Merge pull request #11494 from haslinghuis/dshot_gpio
[betaflight.git] / lib / main / STM32F1 / Drivers / STM32F10x_StdPeriph_Driver / src / stm32f10x_can.c
blobec8e0498bba3254de8dd3d1eed3c0e93149074ac
1 /**
2 ******************************************************************************
3 * @file stm32f10x_can.c
4 * @author MCD Application Team
5 * @version V3.5.0
6 * @date 11-March-2011
7 * @brief This file provides all the CAN firmware functions.
8 ******************************************************************************
9 * @attention
11 * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
12 * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
13 * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
14 * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
15 * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
16 * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
18 * <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2>
19 ******************************************************************************
22 /* Includes ------------------------------------------------------------------*/
23 #include "stm32f10x_can.h"
24 #include "stm32f10x_rcc.h"
26 /** @addtogroup STM32F10x_StdPeriph_Driver
27 * @{
30 /** @defgroup CAN
31 * @brief CAN driver modules
32 * @{
33 */
35 /** @defgroup CAN_Private_TypesDefinitions
36 * @{
39 /**
40 * @}
43 /** @defgroup CAN_Private_Defines
44 * @{
47 /* CAN Master Control Register bits */
49 #define MCR_DBF ((uint32_t)0x00010000) /* software master reset */
51 /* CAN Mailbox Transmit Request */
52 #define TMIDxR_TXRQ ((uint32_t)0x00000001) /* Transmit mailbox request */
54 /* CAN Filter Master Register bits */
55 #define FMR_FINIT ((uint32_t)0x00000001) /* Filter init mode */
57 /* Time out for INAK bit */
58 #define INAK_TIMEOUT ((uint32_t)0x0000FFFF)
59 /* Time out for SLAK bit */
60 #define SLAK_TIMEOUT ((uint32_t)0x0000FFFF)
64 /* Flags in TSR register */
65 #define CAN_FLAGS_TSR ((uint32_t)0x08000000)
66 /* Flags in RF1R register */
67 #define CAN_FLAGS_RF1R ((uint32_t)0x04000000)
68 /* Flags in RF0R register */
69 #define CAN_FLAGS_RF0R ((uint32_t)0x02000000)
70 /* Flags in MSR register */
71 #define CAN_FLAGS_MSR ((uint32_t)0x01000000)
72 /* Flags in ESR register */
73 #define CAN_FLAGS_ESR ((uint32_t)0x00F00000)
75 /* Mailboxes definition */
76 #define CAN_TXMAILBOX_0 ((uint8_t)0x00)
77 #define CAN_TXMAILBOX_1 ((uint8_t)0x01)
78 #define CAN_TXMAILBOX_2 ((uint8_t)0x02)
82 #define CAN_MODE_MASK ((uint32_t) 0x00000003)
83 /**
84 * @}
87 /** @defgroup CAN_Private_Macros
88 * @{
91 /**
92 * @}
95 /** @defgroup CAN_Private_Variables
96 * @{
99 /**
100 * @}
103 /** @defgroup CAN_Private_FunctionPrototypes
104 * @{
107 static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit);
110 * @}
113 /** @defgroup CAN_Private_Functions
114 * @{
118 * @brief Deinitializes the CAN peripheral registers to their default reset values.
119 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
120 * @retval None.
122 void CAN_DeInit(CAN_TypeDef* CANx)
124 /* Check the parameters */
125 assert_param(IS_CAN_ALL_PERIPH(CANx));
127 if (CANx == CAN1)
129 /* Enable CAN1 reset state */
130 RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN1, ENABLE);
131 /* Release CAN1 from reset state */
132 RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN1, DISABLE);
134 else
136 /* Enable CAN2 reset state */
137 RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN2, ENABLE);
138 /* Release CAN2 from reset state */
139 RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN2, DISABLE);
144 * @brief Initializes the CAN peripheral according to the specified
145 * parameters in the CAN_InitStruct.
146 * @param CANx: where x can be 1 or 2 to to select the CAN
147 * peripheral.
148 * @param CAN_InitStruct: pointer to a CAN_InitTypeDef structure that
149 * contains the configuration information for the
150 * CAN peripheral.
151 * @retval Constant indicates initialization succeed which will be
152 * CAN_InitStatus_Failed or CAN_InitStatus_Success.
154 uint8_t CAN_Init(CAN_TypeDef* CANx, CAN_InitTypeDef* CAN_InitStruct)
156 uint8_t InitStatus = CAN_InitStatus_Failed;
157 uint32_t wait_ack = 0x00000000;
158 /* Check the parameters */
159 assert_param(IS_CAN_ALL_PERIPH(CANx));
160 assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TTCM));
161 assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_ABOM));
162 assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_AWUM));
163 assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_NART));
164 assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_RFLM));
165 assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TXFP));
166 assert_param(IS_CAN_MODE(CAN_InitStruct->CAN_Mode));
167 assert_param(IS_CAN_SJW(CAN_InitStruct->CAN_SJW));
168 assert_param(IS_CAN_BS1(CAN_InitStruct->CAN_BS1));
169 assert_param(IS_CAN_BS2(CAN_InitStruct->CAN_BS2));
170 assert_param(IS_CAN_PRESCALER(CAN_InitStruct->CAN_Prescaler));
172 /* Exit from sleep mode */
173 CANx->MCR &= (~(uint32_t)CAN_MCR_SLEEP);
175 /* Request initialisation */
176 CANx->MCR |= CAN_MCR_INRQ ;
178 /* Wait the acknowledge */
179 while (((CANx->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) && (wait_ack != INAK_TIMEOUT))
181 wait_ack++;
184 /* Check acknowledge */
185 if ((CANx->MSR & CAN_MSR_INAK) != CAN_MSR_INAK)
187 InitStatus = CAN_InitStatus_Failed;
189 else
191 /* Set the time triggered communication mode */
192 if (CAN_InitStruct->CAN_TTCM == ENABLE)
194 CANx->MCR |= CAN_MCR_TTCM;
196 else
198 CANx->MCR &= ~(uint32_t)CAN_MCR_TTCM;
201 /* Set the automatic bus-off management */
202 if (CAN_InitStruct->CAN_ABOM == ENABLE)
204 CANx->MCR |= CAN_MCR_ABOM;
206 else
208 CANx->MCR &= ~(uint32_t)CAN_MCR_ABOM;
211 /* Set the automatic wake-up mode */
212 if (CAN_InitStruct->CAN_AWUM == ENABLE)
214 CANx->MCR |= CAN_MCR_AWUM;
216 else
218 CANx->MCR &= ~(uint32_t)CAN_MCR_AWUM;
221 /* Set the no automatic retransmission */
222 if (CAN_InitStruct->CAN_NART == ENABLE)
224 CANx->MCR |= CAN_MCR_NART;
226 else
228 CANx->MCR &= ~(uint32_t)CAN_MCR_NART;
231 /* Set the receive FIFO locked mode */
232 if (CAN_InitStruct->CAN_RFLM == ENABLE)
234 CANx->MCR |= CAN_MCR_RFLM;
236 else
238 CANx->MCR &= ~(uint32_t)CAN_MCR_RFLM;
241 /* Set the transmit FIFO priority */
242 if (CAN_InitStruct->CAN_TXFP == ENABLE)
244 CANx->MCR |= CAN_MCR_TXFP;
246 else
248 CANx->MCR &= ~(uint32_t)CAN_MCR_TXFP;
251 /* Set the bit timing register */
252 CANx->BTR = (uint32_t)((uint32_t)CAN_InitStruct->CAN_Mode << 30) | \
253 ((uint32_t)CAN_InitStruct->CAN_SJW << 24) | \
254 ((uint32_t)CAN_InitStruct->CAN_BS1 << 16) | \
255 ((uint32_t)CAN_InitStruct->CAN_BS2 << 20) | \
256 ((uint32_t)CAN_InitStruct->CAN_Prescaler - 1);
258 /* Request leave initialisation */
259 CANx->MCR &= ~(uint32_t)CAN_MCR_INRQ;
261 /* Wait the acknowledge */
262 wait_ack = 0;
264 while (((CANx->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) && (wait_ack != INAK_TIMEOUT))
266 wait_ack++;
269 /* ...and check acknowledged */
270 if ((CANx->MSR & CAN_MSR_INAK) == CAN_MSR_INAK)
272 InitStatus = CAN_InitStatus_Failed;
274 else
276 InitStatus = CAN_InitStatus_Success ;
280 /* At this step, return the status of initialization */
281 return InitStatus;
285 * @brief Initializes the CAN peripheral according to the specified
286 * parameters in the CAN_FilterInitStruct.
287 * @param CAN_FilterInitStruct: pointer to a CAN_FilterInitTypeDef
288 * structure that contains the configuration
289 * information.
290 * @retval None.
292 void CAN_FilterInit(CAN_FilterInitTypeDef* CAN_FilterInitStruct)
294 uint32_t filter_number_bit_pos = 0;
295 /* Check the parameters */
296 assert_param(IS_CAN_FILTER_NUMBER(CAN_FilterInitStruct->CAN_FilterNumber));
297 assert_param(IS_CAN_FILTER_MODE(CAN_FilterInitStruct->CAN_FilterMode));
298 assert_param(IS_CAN_FILTER_SCALE(CAN_FilterInitStruct->CAN_FilterScale));
299 assert_param(IS_CAN_FILTER_FIFO(CAN_FilterInitStruct->CAN_FilterFIFOAssignment));
300 assert_param(IS_FUNCTIONAL_STATE(CAN_FilterInitStruct->CAN_FilterActivation));
302 filter_number_bit_pos = ((uint32_t)1) << CAN_FilterInitStruct->CAN_FilterNumber;
304 /* Initialisation mode for the filter */
305 CAN1->FMR |= FMR_FINIT;
307 /* Filter Deactivation */
308 CAN1->FA1R &= ~(uint32_t)filter_number_bit_pos;
310 /* Filter Scale */
311 if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_16bit)
313 /* 16-bit scale for the filter */
314 CAN1->FS1R &= ~(uint32_t)filter_number_bit_pos;
316 /* First 16-bit identifier and First 16-bit mask */
317 /* Or First 16-bit identifier and Second 16-bit identifier */
318 CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 =
319 ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow) << 16) |
320 (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow);
322 /* Second 16-bit identifier and Second 16-bit mask */
323 /* Or Third 16-bit identifier and Fourth 16-bit identifier */
324 CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 =
325 ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
326 (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh);
329 if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_32bit)
331 /* 32-bit scale for the filter */
332 CAN1->FS1R |= filter_number_bit_pos;
333 /* 32-bit identifier or First 32-bit identifier */
334 CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 =
335 ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh) << 16) |
336 (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow);
337 /* 32-bit mask or Second 32-bit identifier */
338 CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 =
339 ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
340 (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow);
343 /* Filter Mode */
344 if (CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdMask)
346 /*Id/Mask mode for the filter*/
347 CAN1->FM1R &= ~(uint32_t)filter_number_bit_pos;
349 else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */
351 /*Identifier list mode for the filter*/
352 CAN1->FM1R |= (uint32_t)filter_number_bit_pos;
355 /* Filter FIFO assignment */
356 if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_Filter_FIFO0)
358 /* FIFO 0 assignation for the filter */
359 CAN1->FFA1R &= ~(uint32_t)filter_number_bit_pos;
362 if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_Filter_FIFO1)
364 /* FIFO 1 assignation for the filter */
365 CAN1->FFA1R |= (uint32_t)filter_number_bit_pos;
368 /* Filter activation */
369 if (CAN_FilterInitStruct->CAN_FilterActivation == ENABLE)
371 CAN1->FA1R |= filter_number_bit_pos;
374 /* Leave the initialisation mode for the filter */
375 CAN1->FMR &= ~FMR_FINIT;
379 * @brief Fills each CAN_InitStruct member with its default value.
380 * @param CAN_InitStruct: pointer to a CAN_InitTypeDef structure which
381 * will be initialized.
382 * @retval None.
384 void CAN_StructInit(CAN_InitTypeDef* CAN_InitStruct)
386 /* Reset CAN init structure parameters values */
388 /* Initialize the time triggered communication mode */
389 CAN_InitStruct->CAN_TTCM = DISABLE;
391 /* Initialize the automatic bus-off management */
392 CAN_InitStruct->CAN_ABOM = DISABLE;
394 /* Initialize the automatic wake-up mode */
395 CAN_InitStruct->CAN_AWUM = DISABLE;
397 /* Initialize the no automatic retransmission */
398 CAN_InitStruct->CAN_NART = DISABLE;
400 /* Initialize the receive FIFO locked mode */
401 CAN_InitStruct->CAN_RFLM = DISABLE;
403 /* Initialize the transmit FIFO priority */
404 CAN_InitStruct->CAN_TXFP = DISABLE;
406 /* Initialize the CAN_Mode member */
407 CAN_InitStruct->CAN_Mode = CAN_Mode_Normal;
409 /* Initialize the CAN_SJW member */
410 CAN_InitStruct->CAN_SJW = CAN_SJW_1tq;
412 /* Initialize the CAN_BS1 member */
413 CAN_InitStruct->CAN_BS1 = CAN_BS1_4tq;
415 /* Initialize the CAN_BS2 member */
416 CAN_InitStruct->CAN_BS2 = CAN_BS2_3tq;
418 /* Initialize the CAN_Prescaler member */
419 CAN_InitStruct->CAN_Prescaler = 1;
423 * @brief Select the start bank filter for slave CAN.
424 * @note This function applies only to STM32 Connectivity line devices.
425 * @param CAN_BankNumber: Select the start slave bank filter from 1..27.
426 * @retval None.
428 void CAN_SlaveStartBank(uint8_t CAN_BankNumber)
430 /* Check the parameters */
431 assert_param(IS_CAN_BANKNUMBER(CAN_BankNumber));
433 /* Enter Initialisation mode for the filter */
434 CAN1->FMR |= FMR_FINIT;
436 /* Select the start slave bank */
437 CAN1->FMR &= (uint32_t)0xFFFFC0F1 ;
438 CAN1->FMR |= (uint32_t)(CAN_BankNumber)<<8;
440 /* Leave Initialisation mode for the filter */
441 CAN1->FMR &= ~FMR_FINIT;
445 * @brief Enables or disables the DBG Freeze for CAN.
446 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
447 * @param NewState: new state of the CAN peripheral. This parameter can
448 * be: ENABLE or DISABLE.
449 * @retval None.
451 void CAN_DBGFreeze(CAN_TypeDef* CANx, FunctionalState NewState)
453 /* Check the parameters */
454 assert_param(IS_CAN_ALL_PERIPH(CANx));
455 assert_param(IS_FUNCTIONAL_STATE(NewState));
457 if (NewState != DISABLE)
459 /* Enable Debug Freeze */
460 CANx->MCR |= MCR_DBF;
462 else
464 /* Disable Debug Freeze */
465 CANx->MCR &= ~MCR_DBF;
471 * @brief Enables or disabes the CAN Time TriggerOperation communication mode.
472 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
473 * @param NewState : Mode new state , can be one of @ref FunctionalState.
474 * @note when enabled, Time stamp (TIME[15:0]) value is sent in the last
475 * two data bytes of the 8-byte message: TIME[7:0] in data byte 6
476 * and TIME[15:8] in data byte 7
477 * @note DLC must be programmed as 8 in order Time Stamp (2 bytes) to be
478 * sent over the CAN bus.
479 * @retval None
481 void CAN_TTComModeCmd(CAN_TypeDef* CANx, FunctionalState NewState)
483 /* Check the parameters */
484 assert_param(IS_CAN_ALL_PERIPH(CANx));
485 assert_param(IS_FUNCTIONAL_STATE(NewState));
486 if (NewState != DISABLE)
488 /* Enable the TTCM mode */
489 CANx->MCR |= CAN_MCR_TTCM;
491 /* Set TGT bits */
492 CANx->sTxMailBox[0].TDTR |= ((uint32_t)CAN_TDT0R_TGT);
493 CANx->sTxMailBox[1].TDTR |= ((uint32_t)CAN_TDT1R_TGT);
494 CANx->sTxMailBox[2].TDTR |= ((uint32_t)CAN_TDT2R_TGT);
496 else
498 /* Disable the TTCM mode */
499 CANx->MCR &= (uint32_t)(~(uint32_t)CAN_MCR_TTCM);
501 /* Reset TGT bits */
502 CANx->sTxMailBox[0].TDTR &= ((uint32_t)~CAN_TDT0R_TGT);
503 CANx->sTxMailBox[1].TDTR &= ((uint32_t)~CAN_TDT1R_TGT);
504 CANx->sTxMailBox[2].TDTR &= ((uint32_t)~CAN_TDT2R_TGT);
508 * @brief Initiates the transmission of a message.
509 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
510 * @param TxMessage: pointer to a structure which contains CAN Id, CAN
511 * DLC and CAN data.
512 * @retval The number of the mailbox that is used for transmission
513 * or CAN_TxStatus_NoMailBox if there is no empty mailbox.
515 uint8_t CAN_Transmit(CAN_TypeDef* CANx, CanTxMsg* TxMessage)
517 uint8_t transmit_mailbox = 0;
518 /* Check the parameters */
519 assert_param(IS_CAN_ALL_PERIPH(CANx));
520 assert_param(IS_CAN_IDTYPE(TxMessage->IDE));
521 assert_param(IS_CAN_RTR(TxMessage->RTR));
522 assert_param(IS_CAN_DLC(TxMessage->DLC));
524 /* Select one empty transmit mailbox */
525 if ((CANx->TSR&CAN_TSR_TME0) == CAN_TSR_TME0)
527 transmit_mailbox = 0;
529 else if ((CANx->TSR&CAN_TSR_TME1) == CAN_TSR_TME1)
531 transmit_mailbox = 1;
533 else if ((CANx->TSR&CAN_TSR_TME2) == CAN_TSR_TME2)
535 transmit_mailbox = 2;
537 else
539 transmit_mailbox = CAN_TxStatus_NoMailBox;
542 if (transmit_mailbox != CAN_TxStatus_NoMailBox)
544 /* Set up the Id */
545 CANx->sTxMailBox[transmit_mailbox].TIR &= TMIDxR_TXRQ;
546 if (TxMessage->IDE == CAN_Id_Standard)
548 assert_param(IS_CAN_STDID(TxMessage->StdId));
549 CANx->sTxMailBox[transmit_mailbox].TIR |= ((TxMessage->StdId << 21) | \
550 TxMessage->RTR);
552 else
554 assert_param(IS_CAN_EXTID(TxMessage->ExtId));
555 CANx->sTxMailBox[transmit_mailbox].TIR |= ((TxMessage->ExtId << 3) | \
556 TxMessage->IDE | \
557 TxMessage->RTR);
560 /* Set up the DLC */
561 TxMessage->DLC &= (uint8_t)0x0000000F;
562 CANx->sTxMailBox[transmit_mailbox].TDTR &= (uint32_t)0xFFFFFFF0;
563 CANx->sTxMailBox[transmit_mailbox].TDTR |= TxMessage->DLC;
565 /* Set up the data field */
566 CANx->sTxMailBox[transmit_mailbox].TDLR = (((uint32_t)TxMessage->Data[3] << 24) |
567 ((uint32_t)TxMessage->Data[2] << 16) |
568 ((uint32_t)TxMessage->Data[1] << 8) |
569 ((uint32_t)TxMessage->Data[0]));
570 CANx->sTxMailBox[transmit_mailbox].TDHR = (((uint32_t)TxMessage->Data[7] << 24) |
571 ((uint32_t)TxMessage->Data[6] << 16) |
572 ((uint32_t)TxMessage->Data[5] << 8) |
573 ((uint32_t)TxMessage->Data[4]));
574 /* Request transmission */
575 CANx->sTxMailBox[transmit_mailbox].TIR |= TMIDxR_TXRQ;
577 return transmit_mailbox;
581 * @brief Checks the transmission of a message.
582 * @param CANx: where x can be 1 or 2 to to select the
583 * CAN peripheral.
584 * @param TransmitMailbox: the number of the mailbox that is used for
585 * transmission.
586 * @retval CAN_TxStatus_Ok if the CAN driver transmits the message, CAN_TxStatus_Failed
587 * in an other case.
589 uint8_t CAN_TransmitStatus(CAN_TypeDef* CANx, uint8_t TransmitMailbox)
591 uint32_t state = 0;
593 /* Check the parameters */
594 assert_param(IS_CAN_ALL_PERIPH(CANx));
595 assert_param(IS_CAN_TRANSMITMAILBOX(TransmitMailbox));
597 switch (TransmitMailbox)
599 case (CAN_TXMAILBOX_0):
600 state = CANx->TSR & (CAN_TSR_RQCP0 | CAN_TSR_TXOK0 | CAN_TSR_TME0);
601 break;
602 case (CAN_TXMAILBOX_1):
603 state = CANx->TSR & (CAN_TSR_RQCP1 | CAN_TSR_TXOK1 | CAN_TSR_TME1);
604 break;
605 case (CAN_TXMAILBOX_2):
606 state = CANx->TSR & (CAN_TSR_RQCP2 | CAN_TSR_TXOK2 | CAN_TSR_TME2);
607 break;
608 default:
609 state = CAN_TxStatus_Failed;
610 break;
612 switch (state)
614 /* transmit pending */
615 case (0x0): state = CAN_TxStatus_Pending;
616 break;
617 /* transmit failed */
618 case (CAN_TSR_RQCP0 | CAN_TSR_TME0): state = CAN_TxStatus_Failed;
619 break;
620 case (CAN_TSR_RQCP1 | CAN_TSR_TME1): state = CAN_TxStatus_Failed;
621 break;
622 case (CAN_TSR_RQCP2 | CAN_TSR_TME2): state = CAN_TxStatus_Failed;
623 break;
624 /* transmit succeeded */
625 case (CAN_TSR_RQCP0 | CAN_TSR_TXOK0 | CAN_TSR_TME0):state = CAN_TxStatus_Ok;
626 break;
627 case (CAN_TSR_RQCP1 | CAN_TSR_TXOK1 | CAN_TSR_TME1):state = CAN_TxStatus_Ok;
628 break;
629 case (CAN_TSR_RQCP2 | CAN_TSR_TXOK2 | CAN_TSR_TME2):state = CAN_TxStatus_Ok;
630 break;
631 default: state = CAN_TxStatus_Failed;
632 break;
634 return (uint8_t) state;
638 * @brief Cancels a transmit request.
639 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
640 * @param Mailbox: Mailbox number.
641 * @retval None.
643 void CAN_CancelTransmit(CAN_TypeDef* CANx, uint8_t Mailbox)
645 /* Check the parameters */
646 assert_param(IS_CAN_ALL_PERIPH(CANx));
647 assert_param(IS_CAN_TRANSMITMAILBOX(Mailbox));
648 /* abort transmission */
649 switch (Mailbox)
651 case (CAN_TXMAILBOX_0): CANx->TSR |= CAN_TSR_ABRQ0;
652 break;
653 case (CAN_TXMAILBOX_1): CANx->TSR |= CAN_TSR_ABRQ1;
654 break;
655 case (CAN_TXMAILBOX_2): CANx->TSR |= CAN_TSR_ABRQ2;
656 break;
657 default:
658 break;
664 * @brief Receives a message.
665 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
666 * @param FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
667 * @param RxMessage: pointer to a structure receive message which contains
668 * CAN Id, CAN DLC, CAN datas and FMI number.
669 * @retval None.
671 void CAN_Receive(CAN_TypeDef* CANx, uint8_t FIFONumber, CanRxMsg* RxMessage)
673 /* Check the parameters */
674 assert_param(IS_CAN_ALL_PERIPH(CANx));
675 assert_param(IS_CAN_FIFO(FIFONumber));
676 /* Get the Id */
677 RxMessage->IDE = (uint8_t)0x04 & CANx->sFIFOMailBox[FIFONumber].RIR;
678 if (RxMessage->IDE == CAN_Id_Standard)
680 RxMessage->StdId = (uint32_t)0x000007FF & (CANx->sFIFOMailBox[FIFONumber].RIR >> 21);
682 else
684 RxMessage->ExtId = (uint32_t)0x1FFFFFFF & (CANx->sFIFOMailBox[FIFONumber].RIR >> 3);
687 RxMessage->RTR = (uint8_t)0x02 & CANx->sFIFOMailBox[FIFONumber].RIR;
688 /* Get the DLC */
689 RxMessage->DLC = (uint8_t)0x0F & CANx->sFIFOMailBox[FIFONumber].RDTR;
690 /* Get the FMI */
691 RxMessage->FMI = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDTR >> 8);
692 /* Get the data field */
693 RxMessage->Data[0] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RDLR;
694 RxMessage->Data[1] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 8);
695 RxMessage->Data[2] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 16);
696 RxMessage->Data[3] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 24);
697 RxMessage->Data[4] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RDHR;
698 RxMessage->Data[5] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 8);
699 RxMessage->Data[6] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 16);
700 RxMessage->Data[7] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 24);
701 /* Release the FIFO */
702 /* Release FIFO0 */
703 if (FIFONumber == CAN_FIFO0)
705 CANx->RF0R |= CAN_RF0R_RFOM0;
707 /* Release FIFO1 */
708 else /* FIFONumber == CAN_FIFO1 */
710 CANx->RF1R |= CAN_RF1R_RFOM1;
715 * @brief Releases the specified FIFO.
716 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
717 * @param FIFONumber: FIFO to release, CAN_FIFO0 or CAN_FIFO1.
718 * @retval None.
720 void CAN_FIFORelease(CAN_TypeDef* CANx, uint8_t FIFONumber)
722 /* Check the parameters */
723 assert_param(IS_CAN_ALL_PERIPH(CANx));
724 assert_param(IS_CAN_FIFO(FIFONumber));
725 /* Release FIFO0 */
726 if (FIFONumber == CAN_FIFO0)
728 CANx->RF0R |= CAN_RF0R_RFOM0;
730 /* Release FIFO1 */
731 else /* FIFONumber == CAN_FIFO1 */
733 CANx->RF1R |= CAN_RF1R_RFOM1;
738 * @brief Returns the number of pending messages.
739 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
740 * @param FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
741 * @retval NbMessage : which is the number of pending message.
743 uint8_t CAN_MessagePending(CAN_TypeDef* CANx, uint8_t FIFONumber)
745 uint8_t message_pending=0;
746 /* Check the parameters */
747 assert_param(IS_CAN_ALL_PERIPH(CANx));
748 assert_param(IS_CAN_FIFO(FIFONumber));
749 if (FIFONumber == CAN_FIFO0)
751 message_pending = (uint8_t)(CANx->RF0R&(uint32_t)0x03);
753 else if (FIFONumber == CAN_FIFO1)
755 message_pending = (uint8_t)(CANx->RF1R&(uint32_t)0x03);
757 else
759 message_pending = 0;
761 return message_pending;
766 * @brief Select the CAN Operation mode.
767 * @param CAN_OperatingMode : CAN Operating Mode. This parameter can be one
768 * of @ref CAN_OperatingMode_TypeDef enumeration.
769 * @retval status of the requested mode which can be
770 * - CAN_ModeStatus_Failed CAN failed entering the specific mode
771 * - CAN_ModeStatus_Success CAN Succeed entering the specific mode
774 uint8_t CAN_OperatingModeRequest(CAN_TypeDef* CANx, uint8_t CAN_OperatingMode)
776 uint8_t status = CAN_ModeStatus_Failed;
778 /* Timeout for INAK or also for SLAK bits*/
779 uint32_t timeout = INAK_TIMEOUT;
781 /* Check the parameters */
782 assert_param(IS_CAN_ALL_PERIPH(CANx));
783 assert_param(IS_CAN_OPERATING_MODE(CAN_OperatingMode));
785 if (CAN_OperatingMode == CAN_OperatingMode_Initialization)
787 /* Request initialisation */
788 CANx->MCR = (uint32_t)((CANx->MCR & (uint32_t)(~(uint32_t)CAN_MCR_SLEEP)) | CAN_MCR_INRQ);
790 /* Wait the acknowledge */
791 while (((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_INAK) && (timeout != 0))
793 timeout--;
795 if ((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_INAK)
797 status = CAN_ModeStatus_Failed;
799 else
801 status = CAN_ModeStatus_Success;
804 else if (CAN_OperatingMode == CAN_OperatingMode_Normal)
806 /* Request leave initialisation and sleep mode and enter Normal mode */
807 CANx->MCR &= (uint32_t)(~(CAN_MCR_SLEEP|CAN_MCR_INRQ));
809 /* Wait the acknowledge */
810 while (((CANx->MSR & CAN_MODE_MASK) != 0) && (timeout!=0))
812 timeout--;
814 if ((CANx->MSR & CAN_MODE_MASK) != 0)
816 status = CAN_ModeStatus_Failed;
818 else
820 status = CAN_ModeStatus_Success;
823 else if (CAN_OperatingMode == CAN_OperatingMode_Sleep)
825 /* Request Sleep mode */
826 CANx->MCR = (uint32_t)((CANx->MCR & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP);
828 /* Wait the acknowledge */
829 while (((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_SLAK) && (timeout!=0))
831 timeout--;
833 if ((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_SLAK)
835 status = CAN_ModeStatus_Failed;
837 else
839 status = CAN_ModeStatus_Success;
842 else
844 status = CAN_ModeStatus_Failed;
847 return (uint8_t) status;
851 * @brief Enters the low power mode.
852 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
853 * @retval status: CAN_Sleep_Ok if sleep entered, CAN_Sleep_Failed in an
854 * other case.
856 uint8_t CAN_Sleep(CAN_TypeDef* CANx)
858 uint8_t sleepstatus = CAN_Sleep_Failed;
860 /* Check the parameters */
861 assert_param(IS_CAN_ALL_PERIPH(CANx));
863 /* Request Sleep mode */
864 CANx->MCR = (((CANx->MCR) & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP);
866 /* Sleep mode status */
867 if ((CANx->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) == CAN_MSR_SLAK)
869 /* Sleep mode not entered */
870 sleepstatus = CAN_Sleep_Ok;
872 /* return sleep mode status */
873 return (uint8_t)sleepstatus;
877 * @brief Wakes the CAN up.
878 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
879 * @retval status: CAN_WakeUp_Ok if sleep mode left, CAN_WakeUp_Failed in an
880 * other case.
882 uint8_t CAN_WakeUp(CAN_TypeDef* CANx)
884 uint32_t wait_slak = SLAK_TIMEOUT;
885 uint8_t wakeupstatus = CAN_WakeUp_Failed;
887 /* Check the parameters */
888 assert_param(IS_CAN_ALL_PERIPH(CANx));
890 /* Wake up request */
891 CANx->MCR &= ~(uint32_t)CAN_MCR_SLEEP;
893 /* Sleep mode status */
894 while(((CANx->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK)&&(wait_slak!=0x00))
896 wait_slak--;
898 if((CANx->MSR & CAN_MSR_SLAK) != CAN_MSR_SLAK)
900 /* wake up done : Sleep mode exited */
901 wakeupstatus = CAN_WakeUp_Ok;
903 /* return wakeup status */
904 return (uint8_t)wakeupstatus;
909 * @brief Returns the CANx's last error code (LEC).
910 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
911 * @retval CAN_ErrorCode: specifies the Error code :
912 * - CAN_ERRORCODE_NoErr No Error
913 * - CAN_ERRORCODE_StuffErr Stuff Error
914 * - CAN_ERRORCODE_FormErr Form Error
915 * - CAN_ERRORCODE_ACKErr Acknowledgment Error
916 * - CAN_ERRORCODE_BitRecessiveErr Bit Recessive Error
917 * - CAN_ERRORCODE_BitDominantErr Bit Dominant Error
918 * - CAN_ERRORCODE_CRCErr CRC Error
919 * - CAN_ERRORCODE_SoftwareSetErr Software Set Error
922 uint8_t CAN_GetLastErrorCode(CAN_TypeDef* CANx)
924 uint8_t errorcode=0;
926 /* Check the parameters */
927 assert_param(IS_CAN_ALL_PERIPH(CANx));
929 /* Get the error code*/
930 errorcode = (((uint8_t)CANx->ESR) & (uint8_t)CAN_ESR_LEC);
932 /* Return the error code*/
933 return errorcode;
936 * @brief Returns the CANx Receive Error Counter (REC).
937 * @note In case of an error during reception, this counter is incremented
938 * by 1 or by 8 depending on the error condition as defined by the CAN
939 * standard. After every successful reception, the counter is
940 * decremented by 1 or reset to 120 if its value was higher than 128.
941 * When the counter value exceeds 127, the CAN controller enters the
942 * error passive state.
943 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
944 * @retval CAN Receive Error Counter.
946 uint8_t CAN_GetReceiveErrorCounter(CAN_TypeDef* CANx)
948 uint8_t counter=0;
950 /* Check the parameters */
951 assert_param(IS_CAN_ALL_PERIPH(CANx));
953 /* Get the Receive Error Counter*/
954 counter = (uint8_t)((CANx->ESR & CAN_ESR_REC)>> 24);
956 /* Return the Receive Error Counter*/
957 return counter;
962 * @brief Returns the LSB of the 9-bit CANx Transmit Error Counter(TEC).
963 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
964 * @retval LSB of the 9-bit CAN Transmit Error Counter.
966 uint8_t CAN_GetLSBTransmitErrorCounter(CAN_TypeDef* CANx)
968 uint8_t counter=0;
970 /* Check the parameters */
971 assert_param(IS_CAN_ALL_PERIPH(CANx));
973 /* Get the LSB of the 9-bit CANx Transmit Error Counter(TEC) */
974 counter = (uint8_t)((CANx->ESR & CAN_ESR_TEC)>> 16);
976 /* Return the LSB of the 9-bit CANx Transmit Error Counter(TEC) */
977 return counter;
982 * @brief Enables or disables the specified CANx interrupts.
983 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
984 * @param CAN_IT: specifies the CAN interrupt sources to be enabled or disabled.
985 * This parameter can be:
986 * - CAN_IT_TME,
987 * - CAN_IT_FMP0,
988 * - CAN_IT_FF0,
989 * - CAN_IT_FOV0,
990 * - CAN_IT_FMP1,
991 * - CAN_IT_FF1,
992 * - CAN_IT_FOV1,
993 * - CAN_IT_EWG,
994 * - CAN_IT_EPV,
995 * - CAN_IT_LEC,
996 * - CAN_IT_ERR,
997 * - CAN_IT_WKU or
998 * - CAN_IT_SLK.
999 * @param NewState: new state of the CAN interrupts.
1000 * This parameter can be: ENABLE or DISABLE.
1001 * @retval None.
1003 void CAN_ITConfig(CAN_TypeDef* CANx, uint32_t CAN_IT, FunctionalState NewState)
1005 /* Check the parameters */
1006 assert_param(IS_CAN_ALL_PERIPH(CANx));
1007 assert_param(IS_CAN_IT(CAN_IT));
1008 assert_param(IS_FUNCTIONAL_STATE(NewState));
1010 if (NewState != DISABLE)
1012 /* Enable the selected CANx interrupt */
1013 CANx->IER |= CAN_IT;
1015 else
1017 /* Disable the selected CANx interrupt */
1018 CANx->IER &= ~CAN_IT;
1022 * @brief Checks whether the specified CAN flag is set or not.
1023 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
1024 * @param CAN_FLAG: specifies the flag to check.
1025 * This parameter can be one of the following flags:
1026 * - CAN_FLAG_EWG
1027 * - CAN_FLAG_EPV
1028 * - CAN_FLAG_BOF
1029 * - CAN_FLAG_RQCP0
1030 * - CAN_FLAG_RQCP1
1031 * - CAN_FLAG_RQCP2
1032 * - CAN_FLAG_FMP1
1033 * - CAN_FLAG_FF1
1034 * - CAN_FLAG_FOV1
1035 * - CAN_FLAG_FMP0
1036 * - CAN_FLAG_FF0
1037 * - CAN_FLAG_FOV0
1038 * - CAN_FLAG_WKU
1039 * - CAN_FLAG_SLAK
1040 * - CAN_FLAG_LEC
1041 * @retval The new state of CAN_FLAG (SET or RESET).
1043 FlagStatus CAN_GetFlagStatus(CAN_TypeDef* CANx, uint32_t CAN_FLAG)
1045 FlagStatus bitstatus = RESET;
1047 /* Check the parameters */
1048 assert_param(IS_CAN_ALL_PERIPH(CANx));
1049 assert_param(IS_CAN_GET_FLAG(CAN_FLAG));
1052 if((CAN_FLAG & CAN_FLAGS_ESR) != (uint32_t)RESET)
1054 /* Check the status of the specified CAN flag */
1055 if ((CANx->ESR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
1057 /* CAN_FLAG is set */
1058 bitstatus = SET;
1060 else
1062 /* CAN_FLAG is reset */
1063 bitstatus = RESET;
1066 else if((CAN_FLAG & CAN_FLAGS_MSR) != (uint32_t)RESET)
1068 /* Check the status of the specified CAN flag */
1069 if ((CANx->MSR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
1071 /* CAN_FLAG is set */
1072 bitstatus = SET;
1074 else
1076 /* CAN_FLAG is reset */
1077 bitstatus = RESET;
1080 else if((CAN_FLAG & CAN_FLAGS_TSR) != (uint32_t)RESET)
1082 /* Check the status of the specified CAN flag */
1083 if ((CANx->TSR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
1085 /* CAN_FLAG is set */
1086 bitstatus = SET;
1088 else
1090 /* CAN_FLAG is reset */
1091 bitstatus = RESET;
1094 else if((CAN_FLAG & CAN_FLAGS_RF0R) != (uint32_t)RESET)
1096 /* Check the status of the specified CAN flag */
1097 if ((CANx->RF0R & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
1099 /* CAN_FLAG is set */
1100 bitstatus = SET;
1102 else
1104 /* CAN_FLAG is reset */
1105 bitstatus = RESET;
1108 else /* If(CAN_FLAG & CAN_FLAGS_RF1R != (uint32_t)RESET) */
1110 /* Check the status of the specified CAN flag */
1111 if ((uint32_t)(CANx->RF1R & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
1113 /* CAN_FLAG is set */
1114 bitstatus = SET;
1116 else
1118 /* CAN_FLAG is reset */
1119 bitstatus = RESET;
1122 /* Return the CAN_FLAG status */
1123 return bitstatus;
1127 * @brief Clears the CAN's pending flags.
1128 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
1129 * @param CAN_FLAG: specifies the flag to clear.
1130 * This parameter can be one of the following flags:
1131 * - CAN_FLAG_RQCP0
1132 * - CAN_FLAG_RQCP1
1133 * - CAN_FLAG_RQCP2
1134 * - CAN_FLAG_FF1
1135 * - CAN_FLAG_FOV1
1136 * - CAN_FLAG_FF0
1137 * - CAN_FLAG_FOV0
1138 * - CAN_FLAG_WKU
1139 * - CAN_FLAG_SLAK
1140 * - CAN_FLAG_LEC
1141 * @retval None.
1143 void CAN_ClearFlag(CAN_TypeDef* CANx, uint32_t CAN_FLAG)
1145 uint32_t flagtmp=0;
1146 /* Check the parameters */
1147 assert_param(IS_CAN_ALL_PERIPH(CANx));
1148 assert_param(IS_CAN_CLEAR_FLAG(CAN_FLAG));
1150 if (CAN_FLAG == CAN_FLAG_LEC) /* ESR register */
1152 /* Clear the selected CAN flags */
1153 CANx->ESR = (uint32_t)RESET;
1155 else /* MSR or TSR or RF0R or RF1R */
1157 flagtmp = CAN_FLAG & 0x000FFFFF;
1159 if ((CAN_FLAG & CAN_FLAGS_RF0R)!=(uint32_t)RESET)
1161 /* Receive Flags */
1162 CANx->RF0R = (uint32_t)(flagtmp);
1164 else if ((CAN_FLAG & CAN_FLAGS_RF1R)!=(uint32_t)RESET)
1166 /* Receive Flags */
1167 CANx->RF1R = (uint32_t)(flagtmp);
1169 else if ((CAN_FLAG & CAN_FLAGS_TSR)!=(uint32_t)RESET)
1171 /* Transmit Flags */
1172 CANx->TSR = (uint32_t)(flagtmp);
1174 else /* If((CAN_FLAG & CAN_FLAGS_MSR)!=(uint32_t)RESET) */
1176 /* Operating mode Flags */
1177 CANx->MSR = (uint32_t)(flagtmp);
1183 * @brief Checks whether the specified CANx interrupt has occurred or not.
1184 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
1185 * @param CAN_IT: specifies the CAN interrupt source to check.
1186 * This parameter can be one of the following flags:
1187 * - CAN_IT_TME
1188 * - CAN_IT_FMP0
1189 * - CAN_IT_FF0
1190 * - CAN_IT_FOV0
1191 * - CAN_IT_FMP1
1192 * - CAN_IT_FF1
1193 * - CAN_IT_FOV1
1194 * - CAN_IT_WKU
1195 * - CAN_IT_SLK
1196 * - CAN_IT_EWG
1197 * - CAN_IT_EPV
1198 * - CAN_IT_BOF
1199 * - CAN_IT_LEC
1200 * - CAN_IT_ERR
1201 * @retval The current state of CAN_IT (SET or RESET).
1203 ITStatus CAN_GetITStatus(CAN_TypeDef* CANx, uint32_t CAN_IT)
1205 ITStatus itstatus = RESET;
1206 /* Check the parameters */
1207 assert_param(IS_CAN_ALL_PERIPH(CANx));
1208 assert_param(IS_CAN_IT(CAN_IT));
1210 /* check the enable interrupt bit */
1211 if((CANx->IER & CAN_IT) != RESET)
1213 /* in case the Interrupt is enabled, .... */
1214 switch (CAN_IT)
1216 case CAN_IT_TME:
1217 /* Check CAN_TSR_RQCPx bits */
1218 itstatus = CheckITStatus(CANx->TSR, CAN_TSR_RQCP0|CAN_TSR_RQCP1|CAN_TSR_RQCP2);
1219 break;
1220 case CAN_IT_FMP0:
1221 /* Check CAN_RF0R_FMP0 bit */
1222 itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FMP0);
1223 break;
1224 case CAN_IT_FF0:
1225 /* Check CAN_RF0R_FULL0 bit */
1226 itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FULL0);
1227 break;
1228 case CAN_IT_FOV0:
1229 /* Check CAN_RF0R_FOVR0 bit */
1230 itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FOVR0);
1231 break;
1232 case CAN_IT_FMP1:
1233 /* Check CAN_RF1R_FMP1 bit */
1234 itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FMP1);
1235 break;
1236 case CAN_IT_FF1:
1237 /* Check CAN_RF1R_FULL1 bit */
1238 itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FULL1);
1239 break;
1240 case CAN_IT_FOV1:
1241 /* Check CAN_RF1R_FOVR1 bit */
1242 itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FOVR1);
1243 break;
1244 case CAN_IT_WKU:
1245 /* Check CAN_MSR_WKUI bit */
1246 itstatus = CheckITStatus(CANx->MSR, CAN_MSR_WKUI);
1247 break;
1248 case CAN_IT_SLK:
1249 /* Check CAN_MSR_SLAKI bit */
1250 itstatus = CheckITStatus(CANx->MSR, CAN_MSR_SLAKI);
1251 break;
1252 case CAN_IT_EWG:
1253 /* Check CAN_ESR_EWGF bit */
1254 itstatus = CheckITStatus(CANx->ESR, CAN_ESR_EWGF);
1255 break;
1256 case CAN_IT_EPV:
1257 /* Check CAN_ESR_EPVF bit */
1258 itstatus = CheckITStatus(CANx->ESR, CAN_ESR_EPVF);
1259 break;
1260 case CAN_IT_BOF:
1261 /* Check CAN_ESR_BOFF bit */
1262 itstatus = CheckITStatus(CANx->ESR, CAN_ESR_BOFF);
1263 break;
1264 case CAN_IT_LEC:
1265 /* Check CAN_ESR_LEC bit */
1266 itstatus = CheckITStatus(CANx->ESR, CAN_ESR_LEC);
1267 break;
1268 case CAN_IT_ERR:
1269 /* Check CAN_MSR_ERRI bit */
1270 itstatus = CheckITStatus(CANx->MSR, CAN_MSR_ERRI);
1271 break;
1272 default :
1273 /* in case of error, return RESET */
1274 itstatus = RESET;
1275 break;
1278 else
1280 /* in case the Interrupt is not enabled, return RESET */
1281 itstatus = RESET;
1284 /* Return the CAN_IT status */
1285 return itstatus;
1289 * @brief Clears the CANx's interrupt pending bits.
1290 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
1291 * @param CAN_IT: specifies the interrupt pending bit to clear.
1292 * - CAN_IT_TME
1293 * - CAN_IT_FF0
1294 * - CAN_IT_FOV0
1295 * - CAN_IT_FF1
1296 * - CAN_IT_FOV1
1297 * - CAN_IT_WKU
1298 * - CAN_IT_SLK
1299 * - CAN_IT_EWG
1300 * - CAN_IT_EPV
1301 * - CAN_IT_BOF
1302 * - CAN_IT_LEC
1303 * - CAN_IT_ERR
1304 * @retval None.
1306 void CAN_ClearITPendingBit(CAN_TypeDef* CANx, uint32_t CAN_IT)
1308 /* Check the parameters */
1309 assert_param(IS_CAN_ALL_PERIPH(CANx));
1310 assert_param(IS_CAN_CLEAR_IT(CAN_IT));
1312 switch (CAN_IT)
1314 case CAN_IT_TME:
1315 /* Clear CAN_TSR_RQCPx (rc_w1)*/
1316 CANx->TSR = CAN_TSR_RQCP0|CAN_TSR_RQCP1|CAN_TSR_RQCP2;
1317 break;
1318 case CAN_IT_FF0:
1319 /* Clear CAN_RF0R_FULL0 (rc_w1)*/
1320 CANx->RF0R = CAN_RF0R_FULL0;
1321 break;
1322 case CAN_IT_FOV0:
1323 /* Clear CAN_RF0R_FOVR0 (rc_w1)*/
1324 CANx->RF0R = CAN_RF0R_FOVR0;
1325 break;
1326 case CAN_IT_FF1:
1327 /* Clear CAN_RF1R_FULL1 (rc_w1)*/
1328 CANx->RF1R = CAN_RF1R_FULL1;
1329 break;
1330 case CAN_IT_FOV1:
1331 /* Clear CAN_RF1R_FOVR1 (rc_w1)*/
1332 CANx->RF1R = CAN_RF1R_FOVR1;
1333 break;
1334 case CAN_IT_WKU:
1335 /* Clear CAN_MSR_WKUI (rc_w1)*/
1336 CANx->MSR = CAN_MSR_WKUI;
1337 break;
1338 case CAN_IT_SLK:
1339 /* Clear CAN_MSR_SLAKI (rc_w1)*/
1340 CANx->MSR = CAN_MSR_SLAKI;
1341 break;
1342 case CAN_IT_EWG:
1343 /* Clear CAN_MSR_ERRI (rc_w1) */
1344 CANx->MSR = CAN_MSR_ERRI;
1345 /* Note : the corresponding Flag is cleared by hardware depending
1346 of the CAN Bus status*/
1347 break;
1348 case CAN_IT_EPV:
1349 /* Clear CAN_MSR_ERRI (rc_w1) */
1350 CANx->MSR = CAN_MSR_ERRI;
1351 /* Note : the corresponding Flag is cleared by hardware depending
1352 of the CAN Bus status*/
1353 break;
1354 case CAN_IT_BOF:
1355 /* Clear CAN_MSR_ERRI (rc_w1) */
1356 CANx->MSR = CAN_MSR_ERRI;
1357 /* Note : the corresponding Flag is cleared by hardware depending
1358 of the CAN Bus status*/
1359 break;
1360 case CAN_IT_LEC:
1361 /* Clear LEC bits */
1362 CANx->ESR = RESET;
1363 /* Clear CAN_MSR_ERRI (rc_w1) */
1364 CANx->MSR = CAN_MSR_ERRI;
1365 break;
1366 case CAN_IT_ERR:
1367 /*Clear LEC bits */
1368 CANx->ESR = RESET;
1369 /* Clear CAN_MSR_ERRI (rc_w1) */
1370 CANx->MSR = CAN_MSR_ERRI;
1371 /* Note : BOFF, EPVF and EWGF Flags are cleared by hardware depending
1372 of the CAN Bus status*/
1373 break;
1374 default :
1375 break;
1380 * @brief Checks whether the CAN interrupt has occurred or not.
1381 * @param CAN_Reg: specifies the CAN interrupt register to check.
1382 * @param It_Bit: specifies the interrupt source bit to check.
1383 * @retval The new state of the CAN Interrupt (SET or RESET).
1385 static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit)
1387 ITStatus pendingbitstatus = RESET;
1389 if ((CAN_Reg & It_Bit) != (uint32_t)RESET)
1391 /* CAN_IT is set */
1392 pendingbitstatus = SET;
1394 else
1396 /* CAN_IT is reset */
1397 pendingbitstatus = RESET;
1399 return pendingbitstatus;
1404 * @}
1408 * @}
1412 * @}
1415 /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/