New SPI API supporting DMA
[betaflight.git] / src / main / drivers / barometer / barometer_dps310.c
blobdf7958d2fd600e7f2fa812a7b34b02ad2131da9c
1 /*
2 * This file is part of Cleanflight, Betaflight and INAV.
4 * This Source Code Form is subject to the terms of the Mozilla Public
5 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
6 * You can obtain one at http://mozilla.org/MPL/2.0/.
8 * Alternatively, the contents of this file may be used under the terms
9 * of the GNU General Public License Version 3, as described below:
11 * This file is free software: you may copy, redistribute and/or modify
12 * it under the terms of the GNU General Public License as published by the
13 * Free Software Foundation, either version 3 of the License, or (at your
14 * option) any later version.
16 * This file is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program. If not, see http://www.gnu.org/licenses/.
24 * Copyright: INAVFLIGHT OU
27 #include <stdbool.h>
28 #include <stdint.h>
29 #include <string.h>
31 #include "platform.h"
33 #include "build/build_config.h"
34 #include "build/debug.h"
35 #include "common/utils.h"
37 #include "drivers/io.h"
38 #include "drivers/bus.h"
39 #include "drivers/bus_spi.h"
40 #include "drivers/time.h"
41 #include "drivers/barometer/barometer.h"
42 #include "drivers/barometer/barometer_dps310.h"
43 #include "drivers/resource.h"
45 // 10 MHz max SPI frequency
46 #define DPS310_MAX_SPI_CLK_HZ 10000000
48 #if defined(USE_BARO) && defined(USE_BARO_DPS310)
50 #define DPS310_I2C_ADDR 0x76
52 #define DPS310_REG_PSR_B2 0x00
53 #define DPS310_REG_PSR_B1 0x01
54 #define DPS310_REG_PSR_B0 0x02
55 #define DPS310_REG_TMP_B2 0x03
56 #define DPS310_REG_TMP_B1 0x04
57 #define DPS310_REG_TMP_B0 0x05
58 #define DPS310_REG_PRS_CFG 0x06
59 #define DPS310_REG_TMP_CFG 0x07
60 #define DPS310_REG_MEAS_CFG 0x08
61 #define DPS310_REG_CFG_REG 0x09
63 #define DPS310_REG_RESET 0x0C
64 #define DPS310_REG_ID 0x0D
66 #define DPS310_REG_COEF 0x10
67 #define DPS310_REG_COEF_SRCE 0x28
70 #define DPS310_ID_REV_AND_PROD_ID (0x10)
72 #define DPS310_RESET_BIT_SOFT_RST (0x09) // 0b1001
74 #define DPS310_MEAS_CFG_COEF_RDY (1 << 7)
75 #define DPS310_MEAS_CFG_SENSOR_RDY (1 << 6)
76 #define DPS310_MEAS_CFG_TMP_RDY (1 << 5)
77 #define DPS310_MEAS_CFG_PRS_RDY (1 << 4)
78 #define DPS310_MEAS_CFG_MEAS_CTRL_CONT (0x7)
80 #define DPS310_PRS_CFG_BIT_PM_RATE_32HZ (0x50) // 101 - 32 measurements pr. sec.
81 #define DPS310_PRS_CFG_BIT_PM_PRC_16 (0x04) // 0100 - 16 times (Standard).
83 #define DPS310_TMP_CFG_BIT_TMP_EXT (0x80) //
84 #define DPS310_TMP_CFG_BIT_TMP_RATE_32HZ (0x50) // 101 - 32 measurements pr. sec.
85 #define DPS310_TMP_CFG_BIT_TMP_PRC_16 (0x04) // 0100 - 16 times (Standard).
87 #define DPS310_CFG_REG_BIT_P_SHIFT (0x04)
88 #define DPS310_CFG_REG_BIT_T_SHIFT (0x08)
90 #define DPS310_COEF_SRCE_BIT_TMP_COEF_SRCE (0x80)
92 typedef struct {
93 int16_t c0; // 12bit
94 int16_t c1; // 12bit
95 int32_t c00; // 20bit
96 int32_t c10; // 20bit
97 int16_t c01; // 16bit
98 int16_t c11; // 16bit
99 int16_t c20; // 16bit
100 int16_t c21; // 16bit
101 int16_t c30; // 16bit
102 } calibrationCoefficients_t;
104 typedef struct {
105 calibrationCoefficients_t calib;
106 float pressure; // Pa
107 float temperature; // DegC
108 } baroState_t;
110 static baroState_t baroState;
112 #define busReadBuf busReadRegisterBuffer
113 #define busWrite busWriteRegister
115 static uint8_t buf[6];
117 // Helper functions
118 static uint8_t registerRead(const extDevice_t *dev, uint8_t reg)
120 return busReadRegister(dev, reg);
123 static void registerWrite(const extDevice_t *dev, uint8_t reg, uint8_t value)
125 busWrite(dev, reg, value);
128 static void registerSetBits(const extDevice_t *dev, uint8_t reg, uint8_t setbits)
130 uint8_t val = registerRead(dev, reg);
132 if ((val & setbits) != setbits) {
133 val |= setbits;
134 registerWrite(dev, reg, val);
138 static int32_t getTwosComplement(uint32_t raw, uint8_t length)
140 if (raw & ((int)1 << (length - 1))) {
141 return ((int32_t)raw) - ((int32_t)1 << length);
143 else {
144 return raw;
148 static bool deviceConfigure(const extDevice_t *dev)
150 // Trigger a chip reset
151 registerSetBits(dev, DPS310_REG_RESET, DPS310_RESET_BIT_SOFT_RST);
153 // Sleep 40ms
154 delay(40);
156 uint8_t status = registerRead(dev, DPS310_REG_MEAS_CFG);
158 // Check if coefficients are available
159 if ((status & DPS310_MEAS_CFG_COEF_RDY) == 0) {
160 return false;
163 // Check if sensor initialization is complete
164 if ((status & DPS310_MEAS_CFG_SENSOR_RDY) == 0) {
165 return false;
168 // 1. Read the pressure calibration coefficients (c00, c10, c20, c30, c01, c11, and c21) from the Calibration Coefficient register.
169 // Note: The coefficients read from the coefficient register are 2's complement numbers.
170 // Do the read of the coefficients in multiple parts, as the chip will return a read failure when trying to read all at once over I2C.
171 #define COEFFICIENT_LENGTH 18
172 #define READ_LENGTH (COEFFICIENT_LENGTH / 2)
174 uint8_t coef[COEFFICIENT_LENGTH];
175 if (!busReadBuf(dev, DPS310_REG_COEF, coef, READ_LENGTH)) {
176 return false;
178 if (!busReadBuf(dev, DPS310_REG_COEF + READ_LENGTH, coef + READ_LENGTH, COEFFICIENT_LENGTH - READ_LENGTH)) {
179 return false;
182 // 0x11 c0 [3:0] + 0x10 c0 [11:4]
183 baroState.calib.c0 = getTwosComplement(((uint32_t)coef[0] << 4) | (((uint32_t)coef[1] >> 4) & 0x0F), 12);
185 // 0x11 c1 [11:8] + 0x12 c1 [7:0]
186 baroState.calib.c1 = getTwosComplement((((uint32_t)coef[1] & 0x0F) << 8) | (uint32_t)coef[2], 12);
188 // 0x13 c00 [19:12] + 0x14 c00 [11:4] + 0x15 c00 [3:0]
189 baroState.calib.c00 = getTwosComplement(((uint32_t)coef[3] << 12) | ((uint32_t)coef[4] << 4) | (((uint32_t)coef[5] >> 4) & 0x0F), 20);
191 // 0x15 c10 [19:16] + 0x16 c10 [15:8] + 0x17 c10 [7:0]
192 baroState.calib.c10 = getTwosComplement((((uint32_t)coef[5] & 0x0F) << 16) | ((uint32_t)coef[6] << 8) | (uint32_t)coef[7], 20);
194 // 0x18 c01 [15:8] + 0x19 c01 [7:0]
195 baroState.calib.c01 = getTwosComplement(((uint32_t)coef[8] << 8) | (uint32_t)coef[9], 16);
197 // 0x1A c11 [15:8] + 0x1B c11 [7:0]
198 baroState.calib.c11 = getTwosComplement(((uint32_t)coef[8] << 8) | (uint32_t)coef[9], 16);
200 // 0x1C c20 [15:8] + 0x1D c20 [7:0]
201 baroState.calib.c20 = getTwosComplement(((uint32_t)coef[12] << 8) | (uint32_t)coef[13], 16);
203 // 0x1E c21 [15:8] + 0x1F c21 [7:0]
204 baroState.calib.c21 = getTwosComplement(((uint32_t)coef[14] << 8) | (uint32_t)coef[15], 16);
206 // 0x20 c30 [15:8] + 0x21 c30 [7:0]
207 baroState.calib.c30 = getTwosComplement(((uint32_t)coef[16] << 8) | (uint32_t)coef[17], 16);
209 // PRS_CFG: pressure measurement rate (32 Hz) and oversampling (16 time standard)
210 registerSetBits(dev, DPS310_REG_PRS_CFG, DPS310_PRS_CFG_BIT_PM_RATE_32HZ | DPS310_PRS_CFG_BIT_PM_PRC_16);
212 // TMP_CFG: temperature measurement rate (32 Hz) and oversampling (16 times)
213 const uint8_t TMP_COEF_SRCE = registerRead(dev, DPS310_REG_COEF_SRCE) & DPS310_COEF_SRCE_BIT_TMP_COEF_SRCE;
214 registerSetBits(dev, DPS310_REG_TMP_CFG, DPS310_TMP_CFG_BIT_TMP_RATE_32HZ | DPS310_TMP_CFG_BIT_TMP_PRC_16 | TMP_COEF_SRCE);
216 // CFG_REG: set pressure and temperature result bit-shift (required when the oversampling rate is >8 times)
217 registerSetBits(dev, DPS310_REG_CFG_REG, DPS310_CFG_REG_BIT_T_SHIFT | DPS310_CFG_REG_BIT_P_SHIFT);
219 // MEAS_CFG: Continuous pressure and temperature measurement
220 registerSetBits(dev, DPS310_REG_MEAS_CFG, DPS310_MEAS_CFG_MEAS_CTRL_CONT);
222 return true;
225 static bool dps310ReadUP(baroDev_t *baro)
227 if (busBusy(&baro->dev, NULL)) {
228 return false;
231 // 1. Kick off read
232 // No need to poll for data ready as the conversion rate is 32Hz and this is sampling at 20Hz
233 // Read PSR_B2, PSR_B1, PSR_B0, TMP_B2, TMP_B1, TMP_B0
234 busReadRegisterBufferStart(&baro->dev, DPS310_REG_PSR_B2, buf, 6);
236 return true;
239 static bool dps310GetUP(baroDev_t *baro)
241 UNUSED(baro);
243 // 2. Choose scaling factors kT (for temperature) and kP (for pressure) based on the chosen precision rate.
244 // The scaling factors are listed in Table 9.
245 static float kT = 253952; // 16 times (Standard)
246 static float kP = 253952; // 16 times (Standard)
248 // 3. Read the pressure and temperature result from the registers
250 const int32_t Praw = getTwosComplement((buf[0] << 16) + (buf[1] << 8) + buf[2], 24);
251 const int32_t Traw = getTwosComplement((buf[3] << 16) + (buf[4] << 8) + buf[5], 24);
253 // 4. Calculate scaled measurement results.
254 const float Praw_sc = Praw / kP;
255 const float Traw_sc = Traw / kT;
257 // 5. Calculate compensated measurement results.
258 const float c00 = baroState.calib.c00;
259 const float c01 = baroState.calib.c01;
260 const float c10 = baroState.calib.c10;
261 const float c11 = baroState.calib.c11;
262 const float c20 = baroState.calib.c20;
263 const float c21 = baroState.calib.c21;
264 const float c30 = baroState.calib.c30;
266 const float c0 = baroState.calib.c0;
267 const float c1 = baroState.calib.c1;
269 baroState.pressure = c00 + Praw_sc * (c10 + Praw_sc * (c20 + Praw_sc * c30)) + Traw_sc * c01 + Traw_sc * Praw_sc * (c11 + Praw_sc * c21);
270 baroState.temperature = c0 * 0.5f + c1 * Traw_sc;
272 return true;
275 static void deviceCalculate(int32_t *pressure, int32_t *temperature)
277 if (pressure) {
278 *pressure = baroState.pressure;
281 if (temperature) {
282 *temperature = (baroState.temperature * 100); // to centidegrees
288 #define DETECTION_MAX_RETRY_COUNT 5
289 static bool deviceDetect(const extDevice_t *dev)
291 for (int retry = 0; retry < DETECTION_MAX_RETRY_COUNT; retry++) {
292 uint8_t chipId[1];
294 delay(100);
296 bool ack = busReadBuf(dev, DPS310_REG_ID, chipId, 1);
298 if (ack && chipId[0] == DPS310_ID_REV_AND_PROD_ID) {
299 return true;
303 return false;
306 static void dps310StartUT(baroDev_t *baro)
308 UNUSED(baro);
311 static bool dps310ReadUT(baroDev_t *baro)
313 UNUSED(baro);
315 return true;
318 static bool dps310GetUT(baroDev_t *baro)
320 UNUSED(baro);
322 return true;
325 static void dps310StartUP(baroDev_t *baro)
327 UNUSED(baro);
330 static void deviceInit(const extDevice_t *dev, resourceOwner_e owner)
332 #ifdef USE_BARO_SPI_DPS310
333 if (dev->bus->busType == BUS_TYPE_SPI) {
334 IOHi(dev->busType_u.spi.csnPin); // Disable
335 IOInit(dev->busType_u.spi.csnPin, owner, 0);
336 IOConfigGPIO(dev->busType_u.spi.csnPin, IOCFG_OUT_PP);
337 spiSetClkDivisor(dev, spiCalculateDivider(DPS310_MAX_SPI_CLK_HZ));
339 #else
340 UNUSED(dev);
341 UNUSED(owner);
342 #endif
345 static void deviceDeInit(const extDevice_t *dev)
347 #ifdef USE_BARO_SPI_DPS310
348 if (dev->bus->busType == BUS_TYPE_SPI) {
349 spiPreinitByIO(dev->busType_u.spi.csnPin);
351 #else
352 UNUSED(dev);
353 #endif
356 bool baroDPS310Detect(baroDev_t *baro)
358 extDevice_t *dev = &baro->dev;
359 bool defaultAddressApplied = false;
361 deviceInit(&baro->dev, OWNER_BARO_CS);
363 if ((dev->bus->busType == BUS_TYPE_I2C) && (dev->busType_u.i2c.address == 0)) {
364 // Default address for BMP280
365 dev->busType_u.i2c.address = DPS310_I2C_ADDR;
366 defaultAddressApplied = true;
369 if (!deviceDetect(dev)) {
370 deviceDeInit(dev);
371 if (defaultAddressApplied) {
372 dev->busType_u.i2c.address = 0;
374 return false;
377 if (!deviceConfigure(dev)) {
378 deviceDeInit(dev);
379 return false;
382 busDeviceRegister(dev);
384 baro->ut_delay = 0;
385 baro->start_ut = dps310StartUT;
386 baro->read_ut = dps310ReadUT;
387 baro->get_ut = dps310GetUT;
389 baro->up_delay = 45000; // 45ms delay plus 5 1ms cycles 50ms
390 baro->start_up = dps310StartUP;
391 baro->read_up = dps310ReadUP;
392 baro->get_up = dps310GetUP;
394 baro->calculate = deviceCalculate;
396 return true;
399 #endif