Add gyro lock/dma support to BMI160
[betaflight.git] / src / main / osd / osd_elements.c
blob6321342a39a9f373a15c819c36d0d726c734972d
1 /*
2 * This file is part of Cleanflight and Betaflight.
4 * Cleanflight and Betaflight are free software. You can redistribute
5 * this software and/or modify this software under the terms of the
6 * GNU General Public License as published by the Free Software
7 * Foundation, either version 3 of the License, or (at your option)
8 * any later version.
10 * Cleanflight and Betaflight are distributed in the hope that they
11 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
12 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 * See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this software.
18 * If not, see <http://www.gnu.org/licenses/>.
22 *****************************************
23 Instructions for adding new OSD Elements:
24 *****************************************
26 First add the new element to the osd_items_e enumeration in osd/osd.h. The
27 element must be added to the end just before OSD_ITEM_COUNT.
29 Next add the element to the osdElementDisplayOrder array defined in this file.
30 If the element needs special runtime conditional processing then it should be added
31 to the osdAddActiveElements() function instead.
33 Create the function to "draw" the element.
34 ------------------------------------------
35 It should be named like "osdElementSomething()" where the "Something" describes
36 the element. The drawing function should only render the dynamic portions of the
37 element. If the element has static (unchanging) portions then those should be
38 rendered in the background function. The exception to this is elements that are
39 expected to blink (have a warning associated). In this case the entire element
40 must be handled in the main draw function and you can't use the background capability.
42 Add the mapping from the element ID added in the first step to the function
43 created in the third step to the osdElementDrawFunction array.
45 Create the function to draw the element's static (background) portion.
46 ---------------------------------------------------------------------
47 If an element has static (unchanging) portions then create a function to draw only those
48 parts. It should be named like "osdBackgroundSomething()" where the "Something" matches
49 the related element function.
51 Add the mapping for the element ID to the background drawing function to the
52 osdElementBackgroundFunction array.
54 Accelerometer reqirement:
55 -------------------------
56 If the new element utilizes the accelerometer, add it to the osdElementsNeedAccelerometer() function.
58 Finally add a CLI parameter for the new element in cli/settings.c.
59 CLI parameters should be added before line #endif // end of #ifdef USE_OSD
63 *********************
64 OSD element variants:
65 *********************
67 Each element can have up to 4 display variants. "Type 1" is always the default and every
68 every element has an implicit type 1 variant even if no additional options exist. The
69 purpose is to allow the user to choose a different element display or rendering style to
70 fit their needs. Like displaying GPS coordinates in a different format, displaying a voltage
71 with a different number of decimal places, etc. The purpose is NOT to display unrelated
72 information in different variants of the element. For example it would be inappropriate
73 to use variants to display RSSI for one type and link quality for another. In this case
74 they should be separate elements. Remember that element variants are mutually exclusive
75 and only one type can be displayed at a time. So they shouldn't be used in cases where
76 the user would want to display different types at the same time - like in the above example
77 where the user might want to display both RSSI and link quality at the same time.
79 As variants are added to the firmware, support must also be included in the Configurator.
81 The following lists the variants implemented so far (please update this as variants are added):
83 OSD_ALTITUDE
84 type 1: Altitude with one decimal place
85 type 2: Altitude with no decimal (whole number only)
87 OSD_GPS_LON
88 OSD_GPS_LAT
89 type 1: Decimal representation with 7 digits
90 type 2: Decimal representation with 4 digits
91 type 3: Degrees, minutes, seconds
92 type 4: Open location code (Google Plus Code)
94 OSD_MAIN_BATT_USAGE
95 type 1: Graphical bar showing remaining battery (shrinks as used)
96 type 2: Graphical bar showing battery used (grows as used)
97 type 3: Numeric % of remaining battery
98 type 4: Numeric % or used battery
101 #include <stdbool.h>
102 #include <stdint.h>
103 #include <stdlib.h>
104 #include <string.h>
105 #include <ctype.h>
106 #include <math.h>
108 #include "platform.h"
110 #ifdef USE_OSD
112 #include "blackbox/blackbox.h"
113 #include "blackbox/blackbox_io.h"
115 #include "build/build_config.h"
116 #include "build/debug.h"
118 #include "common/axis.h"
119 #include "common/maths.h"
120 #include "common/printf.h"
121 #include "common/typeconversion.h"
122 #include "common/utils.h"
123 #include "common/unit.h"
124 #include "common/filter.h"
126 #include "config/config.h"
127 #include "config/feature.h"
129 #include "drivers/display.h"
130 #include "drivers/dshot.h"
131 #include "drivers/osd_symbols.h"
132 #include "drivers/time.h"
133 #include "drivers/vtx_common.h"
135 #include "fc/controlrate_profile.h"
136 #include "fc/core.h"
137 #include "fc/rc_adjustments.h"
138 #include "fc/rc_controls.h"
139 #include "fc/runtime_config.h"
141 #include "flight/gps_rescue.h"
142 #include "flight/position.h"
143 #include "flight/imu.h"
144 #include "flight/mixer.h"
145 #include "flight/pid.h"
147 #include "io/gps.h"
148 #include "io/vtx.h"
150 #include "osd/osd.h"
151 #include "osd/osd_elements.h"
152 #include "osd/osd_warnings.h"
154 #include "pg/motor.h"
155 #include "pg/stats.h"
157 #include "rx/rx.h"
159 #include "sensors/adcinternal.h"
160 #include "sensors/barometer.h"
161 #include "sensors/battery.h"
162 #include "sensors/esc_sensor.h"
163 #include "sensors/sensors.h"
165 #ifdef USE_GPS_PLUS_CODES
166 // located in lib/main/google/olc
167 #include "olc.h"
168 #endif
170 #define AH_SYMBOL_COUNT 9
171 #define AH_SIDEBAR_WIDTH_POS 7
172 #define AH_SIDEBAR_HEIGHT_POS 3
174 // Stick overlay size
175 #define OSD_STICK_OVERLAY_WIDTH 7
176 #define OSD_STICK_OVERLAY_HEIGHT 5
177 #define OSD_STICK_OVERLAY_SPRITE_HEIGHT 3
178 #define OSD_STICK_OVERLAY_VERTICAL_POSITIONS (OSD_STICK_OVERLAY_HEIGHT * OSD_STICK_OVERLAY_SPRITE_HEIGHT)
180 #define FULL_CIRCLE 360
181 #define EFFICIENCY_MINIMUM_SPEED_CM_S 100
182 #define EFFICIENCY_CUTOFF_HZ 0.5f
184 static pt1Filter_t batteryEfficiencyFilt;
186 #define MOTOR_STOPPED_THRESHOLD_RPM 1000
188 #define SINE_25_DEG 0.422618261740699f
190 #ifdef USE_OSD_STICK_OVERLAY
191 typedef struct radioControls_s {
192 uint8_t left_vertical;
193 uint8_t left_horizontal;
194 uint8_t right_vertical;
195 uint8_t right_horizontal;
196 } radioControls_t;
198 static const radioControls_t radioModes[4] = {
199 { PITCH, YAW, THROTTLE, ROLL }, // Mode 1
200 { THROTTLE, YAW, PITCH, ROLL }, // Mode 2
201 { PITCH, ROLL, THROTTLE, YAW }, // Mode 3
202 { THROTTLE, ROLL, PITCH, YAW }, // Mode 4
204 #endif
206 static const char compassBar[] = {
207 SYM_HEADING_W,
208 SYM_HEADING_LINE, SYM_HEADING_DIVIDED_LINE, SYM_HEADING_LINE,
209 SYM_HEADING_N,
210 SYM_HEADING_LINE, SYM_HEADING_DIVIDED_LINE, SYM_HEADING_LINE,
211 SYM_HEADING_E,
212 SYM_HEADING_LINE, SYM_HEADING_DIVIDED_LINE, SYM_HEADING_LINE,
213 SYM_HEADING_S,
214 SYM_HEADING_LINE, SYM_HEADING_DIVIDED_LINE, SYM_HEADING_LINE,
215 SYM_HEADING_W,
216 SYM_HEADING_LINE, SYM_HEADING_DIVIDED_LINE, SYM_HEADING_LINE,
217 SYM_HEADING_N,
218 SYM_HEADING_LINE, SYM_HEADING_DIVIDED_LINE, SYM_HEADING_LINE
221 static unsigned activeOsdElementCount = 0;
222 static uint8_t activeOsdElementArray[OSD_ITEM_COUNT];
223 static bool backgroundLayerSupported = false;
225 // Blink control
226 #define OSD_BLINK_FREQUENCY_HZ 2
227 static bool blinkState = true;
228 static uint32_t blinkBits[(OSD_ITEM_COUNT + 31) / 32];
229 #define SET_BLINK(item) (blinkBits[(item) / 32] |= (1 << ((item) % 32)))
230 #define CLR_BLINK(item) (blinkBits[(item) / 32] &= ~(1 << ((item) % 32)))
231 #define IS_BLINK(item) (blinkBits[(item) / 32] & (1 << ((item) % 32)))
232 #define BLINK(item) (IS_BLINK(item) && blinkState)
234 enum {UP, DOWN};
236 static int osdDisplayWrite(osdElementParms_t *element, uint8_t x, uint8_t y, uint8_t attr, const char *s)
238 if (IS_BLINK(element->item)) {
239 attr |= DISPLAYPORT_ATTR_BLINK;
242 return displayWrite(element->osdDisplayPort, x, y, attr, s);
245 static int osdDisplayWriteChar(osdElementParms_t *element, uint8_t x, uint8_t y, uint8_t attr, char c)
247 char buf[2];
249 buf[0] = c;
250 buf[1] = 0;
252 return osdDisplayWrite(element, x, y, attr, buf);
255 #if defined(USE_ESC_SENSOR) || defined(USE_DSHOT_TELEMETRY)
256 typedef int (*getEscRpmOrFreqFnPtr)(int i);
258 static int getEscRpm(int i)
260 #ifdef USE_DSHOT_TELEMETRY
261 if (motorConfig()->dev.useDshotTelemetry) {
262 return 100.0f / (motorConfig()->motorPoleCount / 2.0f) * getDshotTelemetry(i);
264 #endif
265 #ifdef USE_ESC_SENSOR
266 if (featureIsEnabled(FEATURE_ESC_SENSOR)) {
267 return calcEscRpm(getEscSensorData(i)->rpm);
269 #endif
270 return 0;
273 static int getEscRpmFreq(int i)
275 return getEscRpm(i) / 60;
278 static void renderOsdEscRpmOrFreq(getEscRpmOrFreqFnPtr escFnPtr, osdElementParms_t *element)
280 int x = element->elemPosX;
281 int y = element->elemPosY;
282 for (int i=0; i < getMotorCount(); i++) {
283 char rpmStr[6];
284 const int rpm = MIN((*escFnPtr)(i),99999);
285 const int len = tfp_sprintf(rpmStr, "%d", rpm);
286 rpmStr[len] = '\0';
287 osdDisplayWrite(element, x, y + i, DISPLAYPORT_ATTR_NONE, rpmStr);
289 element->drawElement = false;
291 #endif
293 #if defined(USE_ADC_INTERNAL) || defined(USE_ESC_SENSOR)
294 int osdConvertTemperatureToSelectedUnit(int tempInDegreesCelcius)
296 switch (osdConfig()->units) {
297 case UNIT_IMPERIAL:
298 return lrintf(((tempInDegreesCelcius * 9.0f) / 5) + 32);
299 default:
300 return tempInDegreesCelcius;
303 #endif
305 static void osdFormatAltitudeString(char * buff, int32_t altitudeCm, osdElementType_e variantType)
307 const char unitSymbol = osdGetMetersToSelectedUnitSymbol();
308 unsigned decimalPlaces;
310 switch (variantType) {
311 case OSD_ELEMENT_TYPE_2: // whole number altitude (no decimal places)
312 decimalPlaces = 0;
313 break;
314 case OSD_ELEMENT_TYPE_1: // one decimal place (default)
315 default:
316 decimalPlaces = 1;
317 break;
319 osdPrintFloat(buff, SYM_ALTITUDE, osdGetMetersToSelectedUnit(altitudeCm) / 100.0f, "", decimalPlaces, true, unitSymbol);
322 #ifdef USE_GPS
323 static void osdFormatCoordinate(char *buff, gpsCoordinateType_e coordinateType, osdElementType_e variantType)
325 int32_t gpsValue = 0;
326 const char leadingSymbol = (coordinateType == GPS_LONGITUDE) ? SYM_LON : SYM_LAT;
328 if (STATE(GPS_FIX_EVER)) { // don't display interim coordinates until we get the first position fix
329 gpsValue = (coordinateType == GPS_LONGITUDE) ? gpsSol.llh.lon : gpsSol.llh.lat;
332 const int degreesPart = ABS(gpsValue) / GPS_DEGREES_DIVIDER;
333 int fractionalPart = ABS(gpsValue) % GPS_DEGREES_DIVIDER;
335 switch (variantType) {
336 #ifdef USE_GPS_PLUS_CODES
337 #define PLUS_CODE_DIGITS 11
338 case OSD_ELEMENT_TYPE_4: // Open Location Code
340 *buff++ = SYM_SAT_L;
341 *buff++ = SYM_SAT_R;
342 if (STATE(GPS_FIX_EVER)) {
343 OLC_LatLon location;
344 location.lat = (double)gpsSol.llh.lat / GPS_DEGREES_DIVIDER;
345 location.lon = (double)gpsSol.llh.lon / GPS_DEGREES_DIVIDER;
346 OLC_Encode(&location, PLUS_CODE_DIGITS, buff, OSD_ELEMENT_BUFFER_LENGTH - 3);
347 } else {
348 memset(buff, SYM_HYPHEN, PLUS_CODE_DIGITS + 1);
349 buff[8] = '+';
350 buff[PLUS_CODE_DIGITS + 1] = '\0';
352 break;
354 #endif // USE_GPS_PLUS_CODES
356 case OSD_ELEMENT_TYPE_3: // degree, minutes, seconds style. ddd^mm'ss.00"W
358 char trailingSymbol;
359 *buff++ = leadingSymbol;
361 const int minutes = fractionalPart * 60 / GPS_DEGREES_DIVIDER;
362 const int fractionalMinutes = fractionalPart * 60 % GPS_DEGREES_DIVIDER;
363 const int seconds = fractionalMinutes * 60 / GPS_DEGREES_DIVIDER;
364 const int tenthSeconds = (fractionalMinutes * 60 % GPS_DEGREES_DIVIDER) * 10 / GPS_DEGREES_DIVIDER;
366 if (coordinateType == GPS_LONGITUDE) {
367 trailingSymbol = (gpsValue < 0) ? 'W' : 'E';
368 } else {
369 trailingSymbol = (gpsValue < 0) ? 'S' : 'N';
371 tfp_sprintf(buff, "%u%c%02u%c%02u.%u%c%c", degreesPart, SYM_GPS_DEGREE, minutes, SYM_GPS_MINUTE, seconds, tenthSeconds, SYM_GPS_SECOND, trailingSymbol);
372 break;
375 case OSD_ELEMENT_TYPE_2:
376 fractionalPart /= 1000;
377 FALLTHROUGH;
379 case OSD_ELEMENT_TYPE_1:
380 default:
381 *buff++ = leadingSymbol;
382 if (gpsValue < 0) {
383 *buff++ = SYM_HYPHEN;
385 tfp_sprintf(buff, (variantType == OSD_ELEMENT_TYPE_1 ? "%u.%07u" : "%u.%04u"), degreesPart, fractionalPart);
386 break;
389 #endif // USE_GPS
391 void osdFormatDistanceString(char *ptr, int distance, char leadingSymbol)
393 const float convertedDistance = osdGetMetersToSelectedUnit(distance);
394 char unitSymbol;
395 char unitSymbolExtended;
396 int unitTransition;
398 switch (osdConfig()->units) {
399 case UNIT_IMPERIAL:
400 unitTransition = 5280;
401 unitSymbol = SYM_FT;
402 unitSymbolExtended = SYM_MILES;
403 break;
404 default:
405 unitTransition = 1000;
406 unitSymbol = SYM_M;
407 unitSymbolExtended = SYM_KM;
408 break;
411 unsigned decimalPlaces;
412 float displayDistance;
413 char displaySymbol;
414 if (convertedDistance < unitTransition) {
415 decimalPlaces = 0;
416 displayDistance = convertedDistance;
417 displaySymbol = unitSymbol;
418 } else {
419 displayDistance = convertedDistance / unitTransition;
420 displaySymbol = unitSymbolExtended;
421 if (displayDistance >= 10) { // >= 10 miles or km - 1 decimal place
422 decimalPlaces = 1;
423 } else { // < 10 miles or km - 2 decimal places
424 decimalPlaces = 2;
427 osdPrintFloat(ptr, leadingSymbol, displayDistance, "", decimalPlaces, false, displaySymbol);
430 static void osdFormatPID(char * buff, const char * label, const pidf_t * pid)
432 tfp_sprintf(buff, "%s %3d %3d %3d %3d", label, pid->P, pid->I, pid->D, pid->F);
435 #ifdef USE_RTC_TIME
436 bool osdFormatRtcDateTime(char *buffer)
438 dateTime_t dateTime;
439 if (!rtcGetDateTime(&dateTime)) {
440 buffer[0] = '\0';
442 return false;
445 dateTimeFormatLocalShort(buffer, &dateTime);
447 return true;
449 #endif
451 void osdFormatTime(char * buff, osd_timer_precision_e precision, timeUs_t time)
453 int seconds = time / 1000000;
454 const int minutes = seconds / 60;
455 seconds = seconds % 60;
457 switch (precision) {
458 case OSD_TIMER_PREC_SECOND:
459 default:
460 tfp_sprintf(buff, "%02d:%02d", minutes, seconds);
461 break;
462 case OSD_TIMER_PREC_HUNDREDTHS:
464 const int hundredths = (time / 10000) % 100;
465 tfp_sprintf(buff, "%02d:%02d.%02d", minutes, seconds, hundredths);
466 break;
468 case OSD_TIMER_PREC_TENTHS:
470 const int tenths = (time / 100000) % 10;
471 tfp_sprintf(buff, "%02d:%02d.%01d", minutes, seconds, tenths);
472 break;
477 static char osdGetTimerSymbol(osd_timer_source_e src)
479 switch (src) {
480 case OSD_TIMER_SRC_ON:
481 return SYM_ON_M;
482 case OSD_TIMER_SRC_TOTAL_ARMED:
483 case OSD_TIMER_SRC_LAST_ARMED:
484 return SYM_FLY_M;
485 case OSD_TIMER_SRC_ON_OR_ARMED:
486 return ARMING_FLAG(ARMED) ? SYM_FLY_M : SYM_ON_M;
487 default:
488 return ' ';
492 static timeUs_t osdGetTimerValue(osd_timer_source_e src)
494 switch (src) {
495 case OSD_TIMER_SRC_ON:
496 return micros();
497 case OSD_TIMER_SRC_TOTAL_ARMED:
498 return osdFlyTime;
499 case OSD_TIMER_SRC_LAST_ARMED: {
500 statistic_t *stats = osdGetStats();
501 return stats->armed_time;
503 case OSD_TIMER_SRC_ON_OR_ARMED:
504 return ARMING_FLAG(ARMED) ? osdFlyTime : micros();
505 default:
506 return 0;
510 void osdFormatTimer(char *buff, bool showSymbol, bool usePrecision, int timerIndex)
512 const uint16_t timer = osdConfig()->timers[timerIndex];
513 const uint8_t src = OSD_TIMER_SRC(timer);
515 if (showSymbol) {
516 *(buff++) = osdGetTimerSymbol(src);
519 osdFormatTime(buff, (usePrecision ? OSD_TIMER_PRECISION(timer) : OSD_TIMER_PREC_SECOND), osdGetTimerValue(src));
522 static char osdGetBatterySymbol(int cellVoltage)
524 if (getBatteryState() == BATTERY_CRITICAL) {
525 return SYM_MAIN_BATT; // FIXME: currently the BAT- symbol, ideally replace with a battery with exclamation mark
526 } else {
527 // Calculate a symbol offset using cell voltage over full cell voltage range
528 const int symOffset = scaleRange(cellVoltage, batteryConfig()->vbatmincellvoltage, batteryConfig()->vbatmaxcellvoltage, 0, 8);
529 return SYM_BATT_EMPTY - constrain(symOffset, 0, 6);
533 static uint8_t osdGetHeadingIntoDiscreteDirections(int heading, unsigned directions)
535 heading += FULL_CIRCLE; // Ensure positive value
537 // Split input heading 0..359 into sectors 0..(directions-1), but offset
538 // by half a sector so that sector 0 gets centered around heading 0.
539 // We multiply heading by directions to not loose precision in divisions
540 // In this way each segment will be a FULL_CIRCLE length
541 int direction = (heading * directions + FULL_CIRCLE / 2) / FULL_CIRCLE; // scale with rounding
542 direction %= directions; // normalize
544 return direction; // return segment number
547 static uint8_t osdGetDirectionSymbolFromHeading(int heading)
549 heading = osdGetHeadingIntoDiscreteDirections(heading, 16);
551 // Now heading has a heading with Up=0, Right=4, Down=8 and Left=12
552 // Our symbols are Down=0, Right=4, Up=8 and Left=12
553 // There're 16 arrow symbols. Transform it.
554 heading = 16 - heading;
555 heading = (heading + 8) % 16;
557 return SYM_ARROW_SOUTH + heading;
562 * Converts altitude based on the current unit system.
563 * @param meters Value in meters to convert
565 float osdGetMetersToSelectedUnit(int32_t meters)
567 switch (osdConfig()->units) {
568 case UNIT_IMPERIAL:
569 return meters * 3.28084f; // Convert to feet
570 default:
571 return meters; // Already in meters
576 * Gets the correct altitude symbol for the current unit system
578 char osdGetMetersToSelectedUnitSymbol(void)
580 switch (osdConfig()->units) {
581 case UNIT_IMPERIAL:
582 return SYM_FT;
583 default:
584 return SYM_M;
589 * Converts speed based on the current unit system.
590 * @param value in cm/s to convert
592 int32_t osdGetSpeedToSelectedUnit(int32_t value)
594 switch (osdConfig()->units) {
595 case UNIT_IMPERIAL:
596 case UNIT_BRITISH:
597 return CM_S_TO_MPH(value);
598 default:
599 return CM_S_TO_KM_H(value);
604 * Gets the correct speed symbol for the current unit system
606 char osdGetSpeedToSelectedUnitSymbol(void)
608 switch (osdConfig()->units) {
609 case UNIT_IMPERIAL:
610 case UNIT_BRITISH:
611 return SYM_MPH;
612 default:
613 return SYM_KPH;
617 char osdGetVarioToSelectedUnitSymbol(void)
619 switch (osdConfig()->units) {
620 case UNIT_IMPERIAL:
621 return SYM_FTPS;
622 default:
623 return SYM_MPS;
627 #if defined(USE_ADC_INTERNAL) || defined(USE_ESC_SENSOR)
628 char osdGetTemperatureSymbolForSelectedUnit(void)
630 switch (osdConfig()->units) {
631 case UNIT_IMPERIAL:
632 return SYM_F;
633 default:
634 return SYM_C;
637 #endif
639 // *************************
640 // Element drawing functions
641 // *************************
643 #ifdef USE_OSD_ADJUSTMENTS
644 static void osdElementAdjustmentRange(osdElementParms_t *element)
646 const char *name = getAdjustmentsRangeName();
647 if (name) {
648 tfp_sprintf(element->buff, "%s: %3d", name, getAdjustmentsRangeValue());
651 #endif // USE_OSD_ADJUSTMENTS
653 static void osdElementAltitude(osdElementParms_t *element)
655 bool haveBaro = false;
656 bool haveGps = false;
657 #ifdef USE_BARO
658 haveBaro = sensors(SENSOR_BARO);
659 #endif // USE_BARO
660 #ifdef USE_GPS
661 haveGps = sensors(SENSOR_GPS) && STATE(GPS_FIX);
662 #endif // USE_GPS
663 if (haveBaro || haveGps) {
664 osdFormatAltitudeString(element->buff, getEstimatedAltitudeCm(), element->type);
665 } else {
666 element->buff[0] = SYM_ALTITUDE;
667 element->buff[1] = SYM_HYPHEN; // We use this symbol when we don't have a valid measure
668 element->buff[2] = '\0';
672 #ifdef USE_ACC
673 static void osdElementAngleRollPitch(osdElementParms_t *element)
675 const float angle = ((element->item == OSD_PITCH_ANGLE) ? attitude.values.pitch : attitude.values.roll) / 10.0f;
676 osdPrintFloat(element->buff, (element->item == OSD_PITCH_ANGLE) ? SYM_PITCH : SYM_ROLL, fabsf(angle), ((angle < 0) ? "-%02u" : " %02u"), 1, true, SYM_NONE);
678 #endif
680 static void osdElementAntiGravity(osdElementParms_t *element)
682 if (pidOsdAntiGravityActive()) {
683 strcpy(element->buff, "AG");
687 #ifdef USE_ACC
689 static void osdElementArtificialHorizon(osdElementParms_t *element)
691 // Get pitch and roll limits in tenths of degrees
692 const int maxPitch = osdConfig()->ahMaxPitch * 10;
693 const int maxRoll = osdConfig()->ahMaxRoll * 10;
694 const int ahSign = osdConfig()->ahInvert ? -1 : 1;
695 const int rollAngle = constrain(attitude.values.roll * ahSign, -maxRoll, maxRoll);
696 int pitchAngle = constrain(attitude.values.pitch * ahSign, -maxPitch, maxPitch);
697 // Convert pitchAngle to y compensation value
698 // (maxPitch / 25) divisor matches previous settings of fixed divisor of 8 and fixed max AHI pitch angle of 20.0 degrees
699 if (maxPitch > 0) {
700 pitchAngle = ((pitchAngle * 25) / maxPitch);
702 pitchAngle -= 41; // 41 = 4 * AH_SYMBOL_COUNT + 5
704 for (int x = -4; x <= 4; x++) {
705 const int y = ((-rollAngle * x) / 64) - pitchAngle;
706 if (y >= 0 && y <= 81) {
707 osdDisplayWriteChar(element, element->elemPosX + x, element->elemPosY + (y / AH_SYMBOL_COUNT), DISPLAYPORT_ATTR_NONE, (SYM_AH_BAR9_0 + (y % AH_SYMBOL_COUNT)));
711 element->drawElement = false; // element already drawn
714 static void osdElementUpDownReference(osdElementParms_t *element)
716 // Up/Down reference feature displays reference points on the OSD at Zenith and Nadir
717 const float earthUpinBodyFrame[3] = {-rMat[2][0], -rMat[2][1], -rMat[2][2]}; //transforum the up vector to the body frame
719 if (ABS(earthUpinBodyFrame[2]) < SINE_25_DEG && ABS(earthUpinBodyFrame[1]) < SINE_25_DEG) {
720 float thetaB; // pitch from body frame to zenith/nadir
721 float psiB; // psi from body frame to zenith/nadir
722 char *symbol[2] = {"U", "D"}; // character buffer
723 int direction;
725 if(attitude.values.pitch>0.0){ //nose down
726 thetaB = -earthUpinBodyFrame[2]; // get pitch w/re to nadir (use small angle approx for sine)
727 psiB = -earthUpinBodyFrame[1]; // calculate the yaw w/re to nadir (use small angle approx for sine)
728 direction = DOWN;
729 } else { // nose up
730 thetaB = earthUpinBodyFrame[2]; // get pitch w/re to zenith (use small angle approx for sine)
731 psiB = earthUpinBodyFrame[1]; // calculate the yaw w/re to zenith (use small angle approx for sine)
732 direction = UP;
734 int posX = element->elemPosX + lrintf(scaleRangef(psiB, -M_PIf / 4, M_PIf / 4, -14, 14));
735 int posY = element->elemPosY + lrintf(scaleRangef(thetaB, -M_PIf / 4, M_PIf / 4, -8, 8));
737 osdDisplayWrite(element, posX, posY, DISPLAYPORT_ATTR_NONE, symbol[direction]);
739 element->drawElement = false; // element already drawn
741 #endif // USE_ACC
743 static void osdElementAverageCellVoltage(osdElementParms_t *element)
745 const int cellV = getBatteryAverageCellVoltage();
746 osdPrintFloat(element->buff, osdGetBatterySymbol(cellV), cellV / 100.0f, "", 2, false, SYM_VOLT);
749 static void osdElementCompassBar(osdElementParms_t *element)
751 memcpy(element->buff, compassBar + osdGetHeadingIntoDiscreteDirections(DECIDEGREES_TO_DEGREES(attitude.values.yaw), 16), 9);
752 element->buff[9] = 0;
755 #ifdef USE_ADC_INTERNAL
756 static void osdElementCoreTemperature(osdElementParms_t *element)
758 tfp_sprintf(element->buff, "C%c%3d%c", SYM_TEMPERATURE, osdConvertTemperatureToSelectedUnit(getCoreTemperatureCelsius()), osdGetTemperatureSymbolForSelectedUnit());
760 #endif // USE_ADC_INTERNAL
762 static void osdBackgroundCameraFrame(osdElementParms_t *element)
764 const uint8_t xpos = element->elemPosX;
765 const uint8_t ypos = element->elemPosY;
766 const uint8_t width = constrain(osdConfig()->camera_frame_width, OSD_CAMERA_FRAME_MIN_WIDTH, OSD_CAMERA_FRAME_MAX_WIDTH);
767 const uint8_t height = constrain(osdConfig()->camera_frame_height, OSD_CAMERA_FRAME_MIN_HEIGHT, OSD_CAMERA_FRAME_MAX_HEIGHT);
769 element->buff[0] = SYM_STICK_OVERLAY_CENTER;
770 for (int i = 1; i < (width - 1); i++) {
771 element->buff[i] = SYM_STICK_OVERLAY_HORIZONTAL;
773 element->buff[width - 1] = SYM_STICK_OVERLAY_CENTER;
774 element->buff[width] = 0; // string terminator
776 osdDisplayWrite(element, xpos, ypos, DISPLAYPORT_ATTR_NONE, element->buff);
777 for (int i = 1; i < (height - 1); i++) {
778 osdDisplayWriteChar(element, xpos, ypos + i, DISPLAYPORT_ATTR_NONE, SYM_STICK_OVERLAY_VERTICAL);
779 osdDisplayWriteChar(element, xpos + width - 1, ypos + i, DISPLAYPORT_ATTR_NONE, SYM_STICK_OVERLAY_VERTICAL);
781 osdDisplayWrite(element, xpos, ypos + height - 1, DISPLAYPORT_ATTR_NONE, element->buff);
783 element->drawElement = false; // element already drawn
786 static void osdBackgroundCraftName(osdElementParms_t *element)
788 if (strlen(pilotConfig()->name) == 0) {
789 strcpy(element->buff, "CRAFT_NAME");
790 } else {
791 unsigned i;
792 for (i = 0; i < MAX_NAME_LENGTH; i++) {
793 if (pilotConfig()->name[i]) {
794 element->buff[i] = toupper((unsigned char)pilotConfig()->name[i]);
795 } else {
796 break;
799 element->buff[i] = '\0';
803 #ifdef USE_ACC
804 static void osdElementCrashFlipArrow(osdElementParms_t *element)
806 int rollAngle = attitude.values.roll / 10;
807 const int pitchAngle = attitude.values.pitch / 10;
808 if (abs(rollAngle) > 90) {
809 rollAngle = (rollAngle < 0 ? -180 : 180) - rollAngle;
812 if ((isFlipOverAfterCrashActive() || (!ARMING_FLAG(ARMED) && !isUpright())) && !((imuConfig()->small_angle < 180 && isUpright()) || (rollAngle == 0 && pitchAngle == 0))) {
813 if (abs(pitchAngle) < 2 * abs(rollAngle) && abs(rollAngle) < 2 * abs(pitchAngle)) {
814 if (pitchAngle > 0) {
815 if (rollAngle > 0) {
816 element->buff[0] = SYM_ARROW_WEST + 2;
817 } else {
818 element->buff[0] = SYM_ARROW_EAST - 2;
820 } else {
821 if (rollAngle > 0) {
822 element->buff[0] = SYM_ARROW_WEST - 2;
823 } else {
824 element->buff[0] = SYM_ARROW_EAST + 2;
827 } else {
828 if (abs(pitchAngle) > abs(rollAngle)) {
829 if (pitchAngle > 0) {
830 element->buff[0] = SYM_ARROW_SOUTH;
831 } else {
832 element->buff[0] = SYM_ARROW_NORTH;
834 } else {
835 if (rollAngle > 0) {
836 element->buff[0] = SYM_ARROW_WEST;
837 } else {
838 element->buff[0] = SYM_ARROW_EAST;
842 element->buff[1] = '\0';
845 #endif // USE_ACC
847 static void osdElementCrosshairs(osdElementParms_t *element)
849 element->buff[0] = SYM_AH_CENTER_LINE;
850 element->buff[1] = SYM_AH_CENTER;
851 element->buff[2] = SYM_AH_CENTER_LINE_RIGHT;
852 element->buff[3] = 0;
855 static void osdElementCurrentDraw(osdElementParms_t *element)
857 const float amperage = fabsf(getAmperage() / 100.0f);
858 osdPrintFloat(element->buff, SYM_NONE, amperage, "%3u", 2, false, SYM_AMP);
861 static void osdElementDebug(osdElementParms_t *element)
863 tfp_sprintf(element->buff, "DBG %5d %5d %5d %5d", debug[0], debug[1], debug[2], debug[3]);
866 static void osdElementDisarmed(osdElementParms_t *element)
868 if (!ARMING_FLAG(ARMED)) {
869 tfp_sprintf(element->buff, "DISARMED");
873 static void osdBackgroundDisplayName(osdElementParms_t *element)
875 if (strlen(pilotConfig()->displayName) == 0) {
876 strcpy(element->buff, "DISPLAY_NAME");
877 } else {
878 unsigned i;
879 for (i = 0; i < MAX_NAME_LENGTH; i++) {
880 if (pilotConfig()->displayName[i]) {
881 element->buff[i] = toupper((unsigned char)pilotConfig()->displayName[i]);
882 } else {
883 break;
886 element->buff[i] = '\0';
890 #ifdef USE_PERSISTENT_STATS
891 static void osdElementTotalFlights(osdElementParms_t *element)
893 const int32_t total_flights = statsConfig()->stats_total_flights;
894 tfp_sprintf(element->buff, "#%d", total_flights);
896 #endif
898 #ifdef USE_PROFILE_NAMES
899 static void osdElementRateProfileName(osdElementParms_t *element)
901 if (strlen(currentControlRateProfile->profileName) == 0) {
902 tfp_sprintf(element->buff, "RATE_%u", getCurrentControlRateProfileIndex() + 1);
903 } else {
904 unsigned i;
905 for (i = 0; i < MAX_PROFILE_NAME_LENGTH; i++) {
906 if (currentControlRateProfile->profileName[i]) {
907 element->buff[i] = toupper((unsigned char)currentControlRateProfile->profileName[i]);
908 } else {
909 break;
912 element->buff[i] = '\0';
916 static void osdElementPidProfileName(osdElementParms_t *element)
918 if (strlen(currentPidProfile->profileName) == 0) {
919 tfp_sprintf(element->buff, "PID_%u", getCurrentPidProfileIndex() + 1);
920 } else {
921 unsigned i;
922 for (i = 0; i < MAX_PROFILE_NAME_LENGTH; i++) {
923 if (currentPidProfile->profileName[i]) {
924 element->buff[i] = toupper((unsigned char)currentPidProfile->profileName[i]);
925 } else {
926 break;
929 element->buff[i] = '\0';
932 #endif
934 #ifdef USE_OSD_PROFILES
935 static void osdElementOsdProfileName(osdElementParms_t *element)
937 uint8_t profileIndex = getCurrentOsdProfileIndex();
939 if (strlen(osdConfig()->profile[profileIndex - 1]) == 0) {
940 tfp_sprintf(element->buff, "OSD_%u", profileIndex);
941 } else {
942 unsigned i;
943 for (i = 0; i < OSD_PROFILE_NAME_LENGTH; i++) {
944 if (osdConfig()->profile[profileIndex - 1][i]) {
945 element->buff[i] = toupper((unsigned char)osdConfig()->profile[profileIndex - 1][i]);
946 } else {
947 break;
950 element->buff[i] = '\0';
953 #endif
955 #ifdef USE_ESC_SENSOR
956 static void osdElementEscTemperature(osdElementParms_t *element)
958 if (featureIsEnabled(FEATURE_ESC_SENSOR)) {
959 tfp_sprintf(element->buff, "E%c%3d%c", SYM_TEMPERATURE, osdConvertTemperatureToSelectedUnit(osdEscDataCombined->temperature), osdGetTemperatureSymbolForSelectedUnit());
962 #endif // USE_ESC_SENSOR
964 #if defined(USE_ESC_SENSOR) || defined(USE_DSHOT_TELEMETRY)
965 static void osdElementEscRpm(osdElementParms_t *element)
967 renderOsdEscRpmOrFreq(&getEscRpm,element);
970 static void osdElementEscRpmFreq(osdElementParms_t *element)
972 renderOsdEscRpmOrFreq(&getEscRpmFreq,element);
974 #endif
976 static void osdElementFlymode(osdElementParms_t *element)
978 // Note that flight mode display has precedence in what to display.
979 // 1. FS
980 // 2. GPS RESCUE
981 // 3. ANGLE, HORIZON, ACRO TRAINER
982 // 4. AIR
983 // 5. ACRO
985 if (FLIGHT_MODE(FAILSAFE_MODE)) {
986 strcpy(element->buff, "!FS!");
987 } else if (FLIGHT_MODE(GPS_RESCUE_MODE)) {
988 strcpy(element->buff, "RESC");
989 } else if (FLIGHT_MODE(HEADFREE_MODE)) {
990 strcpy(element->buff, "HEAD");
991 } else if (FLIGHT_MODE(ANGLE_MODE)) {
992 strcpy(element->buff, "ANGL");
993 } else if (FLIGHT_MODE(HORIZON_MODE)) {
994 strcpy(element->buff, "HOR ");
995 } else if (IS_RC_MODE_ACTIVE(BOXACROTRAINER)) {
996 strcpy(element->buff, "ATRN");
997 } else if (airmodeIsEnabled()) {
998 strcpy(element->buff, "AIR ");
999 } else {
1000 strcpy(element->buff, "ACRO");
1004 #ifdef USE_ACC
1005 static void osdElementGForce(osdElementParms_t *element)
1007 osdPrintFloat(element->buff, SYM_NONE, osdGForce, "", 1, true, 'G');
1009 #endif // USE_ACC
1011 #ifdef USE_GPS
1012 static void osdElementGpsFlightDistance(osdElementParms_t *element)
1014 if (STATE(GPS_FIX) && STATE(GPS_FIX_HOME)) {
1015 osdFormatDistanceString(element->buff, GPS_distanceFlownInCm / 100, SYM_TOTAL_DISTANCE);
1016 } else {
1017 // We use this symbol when we don't have a FIX
1018 tfp_sprintf(element->buff, "%c%c", SYM_TOTAL_DISTANCE, SYM_HYPHEN);
1022 static void osdElementGpsHomeDirection(osdElementParms_t *element)
1024 if (STATE(GPS_FIX) && STATE(GPS_FIX_HOME)) {
1025 if (GPS_distanceToHome > 0) {
1026 const int h = GPS_directionToHome - DECIDEGREES_TO_DEGREES(attitude.values.yaw);
1027 element->buff[0] = osdGetDirectionSymbolFromHeading(h);
1028 } else {
1029 element->buff[0] = SYM_OVER_HOME;
1032 } else {
1033 // We use this symbol when we don't have a FIX
1034 element->buff[0] = SYM_HYPHEN;
1037 element->buff[1] = 0;
1040 static void osdElementGpsHomeDistance(osdElementParms_t *element)
1042 if (STATE(GPS_FIX) && STATE(GPS_FIX_HOME)) {
1043 osdFormatDistanceString(element->buff, GPS_distanceToHome, SYM_HOMEFLAG);
1044 } else {
1045 element->buff[0] = SYM_HOMEFLAG;
1046 // We use this symbol when we don't have a FIX
1047 element->buff[1] = SYM_HYPHEN;
1048 element->buff[2] = '\0';
1052 static void osdElementGpsCoordinate(osdElementParms_t *element)
1054 const gpsCoordinateType_e coordinateType = (element->item == OSD_GPS_LON) ? GPS_LONGITUDE : GPS_LATITUDE;
1055 osdFormatCoordinate(element->buff, coordinateType, element->type);
1056 if (STATE(GPS_FIX_EVER) && !STATE(GPS_FIX)) {
1057 SET_BLINK(element->item); // blink if we had a fix but have since lost it
1058 } else {
1059 CLR_BLINK(element->item);
1063 static void osdElementGpsSats(osdElementParms_t *element)
1065 if (!gpsIsHealthy()) {
1066 tfp_sprintf(element->buff, "%c%cNC", SYM_SAT_L, SYM_SAT_R);
1067 } else {
1068 int pos = tfp_sprintf(element->buff, "%c%c%2d", SYM_SAT_L, SYM_SAT_R, gpsSol.numSat);
1069 if (osdConfig()->gps_sats_show_hdop) { // add on the GPS module HDOP estimate
1070 element->buff[pos++] = ' ';
1071 osdPrintFloat(element->buff + pos, SYM_NONE, gpsSol.hdop / 100.0f, "", 1, true, SYM_NONE);
1076 static void osdElementGpsSpeed(osdElementParms_t *element)
1078 if (STATE(GPS_FIX)) {
1079 tfp_sprintf(element->buff, "%c%3d%c", SYM_SPEED, osdGetSpeedToSelectedUnit(gpsConfig()->gps_use_3d_speed ? gpsSol.speed3d : gpsSol.groundSpeed), osdGetSpeedToSelectedUnitSymbol());
1080 } else {
1081 tfp_sprintf(element->buff, "%c%c%c", SYM_SPEED, SYM_HYPHEN, osdGetSpeedToSelectedUnitSymbol());
1085 static void osdElementEfficiency(osdElementParms_t *element)
1087 int efficiency = 0;
1088 if (sensors(SENSOR_GPS) && ARMING_FLAG(ARMED) && STATE(GPS_FIX) && gpsSol.groundSpeed >= EFFICIENCY_MINIMUM_SPEED_CM_S) {
1089 const float speed = (float)osdGetSpeedToSelectedUnit(gpsSol.groundSpeed);
1090 const float mAmperage = (float)getAmperage() * 10.f; // Current in mA
1091 efficiency = lrintf(pt1FilterApply(&batteryEfficiencyFilt, (mAmperage / speed)));
1094 const char unitSymbol = osdConfig()->units == UNIT_IMPERIAL ? SYM_MILES : SYM_KM;
1095 if (efficiency > 0 && efficiency <= 9999) {
1096 tfp_sprintf(element->buff, "%4d%c/%c", efficiency, SYM_MAH, unitSymbol);
1097 } else {
1098 tfp_sprintf(element->buff, "----%c/%c", SYM_MAH, unitSymbol);
1101 #endif // USE_GPS
1103 static void osdBackgroundHorizonSidebars(osdElementParms_t *element)
1105 // Draw AH sides
1106 const int8_t hudwidth = AH_SIDEBAR_WIDTH_POS;
1107 const int8_t hudheight = AH_SIDEBAR_HEIGHT_POS;
1108 for (int y = -hudheight; y <= hudheight; y++) {
1109 osdDisplayWriteChar(element, element->elemPosX - hudwidth, element->elemPosY + y, DISPLAYPORT_ATTR_NONE, SYM_AH_DECORATION);
1110 osdDisplayWriteChar(element, element->elemPosX + hudwidth, element->elemPosY + y, DISPLAYPORT_ATTR_NONE, SYM_AH_DECORATION);
1113 // AH level indicators
1114 osdDisplayWriteChar(element, element->elemPosX - hudwidth + 1, element->elemPosY, DISPLAYPORT_ATTR_NONE, SYM_AH_LEFT);
1115 osdDisplayWriteChar(element, element->elemPosX + hudwidth - 1, element->elemPosY, DISPLAYPORT_ATTR_NONE, SYM_AH_RIGHT);
1117 element->drawElement = false; // element already drawn
1120 #ifdef USE_RX_LINK_QUALITY_INFO
1121 static void osdElementLinkQuality(osdElementParms_t *element)
1123 uint16_t osdLinkQuality = 0;
1124 if (linkQualitySource == LQ_SOURCE_RX_PROTOCOL_CRSF) { // 0-99
1125 osdLinkQuality = rxGetLinkQuality();
1126 const uint8_t osdRfMode = rxGetRfMode();
1127 tfp_sprintf(element->buff, "%c%1d:%2d", SYM_LINK_QUALITY, osdRfMode, osdLinkQuality);
1128 } else if (linkQualitySource == LQ_SOURCE_RX_PROTOCOL_GHST) { // 0-100
1129 osdLinkQuality = rxGetLinkQuality();
1130 tfp_sprintf(element->buff, "%c%2d", SYM_LINK_QUALITY, osdLinkQuality);
1131 } else { // 0-9
1132 osdLinkQuality = rxGetLinkQuality() * 10 / LINK_QUALITY_MAX_VALUE;
1133 if (osdLinkQuality >= 10) {
1134 osdLinkQuality = 9;
1136 tfp_sprintf(element->buff, "%c%1d", SYM_LINK_QUALITY, osdLinkQuality);
1139 #endif // USE_RX_LINK_QUALITY_INFO
1141 #ifdef USE_RX_LINK_UPLINK_POWER
1142 static void osdElementTxUplinkPower(osdElementParms_t *element)
1144 const uint16_t osdUplinkTxPowerMw = rxGetUplinkTxPwrMw();
1145 if (osdUplinkTxPowerMw < 1000) {
1146 tfp_sprintf(element->buff, "%c%3dMW", SYM_RSSI, osdUplinkTxPowerMw);
1147 } else {
1148 osdPrintFloat(element->buff, SYM_RSSI, osdUplinkTxPowerMw / 1000.0f, "", 1, false, 'W');
1151 #endif // USE_RX_LINK_UPLINK_POWER
1153 #ifdef USE_BLACKBOX
1154 static void osdElementLogStatus(osdElementParms_t *element)
1156 if (IS_RC_MODE_ACTIVE(BOXBLACKBOX)) {
1157 if (!isBlackboxDeviceWorking()) {
1158 tfp_sprintf(element->buff, "%c!", SYM_BBLOG);
1159 } else if (isBlackboxDeviceFull()) {
1160 tfp_sprintf(element->buff, "%c>", SYM_BBLOG);
1161 } else {
1162 int32_t logNumber = blackboxGetLogNumber();
1163 if (logNumber >= 0) {
1164 tfp_sprintf(element->buff, "%c%d", SYM_BBLOG, logNumber);
1165 } else {
1166 tfp_sprintf(element->buff, "%c", SYM_BBLOG);
1171 #endif // USE_BLACKBOX
1173 static void osdElementMahDrawn(osdElementParms_t *element)
1175 tfp_sprintf(element->buff, "%4d%c", getMAhDrawn(), SYM_MAH);
1178 static void osdElementMainBatteryUsage(osdElementParms_t *element)
1180 // Set length of indicator bar
1181 #define MAIN_BATT_USAGE_STEPS 11 // Use an odd number so the bar can be centered.
1183 const int usedCapacity = getMAhDrawn();
1184 int displayBasis = usedCapacity;
1186 switch (element->type) {
1187 case OSD_ELEMENT_TYPE_3: // mAh remaining percentage (counts down as battery is used)
1188 displayBasis = constrain(batteryConfig()->batteryCapacity - usedCapacity, 0, batteryConfig()->batteryCapacity);
1189 FALLTHROUGH;
1191 case OSD_ELEMENT_TYPE_4: // mAh used percentage (counts up as battery is used)
1193 int displayPercent = 0;
1194 if (batteryConfig()->batteryCapacity) {
1195 displayPercent = constrain(lrintf(100.0f * displayBasis / batteryConfig()->batteryCapacity), 0, 100);
1197 tfp_sprintf(element->buff, "%c%d%%", SYM_MAH, displayPercent);
1198 break;
1201 case OSD_ELEMENT_TYPE_2: // mAh used graphical progress bar (grows as battery is used)
1202 displayBasis = constrain(batteryConfig()->batteryCapacity - usedCapacity, 0, batteryConfig()->batteryCapacity);
1203 FALLTHROUGH;
1205 case OSD_ELEMENT_TYPE_1: // mAh remaining graphical progress bar (shrinks as battery is used)
1206 default:
1208 uint8_t remainingCapacityBars = 0;
1210 if (batteryConfig()->batteryCapacity) {
1211 const float batteryRemaining = constrain(batteryConfig()->batteryCapacity - displayBasis, 0, batteryConfig()->batteryCapacity);
1212 remainingCapacityBars = ceilf((batteryRemaining / (batteryConfig()->batteryCapacity / MAIN_BATT_USAGE_STEPS)));
1215 // Create empty battery indicator bar
1216 element->buff[0] = SYM_PB_START;
1217 for (int i = 1; i <= MAIN_BATT_USAGE_STEPS; i++) {
1218 element->buff[i] = i <= remainingCapacityBars ? SYM_PB_FULL : SYM_PB_EMPTY;
1220 element->buff[MAIN_BATT_USAGE_STEPS + 1] = SYM_PB_CLOSE;
1221 if (remainingCapacityBars > 0 && remainingCapacityBars < MAIN_BATT_USAGE_STEPS) {
1222 element->buff[1 + remainingCapacityBars] = SYM_PB_END;
1224 element->buff[MAIN_BATT_USAGE_STEPS+2] = '\0';
1225 break;
1230 static void osdElementMainBatteryVoltage(osdElementParms_t *element)
1232 unsigned decimalPlaces;
1233 const float batteryVoltage = getBatteryVoltage() / 100.0f;
1235 if (batteryVoltage >= 10) { // if voltage is 10v or more then display only 1 decimal place
1236 decimalPlaces = 1;
1237 } else {
1238 decimalPlaces = 2;
1240 osdPrintFloat(element->buff, osdGetBatterySymbol(getBatteryAverageCellVoltage()), batteryVoltage, "", decimalPlaces, true, SYM_VOLT);
1243 static void osdElementMotorDiagnostics(osdElementParms_t *element)
1245 int i = 0;
1246 const bool motorsRunning = areMotorsRunning();
1247 for (; i < getMotorCount(); i++) {
1248 if (motorsRunning) {
1249 element->buff[i] = 0x88 - scaleRange(motor[i], getMotorOutputLow(), getMotorOutputHigh(), 0, 8);
1250 #if defined(USE_ESC_SENSOR) || defined(USE_DSHOT_TELEMETRY)
1251 if (getEscRpm(i) < MOTOR_STOPPED_THRESHOLD_RPM) {
1252 // Motor is not spinning properly. Mark as Stopped
1253 element->buff[i] = 'S';
1255 #endif
1256 } else {
1257 element->buff[i] = 0x88;
1260 element->buff[i] = '\0';
1263 static void osdElementNumericalHeading(osdElementParms_t *element)
1265 const int heading = DECIDEGREES_TO_DEGREES(attitude.values.yaw);
1266 tfp_sprintf(element->buff, "%c%03d", osdGetDirectionSymbolFromHeading(heading), heading);
1269 #ifdef USE_VARIO
1270 static void osdElementNumericalVario(osdElementParms_t *element)
1272 bool haveBaro = false;
1273 bool haveGps = false;
1274 #ifdef USE_BARO
1275 haveBaro = sensors(SENSOR_BARO);
1276 #endif // USE_BARO
1277 #ifdef USE_GPS
1278 haveGps = sensors(SENSOR_GPS) && STATE(GPS_FIX);
1279 #endif // USE_GPS
1280 if (haveBaro || haveGps) {
1281 const float verticalSpeed = osdGetMetersToSelectedUnit(getEstimatedVario()) / 100.0f;
1282 const char directionSymbol = verticalSpeed < 0 ? SYM_ARROW_SMALL_DOWN : SYM_ARROW_SMALL_UP;
1283 osdPrintFloat(element->buff, directionSymbol, fabsf(verticalSpeed), "", 1, true, osdGetVarioToSelectedUnitSymbol());
1284 } else {
1285 // We use this symbol when we don't have a valid measure
1286 element->buff[0] = SYM_HYPHEN;
1287 element->buff[1] = '\0';
1290 #endif // USE_VARIO
1292 static void osdElementPidRateProfile(osdElementParms_t *element)
1294 tfp_sprintf(element->buff, "%d-%d", getCurrentPidProfileIndex() + 1, getCurrentControlRateProfileIndex() + 1);
1297 static void osdElementPidsPitch(osdElementParms_t *element)
1299 osdFormatPID(element->buff, "PIT", &currentPidProfile->pid[PID_PITCH]);
1302 static void osdElementPidsRoll(osdElementParms_t *element)
1304 osdFormatPID(element->buff, "ROL", &currentPidProfile->pid[PID_ROLL]);
1307 static void osdElementPidsYaw(osdElementParms_t *element)
1309 osdFormatPID(element->buff, "YAW", &currentPidProfile->pid[PID_YAW]);
1312 static void osdElementPower(osdElementParms_t *element)
1314 tfp_sprintf(element->buff, "%4dW", getAmperage() * getBatteryVoltage() / 10000);
1317 static void osdElementRcChannels(osdElementParms_t *element)
1319 const uint8_t xpos = element->elemPosX;
1320 const uint8_t ypos = element->elemPosY;
1322 for (int i = 0; i < OSD_RCCHANNELS_COUNT; i++) {
1323 if (osdConfig()->rcChannels[i] >= 0) {
1324 // Translate (1000, 2000) to (-1000, 1000)
1325 int data = scaleRange(rcData[osdConfig()->rcChannels[i]], PWM_RANGE_MIN, PWM_RANGE_MAX, -1000, 1000);
1326 // Opt for the simplest formatting for now.
1327 // Decimal notation can be added when tfp_sprintf supports float among fancy options.
1328 char fmtbuf[6];
1329 tfp_sprintf(fmtbuf, "%5d", data);
1330 osdDisplayWrite(element, xpos, ypos + i, DISPLAYPORT_ATTR_NONE, fmtbuf);
1334 element->drawElement = false; // element already drawn
1337 static void osdElementRemainingTimeEstimate(osdElementParms_t *element)
1339 const int mAhDrawn = getMAhDrawn();
1341 if (mAhDrawn <= 0.1 * osdConfig()->cap_alarm) { // also handles the mAhDrawn == 0 condition
1342 tfp_sprintf(element->buff, "--:--");
1343 } else if (mAhDrawn > osdConfig()->cap_alarm) {
1344 tfp_sprintf(element->buff, "00:00");
1345 } else {
1346 const int remaining_time = (int)((osdConfig()->cap_alarm - mAhDrawn) * ((float)osdFlyTime) / mAhDrawn);
1347 osdFormatTime(element->buff, OSD_TIMER_PREC_SECOND, remaining_time);
1351 static void osdElementRssi(osdElementParms_t *element)
1353 uint16_t osdRssi = getRssi() * 100 / 1024; // change range
1354 if (osdRssi >= 100) {
1355 osdRssi = 99;
1358 tfp_sprintf(element->buff, "%c%2d", SYM_RSSI, osdRssi);
1361 #ifdef USE_RTC_TIME
1362 static void osdElementRtcTime(osdElementParms_t *element)
1364 osdFormatRtcDateTime(&element->buff[0]);
1366 #endif // USE_RTC_TIME
1368 #ifdef USE_RX_RSSI_DBM
1369 static void osdElementRssiDbm(osdElementParms_t *element)
1371 tfp_sprintf(element->buff, "%c%3d", SYM_RSSI, getRssiDbm());
1373 #endif // USE_RX_RSSI_DBM
1375 #ifdef USE_OSD_STICK_OVERLAY
1376 static void osdBackgroundStickOverlay(osdElementParms_t *element)
1378 const uint8_t xpos = element->elemPosX;
1379 const uint8_t ypos = element->elemPosY;
1381 // Draw the axis first
1382 for (unsigned x = 0; x < OSD_STICK_OVERLAY_WIDTH; x++) {
1383 for (unsigned y = 0; y < OSD_STICK_OVERLAY_HEIGHT; y++) {
1384 // draw the axes, vertical and horizonal
1385 if ((x == ((OSD_STICK_OVERLAY_WIDTH - 1) / 2)) && (y == (OSD_STICK_OVERLAY_HEIGHT - 1) / 2)) {
1386 osdDisplayWriteChar(element, xpos + x, ypos + y, DISPLAYPORT_ATTR_NONE, SYM_STICK_OVERLAY_CENTER);
1387 } else if (x == ((OSD_STICK_OVERLAY_WIDTH - 1) / 2)) {
1388 osdDisplayWriteChar(element, xpos + x, ypos + y, DISPLAYPORT_ATTR_NONE, SYM_STICK_OVERLAY_VERTICAL);
1389 } else if (y == ((OSD_STICK_OVERLAY_HEIGHT - 1) / 2)) {
1390 osdDisplayWriteChar(element, xpos + x, ypos + y, DISPLAYPORT_ATTR_NONE, SYM_STICK_OVERLAY_HORIZONTAL);
1395 element->drawElement = false; // element already drawn
1398 static void osdElementStickOverlay(osdElementParms_t *element)
1400 const uint8_t xpos = element->elemPosX;
1401 const uint8_t ypos = element->elemPosY;
1403 // Now draw the cursor
1404 rc_alias_e vertical_channel, horizontal_channel;
1406 if (element->item == OSD_STICK_OVERLAY_LEFT) {
1407 vertical_channel = radioModes[osdConfig()->overlay_radio_mode-1].left_vertical;
1408 horizontal_channel = radioModes[osdConfig()->overlay_radio_mode-1].left_horizontal;
1409 } else {
1410 vertical_channel = radioModes[osdConfig()->overlay_radio_mode-1].right_vertical;
1411 horizontal_channel = radioModes[osdConfig()->overlay_radio_mode-1].right_horizontal;
1414 const uint8_t cursorX = scaleRange(constrain(rcData[horizontal_channel], PWM_RANGE_MIN, PWM_RANGE_MAX - 1), PWM_RANGE_MIN, PWM_RANGE_MAX, 0, OSD_STICK_OVERLAY_WIDTH);
1415 const uint8_t cursorY = OSD_STICK_OVERLAY_VERTICAL_POSITIONS - 1 - scaleRange(constrain(rcData[vertical_channel], PWM_RANGE_MIN, PWM_RANGE_MAX - 1), PWM_RANGE_MIN, PWM_RANGE_MAX, 0, OSD_STICK_OVERLAY_VERTICAL_POSITIONS);
1416 const char cursor = SYM_STICK_OVERLAY_SPRITE_HIGH + (cursorY % OSD_STICK_OVERLAY_SPRITE_HEIGHT);
1418 osdDisplayWriteChar(element, xpos + cursorX, ypos + cursorY / OSD_STICK_OVERLAY_SPRITE_HEIGHT, DISPLAYPORT_ATTR_NONE, cursor);
1420 element->drawElement = false; // element already drawn
1422 #endif // USE_OSD_STICK_OVERLAY
1424 static void osdElementThrottlePosition(osdElementParms_t *element)
1426 tfp_sprintf(element->buff, "%c%3d", SYM_THR, calculateThrottlePercent());
1429 static void osdElementTimer(osdElementParms_t *element)
1431 osdFormatTimer(element->buff, true, true, element->item - OSD_ITEM_TIMER_1);
1434 #ifdef USE_VTX_COMMON
1435 static void osdElementVtxChannel(osdElementParms_t *element)
1437 const vtxDevice_t *vtxDevice = vtxCommonDevice();
1438 const char vtxBandLetter = vtxCommonLookupBandLetter(vtxDevice, vtxSettingsConfig()->band);
1439 const char *vtxChannelName = vtxCommonLookupChannelName(vtxDevice, vtxSettingsConfig()->channel);
1440 unsigned vtxStatus = 0;
1441 uint8_t vtxPower = vtxSettingsConfig()->power;
1442 if (vtxDevice) {
1443 vtxCommonGetStatus(vtxDevice, &vtxStatus);
1445 if (vtxSettingsConfig()->lowPowerDisarm) {
1446 vtxCommonGetPowerIndex(vtxDevice, &vtxPower);
1449 const char *vtxPowerLabel = vtxCommonLookupPowerName(vtxDevice, vtxPower);
1451 char vtxStatusIndicator = '\0';
1452 if (IS_RC_MODE_ACTIVE(BOXVTXCONTROLDISABLE)) {
1453 vtxStatusIndicator = 'D';
1454 } else if (vtxStatus & VTX_STATUS_PIT_MODE) {
1455 vtxStatusIndicator = 'P';
1458 if (vtxStatus & VTX_STATUS_LOCKED) {
1459 tfp_sprintf(element->buff, "-:-:-:L");
1460 } else if (vtxStatusIndicator) {
1461 tfp_sprintf(element->buff, "%c:%s:%s:%c", vtxBandLetter, vtxChannelName, vtxPowerLabel, vtxStatusIndicator);
1462 } else {
1463 tfp_sprintf(element->buff, "%c:%s:%s", vtxBandLetter, vtxChannelName, vtxPowerLabel);
1466 #endif // USE_VTX_COMMON
1468 static void osdElementWarnings(osdElementParms_t *element)
1470 bool elementBlinking = false;
1471 renderOsdWarning(element->buff, &elementBlinking, &element->attr);
1472 if (elementBlinking) {
1473 SET_BLINK(OSD_WARNINGS);
1474 } else {
1475 CLR_BLINK(OSD_WARNINGS);
1479 // Define the order in which the elements are drawn.
1480 // Elements positioned later in the list will overlay the earlier
1481 // ones if their character positions overlap
1482 // Elements that need special runtime conditional processing should be added
1483 // to osdAddActiveElements()
1485 static const uint8_t osdElementDisplayOrder[] = {
1486 OSD_MAIN_BATT_VOLTAGE,
1487 OSD_RSSI_VALUE,
1488 OSD_CROSSHAIRS,
1489 OSD_HORIZON_SIDEBARS,
1490 OSD_UP_DOWN_REFERENCE,
1491 OSD_ITEM_TIMER_1,
1492 OSD_ITEM_TIMER_2,
1493 OSD_REMAINING_TIME_ESTIMATE,
1494 OSD_FLYMODE,
1495 OSD_THROTTLE_POS,
1496 OSD_VTX_CHANNEL,
1497 OSD_CURRENT_DRAW,
1498 OSD_MAH_DRAWN,
1499 OSD_CRAFT_NAME,
1500 OSD_ALTITUDE,
1501 OSD_ROLL_PIDS,
1502 OSD_PITCH_PIDS,
1503 OSD_YAW_PIDS,
1504 OSD_POWER,
1505 OSD_PIDRATE_PROFILE,
1506 OSD_WARNINGS,
1507 OSD_AVG_CELL_VOLTAGE,
1508 OSD_DEBUG,
1509 OSD_PITCH_ANGLE,
1510 OSD_ROLL_ANGLE,
1511 OSD_MAIN_BATT_USAGE,
1512 OSD_DISARMED,
1513 OSD_NUMERICAL_HEADING,
1514 #ifdef USE_VARIO
1515 OSD_NUMERICAL_VARIO,
1516 #endif
1517 OSD_COMPASS_BAR,
1518 OSD_ANTI_GRAVITY,
1519 #ifdef USE_BLACKBOX
1520 OSD_LOG_STATUS,
1521 #endif
1522 OSD_MOTOR_DIAG,
1523 #ifdef USE_ACC
1524 OSD_FLIP_ARROW,
1525 #endif
1526 OSD_DISPLAY_NAME,
1527 #ifdef USE_RTC_TIME
1528 OSD_RTC_DATETIME,
1529 #endif
1530 #ifdef USE_OSD_ADJUSTMENTS
1531 OSD_ADJUSTMENT_RANGE,
1532 #endif
1533 #ifdef USE_ADC_INTERNAL
1534 OSD_CORE_TEMPERATURE,
1535 #endif
1536 #ifdef USE_RX_LINK_QUALITY_INFO
1537 OSD_LINK_QUALITY,
1538 #endif
1539 #ifdef USE_RX_LINK_UPLINK_POWER
1540 OSD_TX_UPLINK_POWER,
1541 #endif
1542 #ifdef USE_RX_RSSI_DBM
1543 OSD_RSSI_DBM_VALUE,
1544 #endif
1545 #ifdef USE_OSD_STICK_OVERLAY
1546 OSD_STICK_OVERLAY_LEFT,
1547 OSD_STICK_OVERLAY_RIGHT,
1548 #endif
1549 #ifdef USE_PROFILE_NAMES
1550 OSD_RATE_PROFILE_NAME,
1551 OSD_PID_PROFILE_NAME,
1552 #endif
1553 #ifdef USE_OSD_PROFILES
1554 OSD_PROFILE_NAME,
1555 #endif
1556 OSD_RC_CHANNELS,
1557 OSD_CAMERA_FRAME,
1558 #ifdef USE_PERSISTENT_STATS
1559 OSD_TOTAL_FLIGHTS,
1560 #endif
1563 // Define the mapping between the OSD element id and the function to draw it
1565 const osdElementDrawFn osdElementDrawFunction[OSD_ITEM_COUNT] = {
1566 [OSD_CAMERA_FRAME] = NULL, // only has background. Added first so it's the lowest "layer" and doesn't cover other elements
1567 [OSD_RSSI_VALUE] = osdElementRssi,
1568 [OSD_MAIN_BATT_VOLTAGE] = osdElementMainBatteryVoltage,
1569 [OSD_CROSSHAIRS] = osdElementCrosshairs, // only has background, but needs to be over other elements (like artificial horizon)
1570 #ifdef USE_ACC
1571 [OSD_ARTIFICIAL_HORIZON] = osdElementArtificialHorizon,
1572 [OSD_UP_DOWN_REFERENCE] = osdElementUpDownReference,
1573 #endif
1574 [OSD_HORIZON_SIDEBARS] = NULL, // only has background
1575 [OSD_ITEM_TIMER_1] = osdElementTimer,
1576 [OSD_ITEM_TIMER_2] = osdElementTimer,
1577 [OSD_FLYMODE] = osdElementFlymode,
1578 [OSD_CRAFT_NAME] = NULL, // only has background
1579 [OSD_THROTTLE_POS] = osdElementThrottlePosition,
1580 #ifdef USE_VTX_COMMON
1581 [OSD_VTX_CHANNEL] = osdElementVtxChannel,
1582 #endif
1583 [OSD_CURRENT_DRAW] = osdElementCurrentDraw,
1584 [OSD_MAH_DRAWN] = osdElementMahDrawn,
1585 #ifdef USE_GPS
1586 [OSD_GPS_SPEED] = osdElementGpsSpeed,
1587 [OSD_GPS_SATS] = osdElementGpsSats,
1588 #endif
1589 [OSD_ALTITUDE] = osdElementAltitude,
1590 [OSD_ROLL_PIDS] = osdElementPidsRoll,
1591 [OSD_PITCH_PIDS] = osdElementPidsPitch,
1592 [OSD_YAW_PIDS] = osdElementPidsYaw,
1593 [OSD_POWER] = osdElementPower,
1594 [OSD_PIDRATE_PROFILE] = osdElementPidRateProfile,
1595 [OSD_WARNINGS] = osdElementWarnings,
1596 [OSD_AVG_CELL_VOLTAGE] = osdElementAverageCellVoltage,
1597 #ifdef USE_GPS
1598 [OSD_GPS_LON] = osdElementGpsCoordinate,
1599 [OSD_GPS_LAT] = osdElementGpsCoordinate,
1600 #endif
1601 [OSD_DEBUG] = osdElementDebug,
1602 #ifdef USE_ACC
1603 [OSD_PITCH_ANGLE] = osdElementAngleRollPitch,
1604 [OSD_ROLL_ANGLE] = osdElementAngleRollPitch,
1605 #endif
1606 [OSD_MAIN_BATT_USAGE] = osdElementMainBatteryUsage,
1607 [OSD_DISARMED] = osdElementDisarmed,
1608 #ifdef USE_GPS
1609 [OSD_HOME_DIR] = osdElementGpsHomeDirection,
1610 [OSD_HOME_DIST] = osdElementGpsHomeDistance,
1611 #endif
1612 [OSD_NUMERICAL_HEADING] = osdElementNumericalHeading,
1613 #ifdef USE_VARIO
1614 [OSD_NUMERICAL_VARIO] = osdElementNumericalVario,
1615 #endif
1616 [OSD_COMPASS_BAR] = osdElementCompassBar,
1617 #ifdef USE_ESC_SENSOR
1618 [OSD_ESC_TMP] = osdElementEscTemperature,
1619 #endif
1620 #if defined(USE_DSHOT_TELEMETRY) || defined(USE_ESC_SENSOR)
1621 [OSD_ESC_RPM] = osdElementEscRpm,
1622 #endif
1623 [OSD_REMAINING_TIME_ESTIMATE] = osdElementRemainingTimeEstimate,
1624 #ifdef USE_RTC_TIME
1625 [OSD_RTC_DATETIME] = osdElementRtcTime,
1626 #endif
1627 #ifdef USE_OSD_ADJUSTMENTS
1628 [OSD_ADJUSTMENT_RANGE] = osdElementAdjustmentRange,
1629 #endif
1630 #ifdef USE_ADC_INTERNAL
1631 [OSD_CORE_TEMPERATURE] = osdElementCoreTemperature,
1632 #endif
1633 [OSD_ANTI_GRAVITY] = osdElementAntiGravity,
1634 #ifdef USE_ACC
1635 [OSD_G_FORCE] = osdElementGForce,
1636 #endif
1637 [OSD_MOTOR_DIAG] = osdElementMotorDiagnostics,
1638 #ifdef USE_BLACKBOX
1639 [OSD_LOG_STATUS] = osdElementLogStatus,
1640 #endif
1641 #ifdef USE_ACC
1642 [OSD_FLIP_ARROW] = osdElementCrashFlipArrow,
1643 #endif
1644 #ifdef USE_RX_LINK_QUALITY_INFO
1645 [OSD_LINK_QUALITY] = osdElementLinkQuality,
1646 #endif
1647 #ifdef USE_RX_LINK_UPLINK_POWER
1648 [OSD_TX_UPLINK_POWER] = osdElementTxUplinkPower,
1649 #endif
1650 #ifdef USE_GPS
1651 [OSD_FLIGHT_DIST] = osdElementGpsFlightDistance,
1652 #endif
1653 #ifdef USE_OSD_STICK_OVERLAY
1654 [OSD_STICK_OVERLAY_LEFT] = osdElementStickOverlay,
1655 [OSD_STICK_OVERLAY_RIGHT] = osdElementStickOverlay,
1656 #endif
1657 [OSD_DISPLAY_NAME] = NULL, // only has background
1658 #if defined(USE_DSHOT_TELEMETRY) || defined(USE_ESC_SENSOR)
1659 [OSD_ESC_RPM_FREQ] = osdElementEscRpmFreq,
1660 #endif
1661 #ifdef USE_PROFILE_NAMES
1662 [OSD_RATE_PROFILE_NAME] = osdElementRateProfileName,
1663 [OSD_PID_PROFILE_NAME] = osdElementPidProfileName,
1664 #endif
1665 #ifdef USE_OSD_PROFILES
1666 [OSD_PROFILE_NAME] = osdElementOsdProfileName,
1667 #endif
1668 #ifdef USE_RX_RSSI_DBM
1669 [OSD_RSSI_DBM_VALUE] = osdElementRssiDbm,
1670 #endif
1671 [OSD_RC_CHANNELS] = osdElementRcChannels,
1672 #ifdef USE_GPS
1673 [OSD_EFFICIENCY] = osdElementEfficiency,
1674 #endif
1675 #ifdef USE_PERSISTENT_STATS
1676 [OSD_TOTAL_FLIGHTS] = osdElementTotalFlights,
1677 #endif
1680 // Define the mapping between the OSD element id and the function to draw its background (static part)
1681 // Only necessary to define the entries that actually have a background function
1683 const osdElementDrawFn osdElementBackgroundFunction[OSD_ITEM_COUNT] = {
1684 [OSD_CAMERA_FRAME] = osdBackgroundCameraFrame,
1685 [OSD_HORIZON_SIDEBARS] = osdBackgroundHorizonSidebars,
1686 [OSD_CRAFT_NAME] = osdBackgroundCraftName,
1687 #ifdef USE_OSD_STICK_OVERLAY
1688 [OSD_STICK_OVERLAY_LEFT] = osdBackgroundStickOverlay,
1689 [OSD_STICK_OVERLAY_RIGHT] = osdBackgroundStickOverlay,
1690 #endif
1691 [OSD_DISPLAY_NAME] = osdBackgroundDisplayName,
1694 static void osdAddActiveElement(osd_items_e element)
1696 if (VISIBLE(osdElementConfig()->item_pos[element])) {
1697 activeOsdElementArray[activeOsdElementCount++] = element;
1701 // Examine the elements and build a list of only the active (enabled)
1702 // ones to speed up rendering.
1704 void osdAddActiveElements(void)
1706 activeOsdElementCount = 0;
1708 #ifdef USE_ACC
1709 if (sensors(SENSOR_ACC)) {
1710 osdAddActiveElement(OSD_ARTIFICIAL_HORIZON);
1711 osdAddActiveElement(OSD_G_FORCE);
1712 osdAddActiveElement(OSD_UP_DOWN_REFERENCE);
1714 #endif
1716 for (unsigned i = 0; i < sizeof(osdElementDisplayOrder); i++) {
1717 osdAddActiveElement(osdElementDisplayOrder[i]);
1720 #ifdef USE_GPS
1721 if (sensors(SENSOR_GPS)) {
1722 osdAddActiveElement(OSD_GPS_SATS);
1723 osdAddActiveElement(OSD_GPS_SPEED);
1724 osdAddActiveElement(OSD_GPS_LAT);
1725 osdAddActiveElement(OSD_GPS_LON);
1726 osdAddActiveElement(OSD_HOME_DIST);
1727 osdAddActiveElement(OSD_HOME_DIR);
1728 osdAddActiveElement(OSD_FLIGHT_DIST);
1729 osdAddActiveElement(OSD_EFFICIENCY);
1731 #endif // GPS
1732 #ifdef USE_ESC_SENSOR
1733 if (featureIsEnabled(FEATURE_ESC_SENSOR)) {
1734 osdAddActiveElement(OSD_ESC_TMP);
1736 #endif
1738 #if defined(USE_DSHOT_TELEMETRY) || defined(USE_ESC_SENSOR)
1739 if ((featureIsEnabled(FEATURE_ESC_SENSOR)) || (motorConfig()->dev.useDshotTelemetry)) {
1740 osdAddActiveElement(OSD_ESC_RPM);
1741 osdAddActiveElement(OSD_ESC_RPM_FREQ);
1743 #endif
1745 #ifdef USE_PERSISTENT_STATS
1746 osdAddActiveElement(OSD_TOTAL_FLIGHTS);
1747 #endif
1750 static void osdDrawSingleElement(displayPort_t *osdDisplayPort, uint8_t item)
1752 if (!osdElementDrawFunction[item]) {
1753 // Element has no drawing function
1754 return;
1756 if (!osdDisplayPort->useDeviceBlink && BLINK(item)) {
1757 return;
1760 uint8_t elemPosX = OSD_X(osdElementConfig()->item_pos[item]);
1761 uint8_t elemPosY = OSD_Y(osdElementConfig()->item_pos[item]);
1762 char buff[OSD_ELEMENT_BUFFER_LENGTH] = "";
1764 osdElementParms_t element;
1765 element.item = item;
1766 element.elemPosX = elemPosX;
1767 element.elemPosY = elemPosY;
1768 element.type = OSD_TYPE(osdElementConfig()->item_pos[item]);
1769 element.buff = (char *)&buff;
1770 element.osdDisplayPort = osdDisplayPort;
1771 element.drawElement = true;
1772 element.attr = DISPLAYPORT_ATTR_NONE;
1774 // Call the element drawing function
1775 osdElementDrawFunction[item](&element);
1776 if (element.drawElement) {
1777 osdDisplayWrite(&element, elemPosX, elemPosY, element.attr, buff);
1781 static void osdDrawSingleElementBackground(displayPort_t *osdDisplayPort, uint8_t item)
1783 if (!osdElementBackgroundFunction[item]) {
1784 // Element has no background drawing function
1785 return;
1788 uint8_t elemPosX = OSD_X(osdElementConfig()->item_pos[item]);
1789 uint8_t elemPosY = OSD_Y(osdElementConfig()->item_pos[item]);
1790 char buff[OSD_ELEMENT_BUFFER_LENGTH] = "";
1792 osdElementParms_t element;
1793 element.item = item;
1794 element.elemPosX = elemPosX;
1795 element.elemPosY = elemPosY;
1796 element.type = OSD_TYPE(osdElementConfig()->item_pos[item]);
1797 element.buff = (char *)&buff;
1798 element.osdDisplayPort = osdDisplayPort;
1799 element.drawElement = true;
1801 // Call the element background drawing function
1802 osdElementBackgroundFunction[item](&element);
1803 if (element.drawElement) {
1804 osdDisplayWrite(&element, elemPosX, elemPosY, DISPLAYPORT_ATTR_NONE, buff);
1808 static uint8_t activeElement = 0;
1810 uint8_t osdGetActiveElement()
1812 return activeElement;
1815 uint8_t osdGetActiveElementCount()
1817 return activeOsdElementCount;
1820 // Return true if there are more elements to draw
1821 bool osdDrawNextActiveElement(displayPort_t *osdDisplayPort, timeUs_t currentTimeUs)
1823 UNUSED(currentTimeUs);
1824 bool retval = true;
1826 if (activeElement >= activeOsdElementCount) {
1827 return false;
1830 if (!backgroundLayerSupported) {
1831 // If the background layer isn't supported then we
1832 // have to draw the element's static layer as well.
1833 osdDrawSingleElementBackground(osdDisplayPort, activeOsdElementArray[activeElement]);
1836 osdDrawSingleElement(osdDisplayPort, activeOsdElementArray[activeElement]);
1838 if (++activeElement >= activeOsdElementCount) {
1839 activeElement = 0;
1840 retval = false;
1843 return retval;
1846 void osdDrawActiveElementsBackground(displayPort_t *osdDisplayPort)
1848 if (backgroundLayerSupported) {
1849 displayLayerSelect(osdDisplayPort, DISPLAYPORT_LAYER_BACKGROUND);
1850 displayClearScreen(osdDisplayPort, DISPLAY_CLEAR_WAIT);
1851 for (unsigned i = 0; i < activeOsdElementCount; i++) {
1852 osdDrawSingleElementBackground(osdDisplayPort, activeOsdElementArray[i]);
1854 displayLayerSelect(osdDisplayPort, DISPLAYPORT_LAYER_FOREGROUND);
1858 void osdElementsInit(bool backgroundLayerFlag)
1860 backgroundLayerSupported = backgroundLayerFlag;
1861 activeOsdElementCount = 0;
1862 pt1FilterInit(&batteryEfficiencyFilt, pt1FilterGain(EFFICIENCY_CUTOFF_HZ, 1.0f / osdConfig()->framerate_hz));
1865 void osdSyncBlink() {
1866 static int blinkCount = 0;
1868 // If the OSD blink is due a transition, do so
1869 // Task runs at osdConfig()->framerate_hz Hz, so this will cycle at 2Hz
1870 if (++blinkCount == ((osdConfig()->framerate_hz / OSD_BLINK_FREQUENCY_HZ) / 2)) {
1871 blinkCount = 0;
1872 blinkState = !blinkState;
1876 void osdResetAlarms(void)
1878 memset(blinkBits, 0, sizeof(blinkBits));
1881 void osdUpdateAlarms(void)
1883 // This is overdone?
1885 int32_t alt = osdGetMetersToSelectedUnit(getEstimatedAltitudeCm()) / 100;
1887 if (getRssiPercent() < osdConfig()->rssi_alarm) {
1888 SET_BLINK(OSD_RSSI_VALUE);
1889 } else {
1890 CLR_BLINK(OSD_RSSI_VALUE);
1893 #ifdef USE_RX_LINK_QUALITY_INFO
1894 if (rxGetLinkQualityPercent() < osdConfig()->link_quality_alarm) {
1895 SET_BLINK(OSD_LINK_QUALITY);
1896 } else {
1897 CLR_BLINK(OSD_LINK_QUALITY);
1899 #endif // USE_RX_LINK_QUALITY_INFO
1901 if (getBatteryState() == BATTERY_OK) {
1902 CLR_BLINK(OSD_MAIN_BATT_VOLTAGE);
1903 CLR_BLINK(OSD_AVG_CELL_VOLTAGE);
1904 } else {
1905 SET_BLINK(OSD_MAIN_BATT_VOLTAGE);
1906 SET_BLINK(OSD_AVG_CELL_VOLTAGE);
1909 #ifdef USE_GPS
1910 if ((STATE(GPS_FIX) == 0) || (gpsSol.numSat < 5)
1911 #ifdef USE_GPS_RESCUE
1912 || ((gpsSol.numSat < gpsRescueConfig()->minSats) && gpsRescueIsConfigured())
1913 #endif
1915 SET_BLINK(OSD_GPS_SATS);
1916 } else {
1917 CLR_BLINK(OSD_GPS_SATS);
1919 #endif //USE_GPS
1921 for (int i = 0; i < OSD_TIMER_COUNT; i++) {
1922 const uint16_t timer = osdConfig()->timers[i];
1923 const timeUs_t time = osdGetTimerValue(OSD_TIMER_SRC(timer));
1924 const timeUs_t alarmTime = OSD_TIMER_ALARM(timer) * 60000000; // convert from minutes to us
1925 if (alarmTime != 0 && time >= alarmTime) {
1926 SET_BLINK(OSD_ITEM_TIMER_1 + i);
1927 } else {
1928 CLR_BLINK(OSD_ITEM_TIMER_1 + i);
1932 if (getMAhDrawn() >= osdConfig()->cap_alarm) {
1933 SET_BLINK(OSD_MAH_DRAWN);
1934 SET_BLINK(OSD_MAIN_BATT_USAGE);
1935 SET_BLINK(OSD_REMAINING_TIME_ESTIMATE);
1936 } else {
1937 CLR_BLINK(OSD_MAH_DRAWN);
1938 CLR_BLINK(OSD_MAIN_BATT_USAGE);
1939 CLR_BLINK(OSD_REMAINING_TIME_ESTIMATE);
1942 if ((alt >= osdConfig()->alt_alarm) && ARMING_FLAG(ARMED)) {
1943 SET_BLINK(OSD_ALTITUDE);
1944 } else {
1945 CLR_BLINK(OSD_ALTITUDE);
1948 #ifdef USE_GPS
1949 if (sensors(SENSOR_GPS) && ARMING_FLAG(ARMED) && STATE(GPS_FIX) && STATE(GPS_FIX_HOME)) {
1950 if (osdConfig()->distance_alarm && GPS_distanceToHome >= osdConfig()->distance_alarm) {
1951 SET_BLINK(OSD_HOME_DIST);
1952 } else {
1953 CLR_BLINK(OSD_HOME_DIST);
1955 } else {
1956 CLR_BLINK(OSD_HOME_DIST);;
1958 #endif
1960 #ifdef USE_ESC_SENSOR
1961 if (featureIsEnabled(FEATURE_ESC_SENSOR)) {
1962 // This works because the combined ESC data contains the maximum temperature seen amongst all ESCs
1963 if (osdConfig()->esc_temp_alarm != ESC_TEMP_ALARM_OFF && osdEscDataCombined->temperature >= osdConfig()->esc_temp_alarm) {
1964 SET_BLINK(OSD_ESC_TMP);
1965 } else {
1966 CLR_BLINK(OSD_ESC_TMP);
1969 #endif
1972 #ifdef USE_ACC
1973 static bool osdElementIsActive(osd_items_e element)
1975 for (unsigned i = 0; i < activeOsdElementCount; i++) {
1976 if (activeOsdElementArray[i] == element) {
1977 return true;
1980 return false;
1983 // Determine if any active elements need the ACC
1984 bool osdElementsNeedAccelerometer(void)
1986 return osdElementIsActive(OSD_ARTIFICIAL_HORIZON) ||
1987 osdElementIsActive(OSD_PITCH_ANGLE) ||
1988 osdElementIsActive(OSD_ROLL_ANGLE) ||
1989 osdElementIsActive(OSD_G_FORCE) ||
1990 osdElementIsActive(OSD_FLIP_ARROW) ||
1991 osdElementIsActive(OSD_UP_DOWN_REFERENCE);
1994 #endif // USE_ACC
1996 #endif // USE_OSD