 break;
683 /* transmit succeeded */
684 case (CAN_TSR_RQCP0 | CAN_TSR_TXOK0 | CAN_TSR_TME0):state = CAN_TxStatus_Ok;
685 break;
686 case (CAN_TSR_RQCP1 | CAN_TSR_TXOK1 | CAN_TSR_TME1):state = CAN_TxStatus_Ok;
687 break;
688 case (CAN_TSR_RQCP2 | CAN_TSR_TXOK2 | CAN_TSR_TME2):state = CAN_TxStatus_Ok;
689 break;
690 default: state = CAN_TxStatus_Failed;
691 break;
693 return (uint8_t) state;
697 * @brief Cancels a transmit request.
698 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
699 * @param Mailbox: Mailbox number.
700 * @retval None
702 void CAN_CancelTransmit(CAN_TypeDef* CANx, uint8_t Mailbox)
704 /* Check the parameters */
705 assert_param(IS_CAN_ALL_PERIPH(CANx));
706 assert_param(IS_CAN_TRANSMITMAILBOX(Mailbox));
707 /* abort transmission */
708 switch (Mailbox)
710 case (CAN_TXMAILBOX_0): CANx->TSR |= CAN_TSR_ABRQ0;
711 break;
712 case (CAN_TXMAILBOX_1): CANx->TSR |= CAN_TSR_ABRQ1;
713 break;
714 case (CAN_TXMAILBOX_2): CANx->TSR |= CAN_TSR_ABRQ2;
715 break;
716 default:
717 break;
721 * @}
725 /** @defgroup CAN_Group3 CAN Frames Reception functions
726 * @brief CAN Frames Reception functions
728 @verbatim
729 ===============================================================================
730 ##### CAN Frames Reception functions #####
731 ===============================================================================
732 [..] This section provides functions allowing to
733 (+) Receive a correct CAN frame
734 (+) Release a specified receive FIFO (2 FIFOs are available)
735 (+) Return the number of the pending received CAN frames
737 @endverbatim
738 * @{
742 * @brief Receives a correct CAN frame.
743 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
744 * @param FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
745 * @param RxMessage: pointer to a structure receive frame which contains CAN Id,
746 * CAN DLC, CAN data and FMI number.
747 * @retval None
749 void CAN_Receive(CAN_TypeDef* CANx, uint8_t FIFONumber, CanRxMsg* RxMessage)
751 /* Check the parameters */
752 assert_param(IS_CAN_ALL_PERIPH(CANx));
753 assert_param(IS_CAN_FIFO(FIFONumber));
754 /* Get the Id */
755 RxMessage->IDE = (uint8_t)0x04 & CANx->sFIFOMailBox[FIFONumber].RIR;
756 if (RxMessage->IDE == CAN_Id_Standard)
758 RxMessage->StdId = (uint32_t)0x000007FF & (CANx->sFIFOMailBox[FIFONumber].RIR >> 21);
760 else
762 RxMessage->ExtId = (uint32_t)0x1FFFFFFF & (CANx->sFIFOMailBox[FIFONumber].RIR >> 3);
765 RxMessage->RTR = (uint8_t)0x02 & CANx->sFIFOMailBox[FIFONumber].RIR;
766 /* Get the DLC */
767 RxMessage->DLC = (uint8_t)0x0F & CANx->sFIFOMailBox[FIFONumber].RDTR;
768 /* Get the FMI */
769 RxMessage->FMI = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDTR >> 8);
770 /* Get the data field */
771 RxMessage->Data[0] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RDLR;
772 RxMessage->Data[1] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 8);
773 RxMessage->Data[2] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 16);
774 RxMessage->Data[3] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 24);
775 RxMessage->Data[4] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RDHR;
776 RxMessage->Data[5] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 8);
777 RxMessage->Data[6] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 16);
778 RxMessage->Data[7] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 24);
779 /* Release the FIFO */
780 /* Release FIFO0 */
781 if (FIFONumber == CAN_FIFO0)
783 CANx->RF0R |= CAN_RF0R_RFOM0;
785 /* Release FIFO1 */
786 else /* FIFONumber == CAN_FIFO1 */
788 CANx->RF1R |= CAN_RF1R_RFOM1;
793 * @brief Releases the specified receive FIFO.
794 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
795 * @param FIFONumber: FIFO to release, CAN_FIFO0 or CAN_FIFO1.
796 * @retval None
798 void CAN_FIFORelease(CAN_TypeDef* CANx, uint8_t FIFONumber)
800 /* Check the parameters */
801 assert_param(IS_CAN_ALL_PERIPH(CANx));
802 assert_param(IS_CAN_FIFO(FIFONumber));
803 /* Release FIFO0 */
804 if (FIFONumber == CAN_FIFO0)
806 CANx->RF0R |= CAN_RF0R_RFOM0;
808 /* Release FIFO1 */
809 else /* FIFONumber == CAN_FIFO1 */
811 CANx->RF1R |= CAN_RF1R_RFOM1;
816 * @brief Returns the number of pending received messages.
817 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
818 * @param FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
819 * @retval NbMessage : which is the number of pending message.
821 uint8_t CAN_MessagePending(CAN_TypeDef* CANx, uint8_t FIFONumber)
823 uint8_t message_pending=0;
824 /* Check the parameters */
825 assert_param(IS_CAN_ALL_PERIPH(CANx));
826 assert_param(IS_CAN_FIFO(FIFONumber));
827 if (FIFONumber == CAN_FIFO0)
829 message_pending = (uint8_t)(CANx->RF0R&(uint32_t)0x03);
831 else if (FIFONumber == CAN_FIFO1)
833 message_pending = (uint8_t)(CANx->RF1R&(uint32_t)0x03);
835 else
837 message_pending = 0;
839 return message_pending;
842 * @}
846 /** @defgroup CAN_Group4 CAN Operation modes functions
847 * @brief CAN Operation modes functions
849 @verbatim
850 ===============================================================================
851 ##### CAN Operation modes functions #####
852 ===============================================================================
853 [..] This section provides functions allowing to select the CAN Operation modes
854 (+) sleep mode
855 (+) normal mode
856 (+) initialization mode
858 @endverbatim
859 * @{
864 * @brief Selects the CAN Operation mode.
865 * @param CAN_OperatingMode: CAN Operating Mode.
866 * This parameter can be one of @ref CAN_OperatingMode_TypeDef enumeration.
867 * @retval status of the requested mode which can be
868 * - CAN_ModeStatus_Failed: CAN failed entering the specific mode
869 * - CAN_ModeStatus_Success: CAN Succeed entering the specific mode
871 uint8_t CAN_OperatingModeRequest(CAN_TypeDef* CANx, uint8_t CAN_OperatingMode)
873 uint8_t status = CAN_ModeStatus_Failed;
875 /* Timeout for INAK or also for SLAK bits*/
876 uint32_t timeout = INAK_TIMEOUT;
878 /* Check the parameters */
879 assert_param(IS_CAN_ALL_PERIPH(CANx));
880 assert_param(IS_CAN_OPERATING_MODE(CAN_OperatingMode));
882 if (CAN_OperatingMode == CAN_OperatingMode_Initialization)
884 /* Request initialisation */
885 CANx->MCR = (uint32_t)((CANx->MCR & (uint32_t)(~(uint32_t)CAN_MCR_SLEEP)) | CAN_MCR_INRQ);
887 /* Wait the acknowledge */
888 while (((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_INAK) && (timeout != 0))
890 timeout--;
892 if ((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_INAK)
894 status = CAN_ModeStatus_Failed;
896 else
898 status = CAN_ModeStatus_Success;
901 else if (CAN_OperatingMode == CAN_OperatingMode_Normal)
903 /* Request leave initialisation and sleep mode and enter Normal mode */
904 CANx->MCR &= (uint32_t)(~(CAN_MCR_SLEEP|CAN_MCR_INRQ));
906 /* Wait the acknowledge */
907 while (((CANx->MSR & CAN_MODE_MASK) != 0) && (timeout!=0))
909 timeout--;
911 if ((CANx->MSR & CAN_MODE_MASK) != 0)
913 status = CAN_ModeStatus_Failed;
915 else
917 status = CAN_ModeStatus_Success;
920 else if (CAN_OperatingMode == CAN_OperatingMode_Sleep)
922 /* Request Sleep mode */
923 CANx->MCR = (uint32_t)((CANx->MCR & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP);
925 /* Wait the acknowledge */
926 while (((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_SLAK) && (timeout!=0))
928 timeout--;
930 if ((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_SLAK)
932 status = CAN_ModeStatus_Failed;
934 else
936 status = CAN_ModeStatus_Success;
939 else
941 status = CAN_ModeStatus_Failed;
944 return (uint8_t) status;
948 * @brief Enters the Sleep (low power) mode.
949 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
950 * @retval CAN_Sleep_Ok if sleep entered, CAN_Sleep_Failed otherwise.
952 uint8_t CAN_Sleep(CAN_TypeDef* CANx)
954 uint8_t sleepstatus = CAN_Sleep_Failed;
956 /* Check the parameters */
957 assert_param(IS_CAN_ALL_PERIPH(CANx));
959 /* Request Sleep mode */
960 CANx->MCR = (((CANx->MCR) & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP);
962 /* Sleep mode status */
963 if ((CANx->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) == CAN_MSR_SLAK)
965 /* Sleep mode not entered */
966 sleepstatus = CAN_Sleep_Ok;
968 /* return sleep mode status */
969 return (uint8_t)sleepstatus;
973 * @brief Wakes up the CAN peripheral from sleep mode .
974 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
975 * @retval CAN_WakeUp_Ok if sleep mode left, CAN_WakeUp_Failed otherwise.
977 uint8_t CAN_WakeUp(CAN_TypeDef* CANx)
979 uint32_t wait_slak = SLAK_TIMEOUT;
980 uint8_t wakeupstatus = CAN_WakeUp_Failed;
982 /* Check the parameters */
983 assert_param(IS_CAN_ALL_PERIPH(CANx));
985 /* Wake up request */
986 CANx->MCR &= ~(uint32_t)CAN_MCR_SLEEP;
988 /* Sleep mode status */
989 while(((CANx->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK)&&(wait_slak!=0x00))
991 wait_slak--;
993 if((CANx->MSR & CAN_MSR_SLAK) != CAN_MSR_SLAK)
995 /* wake up done : Sleep mode exited */
996 wakeupstatus = CAN_WakeUp_Ok;
998 /* return wakeup status */
999 return (uint8_t)wakeupstatus;
1002 * @}
1006 /** @defgroup CAN_Group5 CAN Bus Error management functions
1007 * @brief CAN Bus Error management functions
1009 @verbatim
1010 ===============================================================================
1011 ##### CAN Bus Error management functions #####
1012 ===============================================================================
1013 [..] This section provides functions allowing to
1014 (+) Return the CANx's last error code (LEC)
1015 (+) Return the CANx Receive Error Counter (REC)
1016 (+) Return the LSB of the 9-bit CANx Transmit Error Counter(TEC).
1018 -@- If TEC is greater than 255, The CAN is in bus-off state.
1019 -@- if REC or TEC are greater than 96, an Error warning flag occurs.
1020 -@- if REC or TEC are greater than 127, an Error Passive Flag occurs.
1022 @endverbatim
1023 * @{
1027 * @brief Returns the CANx's last error code (LEC).
1028 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
1029 * @retval Error code:
1030 * - CAN_ERRORCODE_NoErr: No Error
1031 * - CAN_ERRORCODE_StuffErr: Stuff Error
1032 * - CAN_ERRORCODE_FormErr: Form Error
1033 * - CAN_ERRORCODE_ACKErr : Acknowledgment Error
1034 * - CAN_ERRORCODE_BitRecessiveErr: Bit Recessive Error
1035 * - CAN_ERRORCODE_BitDominantErr: Bit Dominant Error
1036 * - CAN_ERRORCODE_CRCErr: CRC Error
1037 * - CAN_ERRORCODE_SoftwareSetErr: Software Set Error
1039 uint8_t CAN_GetLastErrorCode(CAN_TypeDef* CANx)
1041 uint8_t errorcode=0;
1043 /* Check the parameters */
1044 assert_param(IS_CAN_ALL_PERIPH(CANx));
1046 /* Get the error code*/
1047 errorcode = (((uint8_t)CANx->ESR) & (uint8_t)CAN_ESR_LEC);
1049 /* Return the error code*/
1050 return errorcode;
1054 * @brief Returns the CANx Receive Error Counter (REC).
1055 * @note In case of an error during reception, this counter is incremented
1056 * by 1 or by 8 depending on the error condition as defined by the CAN
1057 * standard. After every successful reception, the counter is
1058 * decremented by 1 or reset to 120 if its value was higher than 128.
1059 * When the counter value exceeds 127, the CAN controller enters the
1060 * error passive state.
1061 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
1062 * @retval CAN Receive Error Counter.
1064 uint8_t CAN_GetReceiveErrorCounter(CAN_TypeDef* CANx)
1066 uint8_t counter=0;
1068 /* Check the parameters */
1069 assert_param(IS_CAN_ALL_PERIPH(CANx));
1071 /* Get the Receive Error Counter*/
1072 counter = (uint8_t)((CANx->ESR & CAN_ESR_REC)>> 24);
1074 /* Return the Receive Error Counter*/
1075 return counter;
1080 * @brief Returns the LSB of the 9-bit CANx Transmit Error Counter(TEC).
1081 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
1082 * @retval LSB of the 9-bit CAN Transmit Error Counter.
1084 uint8_t CAN_GetLSBTransmitErrorCounter(CAN_TypeDef* CANx)
1086 uint8_t counter=0;
1088 /* Check the parameters */
1089 assert_param(IS_CAN_ALL_PERIPH(CANx));
1091 /* Get the LSB of the 9-bit CANx Transmit Error Counter(TEC) */
1092 counter = (uint8_t)((CANx->ESR & CAN_ESR_TEC)>> 16);
1094 /* Return the LSB of the 9-bit CANx Transmit Error Counter(TEC) */
1095 return counter;
1098 * @}
1101 /** @defgroup CAN_Group6 Interrupts and flags management functions
1102 * @brief Interrupts and flags management functions
1104 @verbatim
1105 ===============================================================================
1106 ##### Interrupts and flags management functions #####
1107 ===============================================================================
1109 [..] This section provides functions allowing to configure the CAN Interrupts
1110 and to get the status and clear flags and Interrupts pending bits.
1112 The CAN provides 14 Interrupts sources and 15 Flags:
1115 *** Flags ***
1116 =============
1117 [..] The 15 flags can be divided on 4 groups:
1119 (+) Transmit Flags
1120 (++) CAN_FLAG_RQCP0,
1121 (++) CAN_FLAG_RQCP1,
1122 (++) CAN_FLAG_RQCP2 : Request completed MailBoxes 0, 1 and 2 Flags
1123 Set when the last request (transmit or abort)
1124 has been performed.
1126 (+) Receive Flags
1129 (++) CAN_FLAG_FMP0,
1130 (++) CAN_FLAG_FMP1 : FIFO 0 and 1 Message Pending Flags
1131 set to signal that messages are pending in the receive
1132 FIFO.
1133 These Flags are cleared only by hardware.
1135 (++) CAN_FLAG_FF0,
1136 (++) CAN_FLAG_FF1 : FIFO 0 and 1 Full Flags
1137 set when three messages are stored in the selected
1138 FIFO.
1140 (++) CAN_FLAG_FOV0
1141 (++) CAN_FLAG_FOV1 : FIFO 0 and 1 Overrun Flags
1142 set when a new message has been received and passed
1143 the filter while the FIFO was full.
1145 (+) Operating Mode Flags
1147 (++) CAN_FLAG_WKU : Wake up Flag
1148 set to signal that a SOF bit has been detected while
1149 the CAN hardware was in Sleep mode.
1151 (++) CAN_FLAG_SLAK : Sleep acknowledge Flag
1152 Set to signal that the CAN has entered Sleep Mode.
1154 (+) Error Flags
1156 (++) CAN_FLAG_EWG : Error Warning Flag
1157 Set when the warning limit has been reached (Receive
1158 Error Counter or Transmit Error Counter greater than 96).
1159 This Flag is cleared only by hardware.
1161 (++) CAN_FLAG_EPV : Error Passive Flag
1162 Set when the Error Passive limit has been reached
1163 (Receive Error Counter or Transmit Error Counter
1164 greater than 127).
1165 This Flag is cleared only by hardware.
1167 (++) CAN_FLAG_BOF : Bus-Off Flag
1168 set when CAN enters the bus-off state. The bus-off
1169 state is entered on TEC overflow, greater than 255.
1170 This Flag is cleared only by hardware.
1172 (++) CAN_FLAG_LEC : Last error code Flag
1173 set If a message has been transferred (reception or
1174 transmission) with error, and the error code is hold.
1176 *** Interrupts ***
1177 ==================
1178 [..] The 14 interrupts can be divided on 4 groups:
1180 (+) Transmit interrupt
1182 (++) CAN_IT_TME : Transmit mailbox empty Interrupt
1183 if enabled, this interrupt source is pending when
1184 no transmit request are pending for Tx mailboxes.
1186 (+) Receive Interrupts
1188 (++) CAN_IT_FMP0,
1189 (++) CAN_IT_FMP1 : FIFO 0 and FIFO1 message pending Interrupts
1190 if enabled, these interrupt sources are pending
1191 when messages are pending in the receive FIFO.
1192 The corresponding interrupt pending bits are cleared
1193 only by hardware.
1195 (++) CAN_IT_FF0,
1196 (++) CAN_IT_FF1 : FIFO 0 and FIFO1 full Interrupts
1197 if enabled, these interrupt sources are pending
1198 when three messages are stored in the selected FIFO.
1200 (++) CAN_IT_FOV0,
1201 (++) CAN_IT_FOV1 : FIFO 0 and FIFO1 overrun Interrupts
1202 if enabled, these interrupt sources are pending
1203 when a new message has been received and passed
1204 the filter while the FIFO was full.
1206 (+) Operating Mode Interrupts
1208 (++) CAN_IT_WKU : Wake-up Interrupt
1209 if enabled, this interrupt source is pending when
1210 a SOF bit has been detected while the CAN hardware
1211 was in Sleep mode.
1213 (++) CAN_IT_SLK : Sleep acknowledge Interrupt
1214 if enabled, this interrupt source is pending when
1215 the CAN has entered Sleep Mode.
1217 (+) Error Interrupts
1219 (++) CAN_IT_EWG : Error warning Interrupt
1220 if enabled, this interrupt source is pending when
1221 the warning limit has been reached (Receive Error
1222 Counter or Transmit Error Counter=96).
1224 (++) CAN_IT_EPV : Error passive Interrupt
1225 if enabled, this interrupt source is pending when
1226 the Error Passive limit has been reached (Receive
1227 Error Counter or Transmit Error Counter>127).
1229 (++) CAN_IT_BOF : Bus-off Interrupt
1230 if enabled, this interrupt source is pending when
1231 CAN enters the bus-off state. The bus-off state is
1232 entered on TEC overflow, greater than 255.
1233 This Flag is cleared only by hardware.
1235 (++) CAN_IT_LEC : Last error code Interrupt
1236 if enabled, this interrupt source is pending when
1237 a message has been transferred (reception or
1238 transmission) with error, and the error code is hold.
1240 (++) CAN_IT_ERR : Error Interrupt
1241 if enabled, this interrupt source is pending when
1242 an error condition is pending.
1244 [..] Managing the CAN controller events :
1246 The user should identify which mode will be used in his application to
1247 manage the CAN controller events: Polling mode or Interrupt mode.
1249 (#) In the Polling Mode it is advised to use the following functions:
1250 (++) CAN_GetFlagStatus() : to check if flags events occur.
1251 (++) CAN_ClearFlag() : to clear the flags events.
1255 (#) In the Interrupt Mode it is advised to use the following functions:
1256 (++) CAN_ITConfig() : to enable or disable the interrupt source.
1257 (++) CAN_GetITStatus() : to check if Interrupt occurs.
1258 (++) CAN_ClearITPendingBit() : to clear the Interrupt pending Bit
1259 (corresponding Flag).
1260 -@@- This function has no impact on CAN_IT_FMP0 and CAN_IT_FMP1 Interrupts
1261 pending bits since there are cleared only by hardware.
1263 @endverbatim
1264 * @{
1267 * @brief Enables or disables the specified CANx interrupts.
1268 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
1269 * @param CAN_IT: specifies the CAN interrupt sources to be enabled or disabled.
1270 * This parameter can be:
1271 * @arg CAN_IT_TME: Transmit mailbox empty Interrupt
1272 * @arg CAN_IT_FMP0: FIFO 0 message pending Interrupt
1273 * @arg CAN_IT_FF0: FIFO 0 full Interrupt
1274 * @arg CAN_IT_FOV0: FIFO 0 overrun Interrupt
1275 * @arg CAN_IT_FMP1: FIFO 1 message pending Interrupt
1276 * @arg CAN_IT_FF1: FIFO 1 full Interrupt
1277 * @arg CAN_IT_FOV1: FIFO 1 overrun Interrupt
1278 * @arg CAN_IT_WKU: Wake-up Interrupt
1279 * @arg CAN_IT_SLK: Sleep acknowledge Interrupt
1280 * @arg CAN_IT_EWG: Error warning Interrupt
1281 * @arg CAN_IT_EPV: Error passive Interrupt
1282 * @arg CAN_IT_BOF: Bus-off Interrupt
1283 * @arg CAN_IT_LEC: Last error code Interrupt
1284 * @arg CAN_IT_ERR: Error Interrupt
1285 * @param NewState: new state of the CAN interrupts.
1286 * This parameter can be: ENABLE or DISABLE.
1287 * @retval None
1289 void CAN_ITConfig(CAN_TypeDef* CANx, uint32_t CAN_IT, FunctionalState NewState)
1291 /* Check the parameters */
1292 assert_param(IS_CAN_ALL_PERIPH(CANx));
1293 assert_param(IS_CAN_IT(CAN_IT));
1294 assert_param(IS_FUNCTIONAL_STATE(NewState));
1296 if (NewState != DISABLE)
1298 /* Enable the selected CANx interrupt */
1299 CANx->IER |= CAN_IT;
1301 else
1303 /* Disable the selected CANx interrupt */
1304 CANx->IER &= ~CAN_IT;
1308 * @brief Checks whether the specified CAN flag is set or not.
1309 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
1310 * @param CAN_FLAG: specifies the flag to check.
1311 * This parameter can be one of the following values:
1312 * @arg CAN_FLAG_RQCP0: Request MailBox0 Flag
1313 * @arg CAN_FLAG_RQCP1: Request MailBox1 Flag
1314 * @arg CAN_FLAG_RQCP2: Request MailBox2 Flag
1315 * @arg CAN_FLAG_FMP0: FIFO 0 Message Pending Flag
1316 * @arg CAN_FLAG_FF0: FIFO 0 Full Flag
1317 * @arg CAN_FLAG_FOV0: FIFO 0 Overrun Flag
1318 * @arg CAN_FLAG_FMP1: FIFO 1 Message Pending Flag
1319 * @arg CAN_FLAG_FF1: FIFO 1 Full Flag
1320 * @arg CAN_FLAG_FOV1: FIFO 1 Overrun Flag
1321 * @arg CAN_FLAG_WKU: Wake up Flag
1322 * @arg CAN_FLAG_SLAK: Sleep acknowledge Flag
1323 * @arg CAN_FLAG_EWG: Error Warning Flag
1324 * @arg CAN_FLAG_EPV: Error Passive Flag
1325 * @arg CAN_FLAG_BOF: Bus-Off Flag
1326 * @arg CAN_FLAG_LEC: Last error code Flag
1327 * @retval The new state of CAN_FLAG (SET or RESET).
1329 FlagStatus CAN_GetFlagStatus(CAN_TypeDef* CANx, uint32_t CAN_FLAG)
1331 FlagStatus bitstatus = RESET;
1333 /* Check the parameters */
1334 assert_param(IS_CAN_ALL_PERIPH(CANx));
1335 assert_param(IS_CAN_GET_FLAG(CAN_FLAG));
1338 if((CAN_FLAG & CAN_FLAGS_ESR) != (uint32_t)RESET)
1340 /* Check the status of the specified CAN flag */
1341 if ((CANx->ESR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
1343 /* CAN_FLAG is set */
1344 bitstatus = SET;
1346 else
1348 /* CAN_FLAG is reset */
1349 bitstatus = RESET;
1352 else if((CAN_FLAG & CAN_FLAGS_MSR) != (uint32_t)RESET)
1354 /* Check the status of the specified CAN flag */
1355 if ((CANx->MSR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
1357 /* CAN_FLAG is set */
1358 bitstatus = SET;
1360 else
1362 /* CAN_FLAG is reset */
1363 bitstatus = RESET;
1366 else if((CAN_FLAG & CAN_FLAGS_TSR) != (uint32_t)RESET)
1368 /* Check the status of the specified CAN flag */
1369 if ((CANx->TSR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
1371 /* CAN_FLAG is set */
1372 bitstatus = SET;
1374 else
1376 /* CAN_FLAG is reset */
1377 bitstatus = RESET;
1380 else if((CAN_FLAG & CAN_FLAGS_RF0R) != (uint32_t)RESET)
1382 /* Check the status of the specified CAN flag */
1383 if ((CANx->RF0R & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
1385 /* CAN_FLAG is set */
1386 bitstatus = SET;
1388 else
1390 /* CAN_FLAG is reset */
1391 bitstatus = RESET;
1394 else /* If(CAN_FLAG & CAN_FLAGS_RF1R != (uint32_t)RESET) */
1396 /* Check the status of the specified CAN flag */
1397 if ((uint32_t)(CANx->RF1R & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
1399 /* CAN_FLAG is set */
1400 bitstatus = SET;
1402 else
1404 /* CAN_FLAG is reset */
1405 bitstatus = RESET;
1408 /* Return the CAN_FLAG status */
1409 return bitstatus;
1413 * @brief Clears the CAN's pending flags.
1414 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
1415 * @param CAN_FLAG: specifies the flag to clear.
1416 * This parameter can be one of the following values:
1417 * @arg CAN_FLAG_RQCP0: Request MailBox0 Flag
1418 * @arg CAN_FLAG_RQCP1: Request MailBox1 Flag
1419 * @arg CAN_FLAG_RQCP2: Request MailBox2 Flag
1420 * @arg CAN_FLAG_FF0: FIFO 0 Full Flag
1421 * @arg CAN_FLAG_FOV0: FIFO 0 Overrun Flag
1422 * @arg CAN_FLAG_FF1: FIFO 1 Full Flag
1423 * @arg CAN_FLAG_FOV1: FIFO 1 Overrun Flag
1424 * @arg CAN_FLAG_WKU: Wake up Flag
1425 * @arg CAN_FLAG_SLAK: Sleep acknowledge Flag
1426 * @arg CAN_FLAG_LEC: Last error code Flag
1427 * @retval None
1429 void CAN_ClearFlag(CAN_TypeDef* CANx, uint32_t CAN_FLAG)
1431 uint32_t flagtmp=0;
1432 /* Check the parameters */
1433 assert_param(IS_CAN_ALL_PERIPH(CANx));
1434 assert_param(IS_CAN_CLEAR_FLAG(CAN_FLAG));
1436 if (CAN_FLAG == CAN_FLAG_LEC) /* ESR register */
1438 /* Clear the selected CAN flags */
1439 CANx->ESR = (uint32_t)RESET;
1441 else /* MSR or TSR or RF0R or RF1R */
1443 flagtmp = CAN_FLAG & 0x000FFFFF;
1445 if ((CAN_FLAG & CAN_FLAGS_RF0R)!=(uint32_t)RESET)
1447 /* Receive Flags */
1448 CANx->RF0R = (uint32_t)(flagtmp);
1450 else if ((CAN_FLAG & CAN_FLAGS_RF1R)!=(uint32_t)RESET)
1452 /* Receive Flags */
1453 CANx->RF1R = (uint32_t)(flagtmp);
1455 else if ((CAN_FLAG & CAN_FLAGS_TSR)!=(uint32_t)RESET)
1457 /* Transmit Flags */
1458 CANx->TSR = (uint32_t)(flagtmp);
1460 else /* If((CAN_FLAG & CAN_FLAGS_MSR)!=(uint32_t)RESET) */
1462 /* Operating mode Flags */
1463 CANx->MSR = (uint32_t)(flagtmp);
1469 * @brief Checks whether the specified CANx interrupt has occurred or not.
1470 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
1471 * @param CAN_IT: specifies the CAN interrupt source to check.
1472 * This parameter can be one of the following values:
1473 * @arg CAN_IT_TME: Transmit mailbox empty Interrupt
1474 * @arg CAN_IT_FMP0: FIFO 0 message pending Interrupt
1475 * @arg CAN_IT_FF0: FIFO 0 full Interrupt
1476 * @arg CAN_IT_FOV0: FIFO 0 overrun Interrupt
1477 * @arg CAN_IT_FMP1: FIFO 1 message pending Interrupt
1478 * @arg CAN_IT_FF1: FIFO 1 full Interrupt
1479 * @arg CAN_IT_FOV1: FIFO 1 overrun Interrupt
1480 * @arg CAN_IT_WKU: Wake-up Interrupt
1481 * @arg CAN_IT_SLK: Sleep acknowledge Interrupt
1482 * @arg CAN_IT_EWG: Error warning Interrupt
1483 * @arg CAN_IT_EPV: Error passive Interrupt
1484 * @arg CAN_IT_BOF: Bus-off Interrupt
1485 * @arg CAN_IT_LEC: Last error code Interrupt
1486 * @arg CAN_IT_ERR: Error Interrupt
1487 * @retval The current state of CAN_IT (SET or RESET).
1489 ITStatus CAN_GetITStatus(CAN_TypeDef* CANx, uint32_t CAN_IT)
1491 ITStatus itstatus = RESET;
1492 /* Check the parameters */
1493 assert_param(IS_CAN_ALL_PERIPH(CANx));
1494 assert_param(IS_CAN_IT(CAN_IT));
1496 /* check the interrupt enable bit */
1497 if((CANx->IER & CAN_IT) != RESET)
1499 /* in case the Interrupt is enabled, .... */
1500 switch (CAN_IT)
1502 case CAN_IT_TME:
1503 /* Check CAN_TSR_RQCPx bits */
1504 itstatus = CheckITStatus(CANx->TSR, CAN_TSR_RQCP0|CAN_TSR_RQCP1|CAN_TSR_RQCP2);
1505 break;
1506 case CAN_IT_FMP0:
1507 /* Check CAN_RF0R_FMP0 bit */
1508 itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FMP0);
1509 break;
1510 case CAN_IT_FF0:
1511 /* Check CAN_RF0R_FULL0 bit */
1512 itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FULL0);
1513 break;
1514 case CAN_IT_FOV0:
1515 /* Check CAN_RF0R_FOVR0 bit */
1516 itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FOVR0);
1517 break;
1518 case CAN_IT_FMP1:
1519 /* Check CAN_RF1R_FMP1 bit */
1520 itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FMP1);
1521 break;
1522 case CAN_IT_FF1:
1523 /* Check CAN_RF1R_FULL1 bit */
1524 itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FULL1);
1525 break;
1526 case CAN_IT_FOV1:
1527 /* Check CAN_RF1R_FOVR1 bit */
1528 itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FOVR1);
1529 break;
1530 case CAN_IT_WKU:
1531 /* Check CAN_MSR_WKUI bit */
1532 itstatus = CheckITStatus(CANx->MSR, CAN_MSR_WKUI);
1533 break;
1534 case CAN_IT_SLK:
1535 /* Check CAN_MSR_SLAKI bit */
1536 itstatus = CheckITStatus(CANx->MSR, CAN_MSR_SLAKI);
1537 break;
1538 case CAN_IT_EWG:
1539 /* Check CAN_ESR_EWGF bit */
1540 itstatus = CheckITStatus(CANx->ESR, CAN_ESR_EWGF);
1541 break;
1542 case CAN_IT_EPV:
1543 /* Check CAN_ESR_EPVF bit */
1544 itstatus = CheckITStatus(CANx->ESR, CAN_ESR_EPVF);
1545 break;
1546 case CAN_IT_BOF:
1547 /* Check CAN_ESR_BOFF bit */
1548 itstatus = CheckITStatus(CANx->ESR, CAN_ESR_BOFF);
1549 break;
1550 case CAN_IT_LEC:
1551 /* Check CAN_ESR_LEC bit */
1552 itstatus = CheckITStatus(CANx->ESR, CAN_ESR_LEC);
1553 break;
1554 case CAN_IT_ERR:
1555 /* Check CAN_MSR_ERRI bit */
1556 itstatus = CheckITStatus(CANx->MSR, CAN_MSR_ERRI);
1557 break;
1558 default:
1559 /* in case of error, return RESET */
1560 itstatus = RESET;
1561 break;
1564 else
1566 /* in case the Interrupt is not enabled, return RESET */
1567 itstatus = RESET;
1570 /* Return the CAN_IT status */
1571 return itstatus;
1575 * @brief Clears the CANx's interrupt pending bits.
1576 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
1577 * @param CAN_IT: specifies the interrupt pending bit to clear.
1578 * This parameter can be one of the following values:
1579 * @arg CAN_IT_TME: Transmit mailbox empty Interrupt
1580 * @arg CAN_IT_FF0: FIFO 0 full Interrupt
1581 * @arg CAN_IT_FOV0: FIFO 0 overrun Interrupt
1582 * @arg CAN_IT_FF1: FIFO 1 full Interrupt
1583 * @arg CAN_IT_FOV1: FIFO 1 overrun Interrupt
1584 * @arg CAN_IT_WKU: Wake-up Interrupt
1585 * @arg CAN_IT_SLK: Sleep acknowledge Interrupt
1586 * @arg CAN_IT_EWG: Error warning Interrupt
1587 * @arg CAN_IT_EPV: Error passive Interrupt
1588 * @arg CAN_IT_BOF: Bus-off Interrupt
1589 * @arg CAN_IT_LEC: Last error code Interrupt
1590 * @arg CAN_IT_ERR: Error Interrupt
1591 * @retval None
1593 void CAN_ClearITPendingBit(CAN_TypeDef* CANx, uint32_t CAN_IT)
1595 /* Check the parameters */
1596 assert_param(IS_CAN_ALL_PERIPH(CANx));
1597 assert_param(IS_CAN_CLEAR_IT(CAN_IT));
1599 switch (CAN_IT)
1601 case CAN_IT_TME:
1602 /* Clear CAN_TSR_RQCPx (rc_w1)*/
1603 CANx->TSR = CAN_TSR_RQCP0|CAN_TSR_RQCP1|CAN_TSR_RQCP2;
1604 break;
1605 case CAN_IT_FF0:
1606 /* Clear CAN_RF0R_FULL0 (rc_w1)*/
1607 CANx->RF0R = CAN_RF0R_FULL0;
1608 break;
1609 case CAN_IT_FOV0:
1610 /* Clear CAN_RF0R_FOVR0 (rc_w1)*/
1611 CANx->RF0R = CAN_RF0R_FOVR0;
1612 break;
1613 case CAN_IT_FF1:
1614 /* Clear CAN_RF1R_FULL1 (rc_w1)*/
1615 CANx->RF1R = CAN_RF1R_FULL1;
1616 break;
1617 case CAN_IT_FOV1:
1618 /* Clear CAN_RF1R_FOVR1 (rc_w1)*/
1619 CANx->RF1R = CAN_RF1R_FOVR1;
1620 break;
1621 case CAN_IT_WKU:
1622 /* Clear CAN_MSR_WKUI (rc_w1)*/
1623 CANx->MSR = CAN_MSR_WKUI;
1624 break;
1625 case CAN_IT_SLK:
1626 /* Clear CAN_MSR_SLAKI (rc_w1)*/
1627 CANx->MSR = CAN_MSR_SLAKI;
1628 break;
1629 case CAN_IT_EWG:
1630 /* Clear CAN_MSR_ERRI (rc_w1) */
1631 CANx->MSR = CAN_MSR_ERRI;
1632 /* @note the corresponding Flag is cleared by hardware depending on the CAN Bus status*/
1633 break;
1634 case CAN_IT_EPV:
1635 /* Clear CAN_MSR_ERRI (rc_w1) */
1636 CANx->MSR = CAN_MSR_ERRI;
1637 /* @note the corresponding Flag is cleared by hardware depending on the CAN Bus status*/
1638 break;
1639 case CAN_IT_BOF:
1640 /* Clear CAN_MSR_ERRI (rc_w1) */
1641 CANx->MSR = CAN_MSR_ERRI;
1642 /* @note the corresponding Flag is cleared by hardware depending on the CAN Bus status*/
1643 break;
1644 case CAN_IT_LEC:
1645 /* Clear LEC bits */
1646 CANx->ESR = RESET;
1647 /* Clear CAN_MSR_ERRI (rc_w1) */
1648 CANx->MSR = CAN_MSR_ERRI;
1649 break;
1650 case CAN_IT_ERR:
1651 /*Clear LEC bits */
1652 CANx->ESR = RESET;
1653 /* Clear CAN_MSR_ERRI (rc_w1) */
1654 CANx->MSR = CAN_MSR_ERRI;
1655 /* @note BOFF, EPVF and EWGF Flags are cleared by hardware depending on the CAN Bus status*/
1656 break;
1657 default:
1658 break;
1662 * @}
1666 * @brief Checks whether the CAN interrupt has occurred or not.
1667 * @param CAN_Reg: specifies the CAN interrupt register to check.
1668 * @param It_Bit: specifies the interrupt source bit to check.
1669 * @retval The new state of the CAN Interrupt (SET or RESET).
1671 static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit)
1673 ITStatus pendingbitstatus = RESET;
1675 if ((CAN_Reg & It_Bit) != (uint32_t)RESET)
1677 /* CAN_IT is set */
1678 pendingbitstatus = SET;
1680 else
1682 /* CAN_IT is reset */
1683 pendingbitstatus = RESET;
1685 return pendingbitstatus;
1689 * @}
1693 * @}
1697 * @}
1700 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/