Merge pull request #11494 from haslinghuis/dshot_gpio
[betaflight.git] / lib / main / STM32G4 / Drivers / STM32G4xx_HAL_Driver / Src / stm32g4xx_ll_tim.c
blob0fcf6d885e0101d35d2bf41476c571e32478c6f1
1 /**
2 ******************************************************************************
3 * @file stm32g4xx_ll_tim.c
4 * @author MCD Application Team
5 * @brief TIM LL module driver.
6 ******************************************************************************
7 * @attention
9 * <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
10 * All rights reserved.</center></h2>
12 * This software component is licensed by ST under BSD 3-Clause license,
13 * the "License"; You may not use this file except in compliance with the
14 * License. You may obtain a copy of the License at:
15 * opensource.org/licenses/BSD-3-Clause
17 ******************************************************************************
19 #if defined(USE_FULL_LL_DRIVER)
21 /* Includes ------------------------------------------------------------------*/
22 #include "stm32g4xx_ll_tim.h"
23 #include "stm32g4xx_ll_bus.h"
25 #ifdef USE_FULL_ASSERT
26 #include "stm32_assert.h"
27 #else
28 #define assert_param(expr) ((void)0U)
29 #endif /* USE_FULL_ASSERT */
31 /** @addtogroup STM32G4xx_LL_Driver
32 * @{
35 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM15) || defined (TIM16) || defined (TIM17) || defined (TIM20)
37 /** @addtogroup TIM_LL
38 * @{
41 /* Private types -------------------------------------------------------------*/
42 /* Private variables ---------------------------------------------------------*/
43 /* Private constants ---------------------------------------------------------*/
44 /* Private macros ------------------------------------------------------------*/
45 /** @addtogroup TIM_LL_Private_Macros
46 * @{
48 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
49 || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
50 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
51 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
52 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
54 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
55 || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
56 || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
58 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
59 || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
60 || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
61 || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
62 || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
63 || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
64 || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
65 || ((__VALUE__) == LL_TIM_OCMODE_PWM2) \
66 || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM1) \
67 || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM2) \
68 || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM1) \
69 || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM2) \
70 || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM1) \
71 || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM2) \
72 || ((__VALUE__) == LL_TIM_OCMODE_PULSE_ON_COMPARE) \
73 || ((__VALUE__) == LL_TIM_OCMODE_DIRECTION_OUTPUT))
75 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
76 || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
78 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
79 || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
81 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
82 || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
84 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
85 || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
86 || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
88 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
89 || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
90 || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
91 || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
93 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
94 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
95 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
96 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
97 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
98 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
99 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
100 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
101 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
102 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
103 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
104 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
105 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
106 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
107 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
108 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
110 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
111 || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
112 || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))
114 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
115 || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
116 || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12) \
117 || ((__VALUE__) == LL_TIM_ENCODERMODE_CLOCKPLUSDIRECTION_X2) \
118 || ((__VALUE__) == LL_TIM_ENCODERMODE_CLOCKPLUSDIRECTION_X1) \
119 || ((__VALUE__) == LL_TIM_ENCODERMODE_DIRECTIONALCLOCK_X2) \
120 || ((__VALUE__) == LL_TIM_ENCODERMODE_DIRECTIONALCLOCK_X1_TI12) \
121 || ((__VALUE__) == LL_TIM_ENCODERMODE_X1_TI1) \
122 || ((__VALUE__) == LL_TIM_ENCODERMODE_X1_TI2))
124 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
125 || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
127 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
128 || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
130 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
131 || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
133 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
134 || ((__VALUE__) == LL_TIM_LOCKLEVEL_1) \
135 || ((__VALUE__) == LL_TIM_LOCKLEVEL_2) \
136 || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
138 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
139 || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
141 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
142 || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
144 #define IS_LL_TIM_BREAK_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1) \
145 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N2) \
146 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N4) \
147 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N8) \
148 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N6) \
149 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N8) \
150 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N6) \
151 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N8) \
152 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N6) \
153 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N8) \
154 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N5) \
155 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N6) \
156 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N8) \
157 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N5) \
158 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N6) \
159 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N8))
161 #define IS_LL_TIM_BREAK_AFMODE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_AFMODE_INPUT) \
162 || ((__VALUE__) == LL_TIM_BREAK_AFMODE_BIDIRECTIONAL))
164 #define IS_LL_TIM_BREAK2_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_DISABLE) \
165 || ((__VALUE__) == LL_TIM_BREAK2_ENABLE))
167 #define IS_LL_TIM_BREAK2_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_POLARITY_LOW) \
168 || ((__VALUE__) == LL_TIM_BREAK2_POLARITY_HIGH))
170 #define IS_LL_TIM_BREAK2_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1) \
171 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N2) \
172 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N4) \
173 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N8) \
174 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N6) \
175 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N8) \
176 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N6) \
177 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N8) \
178 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N6) \
179 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N8) \
180 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N5) \
181 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N6) \
182 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N8) \
183 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N5) \
184 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N6) \
185 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N8))
187 #define IS_LL_TIM_BREAK2_AFMODE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_AFMODE_INPUT) \
188 || ((__VALUE__) == LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL))
190 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
191 || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
193 * @}
197 /* Private function prototypes -----------------------------------------------*/
198 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
199 * @{
201 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
202 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
203 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
204 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
205 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
206 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
207 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
208 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
209 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
210 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
212 * @}
215 /* Exported functions --------------------------------------------------------*/
216 /** @addtogroup TIM_LL_Exported_Functions
217 * @{
220 /** @addtogroup TIM_LL_EF_Init
221 * @{
225 * @brief Set TIMx registers to their reset values.
226 * @param TIMx Timer instance
227 * @retval An ErrorStatus enumeration value:
228 * - SUCCESS: TIMx registers are de-initialized
229 * - ERROR: invalid TIMx instance
231 ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx)
233 ErrorStatus result = SUCCESS;
235 /* Check the parameters */
236 assert_param(IS_TIM_INSTANCE(TIMx));
238 if (TIMx == TIM1)
240 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1);
241 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1);
243 else if (TIMx == TIM2)
245 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
246 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
248 else if (TIMx == TIM3)
250 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
251 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
253 else if (TIMx == TIM4)
255 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4);
256 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4);
258 #if defined(TIM5)
259 else if (TIMx == TIM5)
261 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5);
262 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5);
264 #endif /* TIM5 */
265 else if (TIMx == TIM6)
267 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6);
268 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6);
270 else if (TIMx == TIM7)
272 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7);
273 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7);
275 else if (TIMx == TIM8)
277 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8);
278 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8);
280 else if (TIMx == TIM15)
282 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM15);
283 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM15);
285 else if (TIMx == TIM16)
287 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM16);
288 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM16);
290 else if (TIMx == TIM17)
292 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM17);
293 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM17);
295 #if defined(TIM20)
296 else if (TIMx == TIM20)
298 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM20);
299 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM20);
301 #endif /* TIM20 */
302 else
304 result = ERROR;
307 return result;
311 * @brief Set the fields of the time base unit configuration data structure
312 * to their default values.
313 * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
314 * @retval None
316 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
318 /* Set the default configuration */
319 TIM_InitStruct->Prescaler = (uint16_t)0x0000;
320 TIM_InitStruct->CounterMode = LL_TIM_COUNTERMODE_UP;
321 TIM_InitStruct->Autoreload = 0xFFFFFFFFU;
322 TIM_InitStruct->ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
323 TIM_InitStruct->RepetitionCounter = (uint8_t)0x00;
327 * @brief Configure the TIMx time base unit.
328 * @param TIMx Timer Instance
329 * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (TIMx time base unit configuration data structure)
330 * @retval An ErrorStatus enumeration value:
331 * - SUCCESS: TIMx registers are de-initialized
332 * - ERROR: not applicable
334 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct)
336 uint32_t tmpcr1;
338 /* Check the parameters */
339 assert_param(IS_TIM_INSTANCE(TIMx));
340 assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
341 assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
343 tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
345 if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
347 /* Select the Counter Mode */
348 MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
351 if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
353 /* Set the clock division */
354 MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
357 /* Write to TIMx CR1 */
358 LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
360 /* Set the Autoreload value */
361 LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
363 /* Set the Prescaler value */
364 LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
366 if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
368 /* Set the Repetition Counter value */
369 LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
372 /* Generate an update event to reload the Prescaler
373 and the repetition counter value (if applicable) immediately */
374 LL_TIM_GenerateEvent_UPDATE(TIMx);
376 return SUCCESS;
380 * @brief Set the fields of the TIMx output channel configuration data
381 * structure to their default values.
382 * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (the output channel configuration data structure)
383 * @retval None
385 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
387 /* Set the default configuration */
388 TIM_OC_InitStruct->OCMode = LL_TIM_OCMODE_FROZEN;
389 TIM_OC_InitStruct->OCState = LL_TIM_OCSTATE_DISABLE;
390 TIM_OC_InitStruct->OCNState = LL_TIM_OCSTATE_DISABLE;
391 TIM_OC_InitStruct->CompareValue = 0x00000000U;
392 TIM_OC_InitStruct->OCPolarity = LL_TIM_OCPOLARITY_HIGH;
393 TIM_OC_InitStruct->OCNPolarity = LL_TIM_OCPOLARITY_HIGH;
394 TIM_OC_InitStruct->OCIdleState = LL_TIM_OCIDLESTATE_LOW;
395 TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
399 * @brief Configure the TIMx output channel.
400 * @param TIMx Timer Instance
401 * @param Channel This parameter can be one of the following values:
402 * @arg @ref LL_TIM_CHANNEL_CH1
403 * @arg @ref LL_TIM_CHANNEL_CH2
404 * @arg @ref LL_TIM_CHANNEL_CH3
405 * @arg @ref LL_TIM_CHANNEL_CH4
406 * @arg @ref LL_TIM_CHANNEL_CH5
407 * @arg @ref LL_TIM_CHANNEL_CH6
408 * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration data structure)
409 * @retval An ErrorStatus enumeration value:
410 * - SUCCESS: TIMx output channel is initialized
411 * - ERROR: TIMx output channel is not initialized
413 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
415 ErrorStatus result = ERROR;
417 switch (Channel)
419 case LL_TIM_CHANNEL_CH1:
420 result = OC1Config(TIMx, TIM_OC_InitStruct);
421 break;
422 case LL_TIM_CHANNEL_CH2:
423 result = OC2Config(TIMx, TIM_OC_InitStruct);
424 break;
425 case LL_TIM_CHANNEL_CH3:
426 result = OC3Config(TIMx, TIM_OC_InitStruct);
427 break;
428 case LL_TIM_CHANNEL_CH4:
429 result = OC4Config(TIMx, TIM_OC_InitStruct);
430 break;
431 case LL_TIM_CHANNEL_CH5:
432 result = OC5Config(TIMx, TIM_OC_InitStruct);
433 break;
434 case LL_TIM_CHANNEL_CH6:
435 result = OC6Config(TIMx, TIM_OC_InitStruct);
436 break;
437 default:
438 break;
441 return result;
445 * @brief Set the fields of the TIMx input channel configuration data
446 * structure to their default values.
447 * @param TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration data structure)
448 * @retval None
450 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
452 /* Set the default configuration */
453 TIM_ICInitStruct->ICPolarity = LL_TIM_IC_POLARITY_RISING;
454 TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
455 TIM_ICInitStruct->ICPrescaler = LL_TIM_ICPSC_DIV1;
456 TIM_ICInitStruct->ICFilter = LL_TIM_IC_FILTER_FDIV1;
460 * @brief Configure the TIMx input channel.
461 * @param TIMx Timer Instance
462 * @param Channel This parameter can be one of the following values:
463 * @arg @ref LL_TIM_CHANNEL_CH1
464 * @arg @ref LL_TIM_CHANNEL_CH2
465 * @arg @ref LL_TIM_CHANNEL_CH3
466 * @arg @ref LL_TIM_CHANNEL_CH4
467 * @param TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data structure)
468 * @retval An ErrorStatus enumeration value:
469 * - SUCCESS: TIMx output channel is initialized
470 * - ERROR: TIMx output channel is not initialized
472 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
474 ErrorStatus result = ERROR;
476 switch (Channel)
478 case LL_TIM_CHANNEL_CH1:
479 result = IC1Config(TIMx, TIM_IC_InitStruct);
480 break;
481 case LL_TIM_CHANNEL_CH2:
482 result = IC2Config(TIMx, TIM_IC_InitStruct);
483 break;
484 case LL_TIM_CHANNEL_CH3:
485 result = IC3Config(TIMx, TIM_IC_InitStruct);
486 break;
487 case LL_TIM_CHANNEL_CH4:
488 result = IC4Config(TIMx, TIM_IC_InitStruct);
489 break;
490 default:
491 break;
494 return result;
498 * @brief Fills each TIM_EncoderInitStruct field with its default value
499 * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface configuration data structure)
500 * @retval None
502 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
504 /* Set the default configuration */
505 TIM_EncoderInitStruct->EncoderMode = LL_TIM_ENCODERMODE_X2_TI1;
506 TIM_EncoderInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING;
507 TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
508 TIM_EncoderInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1;
509 TIM_EncoderInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1;
510 TIM_EncoderInitStruct->IC2Polarity = LL_TIM_IC_POLARITY_RISING;
511 TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
512 TIM_EncoderInitStruct->IC2Prescaler = LL_TIM_ICPSC_DIV1;
513 TIM_EncoderInitStruct->IC2Filter = LL_TIM_IC_FILTER_FDIV1;
517 * @brief Configure the encoder interface of the timer instance.
518 * @param TIMx Timer Instance
519 * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface configuration data structure)
520 * @retval An ErrorStatus enumeration value:
521 * - SUCCESS: TIMx registers are de-initialized
522 * - ERROR: not applicable
524 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
526 uint32_t tmpccmr1;
527 uint32_t tmpccer;
529 /* Check the parameters */
530 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
531 assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
532 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
533 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
534 assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
535 assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
536 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
537 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
538 assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
539 assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
541 /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
542 TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
544 /* Get the TIMx CCMR1 register value */
545 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
547 /* Get the TIMx CCER register value */
548 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
550 /* Configure TI1 */
551 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC);
552 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
553 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
554 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
556 /* Configure TI2 */
557 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC);
558 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
559 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
560 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
562 /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
563 tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
564 tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
565 tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
566 tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
568 /* Set encoder mode */
569 LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
571 /* Write to TIMx CCMR1 */
572 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
574 /* Write to TIMx CCER */
575 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
577 return SUCCESS;
581 * @brief Set the fields of the TIMx Hall sensor interface configuration data
582 * structure to their default values.
583 * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface configuration data structure)
584 * @retval None
586 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
588 /* Set the default configuration */
589 TIM_HallSensorInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING;
590 TIM_HallSensorInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1;
591 TIM_HallSensorInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1;
592 TIM_HallSensorInitStruct->CommutationDelay = 0U;
596 * @brief Configure the Hall sensor interface of the timer instance.
597 * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
598 * to the TI1 input channel
599 * @note TIMx slave mode controller is configured in reset mode.
600 Selected internal trigger is TI1F_ED.
601 * @note Channel 1 is configured as input, IC1 is mapped on TRC.
602 * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
603 * between 2 changes on the inputs. It gives information about motor speed.
604 * @note Channel 2 is configured in output PWM 2 mode.
605 * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
606 * @note OC2REF is selected as trigger output on TRGO.
607 * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used
608 * when TIMx operates in Hall sensor interface mode.
609 * @param TIMx Timer Instance
610 * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor interface configuration data structure)
611 * @retval An ErrorStatus enumeration value:
612 * - SUCCESS: TIMx registers are de-initialized
613 * - ERROR: not applicable
615 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
617 uint32_t tmpcr2;
618 uint32_t tmpccmr1;
619 uint32_t tmpccer;
620 uint32_t tmpsmcr;
622 /* Check the parameters */
623 assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
624 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
625 assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
626 assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));
628 /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
629 TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
631 /* Get the TIMx CR2 register value */
632 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
634 /* Get the TIMx CCMR1 register value */
635 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
637 /* Get the TIMx CCER register value */
638 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
640 /* Get the TIMx SMCR register value */
641 tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);
643 /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
644 tmpcr2 |= TIM_CR2_TI1S;
646 /* OC2REF signal is used as trigger output (TRGO) */
647 tmpcr2 |= LL_TIM_TRGO_OC2REF;
649 /* Configure the slave mode controller */
650 tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
651 tmpsmcr |= LL_TIM_TS_TI1F_ED;
652 tmpsmcr |= LL_TIM_SLAVEMODE_RESET;
654 /* Configure input channel 1 */
655 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC);
656 tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
657 tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
658 tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);
660 /* Configure input channel 2 */
661 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE | TIM_CCMR1_OC2PE | TIM_CCMR1_OC2CE);
662 tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);
664 /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
665 tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
666 tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
667 tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
669 /* Write to TIMx CR2 */
670 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
672 /* Write to TIMx SMCR */
673 LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);
675 /* Write to TIMx CCMR1 */
676 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
678 /* Write to TIMx CCER */
679 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
681 /* Write to TIMx CCR2 */
682 LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);
684 return SUCCESS;
688 * @brief Set the fields of the Break and Dead Time configuration data structure
689 * to their default values.
690 * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
691 * @retval None
693 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
695 /* Set the default configuration */
696 TIM_BDTRInitStruct->OSSRState = LL_TIM_OSSR_DISABLE;
697 TIM_BDTRInitStruct->OSSIState = LL_TIM_OSSI_DISABLE;
698 TIM_BDTRInitStruct->LockLevel = LL_TIM_LOCKLEVEL_OFF;
699 TIM_BDTRInitStruct->DeadTime = (uint8_t)0x00;
700 TIM_BDTRInitStruct->BreakState = LL_TIM_BREAK_DISABLE;
701 TIM_BDTRInitStruct->BreakPolarity = LL_TIM_BREAK_POLARITY_LOW;
702 TIM_BDTRInitStruct->BreakFilter = LL_TIM_BREAK_FILTER_FDIV1;
703 TIM_BDTRInitStruct->BreakAFMode = LL_TIM_BREAK_AFMODE_INPUT;
704 TIM_BDTRInitStruct->Break2State = LL_TIM_BREAK2_DISABLE;
705 TIM_BDTRInitStruct->Break2Polarity = LL_TIM_BREAK2_POLARITY_LOW;
706 TIM_BDTRInitStruct->Break2Filter = LL_TIM_BREAK2_FILTER_FDIV1;
707 TIM_BDTRInitStruct->Break2AFMode = LL_TIM_BREAK2_AFMODE_INPUT;
708 TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
712 * @brief Configure the Break and Dead Time feature of the timer instance.
713 * @note As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR
714 * and DTG[7:0] can be write-locked depending on the LOCK configuration, it
715 * can be necessary to configure all of them during the first write access to
716 * the TIMx_BDTR register.
717 * @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
718 * a timer instance provides a break input.
719 * @note Macro @ref IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
720 * a timer instance provides a second break input.
721 * @param TIMx Timer Instance
722 * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
723 * @retval An ErrorStatus enumeration value:
724 * - SUCCESS: Break and Dead Time is initialized
725 * - ERROR: not applicable
727 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
729 uint32_t tmpbdtr = 0;
731 /* Check the parameters */
732 assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
733 assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
734 assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
735 assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
736 assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
737 assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
738 assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
740 /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
741 the OSSI State, the dead time value and the Automatic Output Enable Bit */
743 /* Set the BDTR bits */
744 MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
745 MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
746 MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
747 MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
748 MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
749 MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
750 MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
751 MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, TIM_BDTRInitStruct->AutomaticOutput);
752 if (IS_TIM_ADVANCED_INSTANCE(TIMx))
754 assert_param(IS_LL_TIM_BREAK_FILTER(TIM_BDTRInitStruct->BreakFilter));
755 assert_param(IS_LL_TIM_BREAK_AFMODE(TIM_BDTRInitStruct->BreakAFMode));
756 MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, TIM_BDTRInitStruct->BreakFilter);
757 MODIFY_REG(tmpbdtr, TIM_BDTR_BKBID, TIM_BDTRInitStruct->BreakAFMode);
760 if (IS_TIM_BKIN2_INSTANCE(TIMx))
762 assert_param(IS_LL_TIM_BREAK2_STATE(TIM_BDTRInitStruct->Break2State));
763 assert_param(IS_LL_TIM_BREAK2_POLARITY(TIM_BDTRInitStruct->Break2Polarity));
764 assert_param(IS_LL_TIM_BREAK2_FILTER(TIM_BDTRInitStruct->Break2Filter));
765 assert_param(IS_LL_TIM_BREAK2_AFMODE(TIM_BDTRInitStruct->Break2AFMode));
767 /* Set the BREAK2 input related BDTR bit-fields */
768 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (TIM_BDTRInitStruct->Break2Filter));
769 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, TIM_BDTRInitStruct->Break2State);
770 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, TIM_BDTRInitStruct->Break2Polarity);
771 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2BID, TIM_BDTRInitStruct->Break2AFMode);
774 /* Set TIMx_BDTR */
775 LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
777 return SUCCESS;
780 * @}
784 * @}
787 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
788 * @brief Private functions
789 * @{
792 * @brief Configure the TIMx output channel 1.
793 * @param TIMx Timer Instance
794 * @param TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
795 * @retval An ErrorStatus enumeration value:
796 * - SUCCESS: TIMx registers are de-initialized
797 * - ERROR: not applicable
799 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
801 uint32_t tmpccmr1;
802 uint32_t tmpccer;
803 uint32_t tmpcr2;
805 /* Check the parameters */
806 assert_param(IS_TIM_CC1_INSTANCE(TIMx));
807 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
808 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
809 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
810 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
811 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
813 /* Disable the Channel 1: Reset the CC1E Bit */
814 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
816 /* Get the TIMx CCER register value */
817 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
819 /* Get the TIMx CR2 register value */
820 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
822 /* Get the TIMx CCMR1 register value */
823 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
825 /* Reset Capture/Compare selection Bits */
826 CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
828 /* Set the Output Compare Mode */
829 MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
831 /* Set the Output Compare Polarity */
832 MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
834 /* Set the Output State */
835 MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
837 if (IS_TIM_BREAK_INSTANCE(TIMx))
839 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
840 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
842 /* Set the complementary output Polarity */
843 MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
845 /* Set the complementary output State */
846 MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
848 /* Set the Output Idle state */
849 MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
851 /* Set the complementary output Idle state */
852 MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
855 /* Write to TIMx CR2 */
856 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
858 /* Write to TIMx CCMR1 */
859 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
861 /* Set the Capture Compare Register value */
862 LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
864 /* Write to TIMx CCER */
865 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
867 return SUCCESS;
871 * @brief Configure the TIMx output channel 2.
872 * @param TIMx Timer Instance
873 * @param TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
874 * @retval An ErrorStatus enumeration value:
875 * - SUCCESS: TIMx registers are de-initialized
876 * - ERROR: not applicable
878 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
880 uint32_t tmpccmr1;
881 uint32_t tmpccer;
882 uint32_t tmpcr2;
884 /* Check the parameters */
885 assert_param(IS_TIM_CC2_INSTANCE(TIMx));
886 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
887 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
888 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
889 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
890 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
892 /* Disable the Channel 2: Reset the CC2E Bit */
893 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
895 /* Get the TIMx CCER register value */
896 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
898 /* Get the TIMx CR2 register value */
899 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
901 /* Get the TIMx CCMR1 register value */
902 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
904 /* Reset Capture/Compare selection Bits */
905 CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
907 /* Select the Output Compare Mode */
908 MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
910 /* Set the Output Compare Polarity */
911 MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
913 /* Set the Output State */
914 MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
916 if (IS_TIM_BREAK_INSTANCE(TIMx))
918 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
919 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
921 /* Set the complementary output Polarity */
922 MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
924 /* Set the complementary output State */
925 MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
927 /* Set the Output Idle state */
928 MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
930 /* Set the complementary output Idle state */
931 MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
934 /* Write to TIMx CR2 */
935 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
937 /* Write to TIMx CCMR1 */
938 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
940 /* Set the Capture Compare Register value */
941 LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
943 /* Write to TIMx CCER */
944 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
946 return SUCCESS;
950 * @brief Configure the TIMx output channel 3.
951 * @param TIMx Timer Instance
952 * @param TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
953 * @retval An ErrorStatus enumeration value:
954 * - SUCCESS: TIMx registers are de-initialized
955 * - ERROR: not applicable
957 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
959 uint32_t tmpccmr2;
960 uint32_t tmpccer;
961 uint32_t tmpcr2;
963 /* Check the parameters */
964 assert_param(IS_TIM_CC3_INSTANCE(TIMx));
965 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
966 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
967 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
968 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
969 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
971 /* Disable the Channel 3: Reset the CC3E Bit */
972 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
974 /* Get the TIMx CCER register value */
975 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
977 /* Get the TIMx CR2 register value */
978 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
980 /* Get the TIMx CCMR2 register value */
981 tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
983 /* Reset Capture/Compare selection Bits */
984 CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
986 /* Select the Output Compare Mode */
987 MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
989 /* Set the Output Compare Polarity */
990 MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
992 /* Set the Output State */
993 MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
995 if (IS_TIM_BREAK_INSTANCE(TIMx))
997 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
998 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1000 /* Set the complementary output Polarity */
1001 MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
1003 /* Set the complementary output State */
1004 MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
1006 /* Set the Output Idle state */
1007 MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
1009 /* Set the complementary output Idle state */
1010 MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
1013 /* Write to TIMx CR2 */
1014 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1016 /* Write to TIMx CCMR2 */
1017 LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1019 /* Set the Capture Compare Register value */
1020 LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
1022 /* Write to TIMx CCER */
1023 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1025 return SUCCESS;
1029 * @brief Configure the TIMx output channel 4.
1030 * @param TIMx Timer Instance
1031 * @param TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
1032 * @retval An ErrorStatus enumeration value:
1033 * - SUCCESS: TIMx registers are de-initialized
1034 * - ERROR: not applicable
1036 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1038 uint32_t tmpccmr2;
1039 uint32_t tmpccer;
1040 uint32_t tmpcr2;
1042 /* Check the parameters */
1043 assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1044 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1045 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1046 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1047 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1048 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1050 /* Disable the Channel 4: Reset the CC4E Bit */
1051 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
1053 /* Get the TIMx CCER register value */
1054 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1056 /* Get the TIMx CR2 register value */
1057 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
1059 /* Get the TIMx CCMR2 register value */
1060 tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1062 /* Reset Capture/Compare selection Bits */
1063 CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
1065 /* Select the Output Compare Mode */
1066 MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
1068 /* Set the Output Compare Polarity */
1069 MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
1071 /* Set the Output State */
1072 MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
1074 if (IS_TIM_BREAK_INSTANCE(TIMx))
1076 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1077 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1079 /* Set the complementary output Polarity */
1080 MODIFY_REG(tmpccer, TIM_CCER_CC4NP, TIM_OCInitStruct->OCNPolarity << 14U);
1082 /* Set the complementary output State */
1083 MODIFY_REG(tmpccer, TIM_CCER_CC4NE, TIM_OCInitStruct->OCNState << 14U);
1085 /* Set the Output Idle state */
1086 MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
1088 /* Set the complementary output Idle state */
1089 MODIFY_REG(tmpcr2, TIM_CR2_OIS4N, TIM_OCInitStruct->OCNIdleState << 7U);
1092 /* Write to TIMx CR2 */
1093 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1095 /* Write to TIMx CCMR2 */
1096 LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1098 /* Set the Capture Compare Register value */
1099 LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
1101 /* Write to TIMx CCER */
1102 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1104 return SUCCESS;
1108 * @brief Configure the TIMx output channel 5.
1109 * @param TIMx Timer Instance
1110 * @param TIM_OCInitStruct pointer to the the TIMx output channel 5 configuration data structure
1111 * @retval An ErrorStatus enumeration value:
1112 * - SUCCESS: TIMx registers are de-initialized
1113 * - ERROR: not applicable
1115 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1117 uint32_t tmpccmr3;
1118 uint32_t tmpccer;
1120 /* Check the parameters */
1121 assert_param(IS_TIM_CC5_INSTANCE(TIMx));
1122 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1123 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1124 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1125 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1126 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1128 /* Disable the Channel 5: Reset the CC5E Bit */
1129 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC5E);
1131 /* Get the TIMx CCER register value */
1132 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1134 /* Get the TIMx CCMR3 register value */
1135 tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1137 /* Select the Output Compare Mode */
1138 MODIFY_REG(tmpccmr3, TIM_CCMR3_OC5M, TIM_OCInitStruct->OCMode);
1140 /* Set the Output Compare Polarity */
1141 MODIFY_REG(tmpccer, TIM_CCER_CC5P, TIM_OCInitStruct->OCPolarity << 16U);
1143 /* Set the Output State */
1144 MODIFY_REG(tmpccer, TIM_CCER_CC5E, TIM_OCInitStruct->OCState << 16U);
1146 if (IS_TIM_BREAK_INSTANCE(TIMx))
1148 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1149 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1151 /* Set the Output Idle state */
1152 MODIFY_REG(TIMx->CR2, TIM_CR2_OIS5, TIM_OCInitStruct->OCIdleState << 8U);
1156 /* Write to TIMx CCMR3 */
1157 LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1159 /* Set the Capture Compare Register value */
1160 LL_TIM_OC_SetCompareCH5(TIMx, TIM_OCInitStruct->CompareValue);
1162 /* Write to TIMx CCER */
1163 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1165 return SUCCESS;
1169 * @brief Configure the TIMx output channel 6.
1170 * @param TIMx Timer Instance
1171 * @param TIM_OCInitStruct pointer to the the TIMx output channel 6 configuration data structure
1172 * @retval An ErrorStatus enumeration value:
1173 * - SUCCESS: TIMx registers are de-initialized
1174 * - ERROR: not applicable
1176 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1178 uint32_t tmpccmr3;
1179 uint32_t tmpccer;
1181 /* Check the parameters */
1182 assert_param(IS_TIM_CC6_INSTANCE(TIMx));
1183 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1184 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1185 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1186 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1187 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1189 /* Disable the Channel 5: Reset the CC6E Bit */
1190 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC6E);
1192 /* Get the TIMx CCER register value */
1193 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1195 /* Get the TIMx CCMR3 register value */
1196 tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1198 /* Select the Output Compare Mode */
1199 MODIFY_REG(tmpccmr3, TIM_CCMR3_OC6M, TIM_OCInitStruct->OCMode << 8U);
1201 /* Set the Output Compare Polarity */
1202 MODIFY_REG(tmpccer, TIM_CCER_CC6P, TIM_OCInitStruct->OCPolarity << 20U);
1204 /* Set the Output State */
1205 MODIFY_REG(tmpccer, TIM_CCER_CC6E, TIM_OCInitStruct->OCState << 20U);
1207 if (IS_TIM_BREAK_INSTANCE(TIMx))
1209 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1210 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1212 /* Set the Output Idle state */
1213 MODIFY_REG(TIMx->CR2, TIM_CR2_OIS6, TIM_OCInitStruct->OCIdleState << 10U);
1216 /* Write to TIMx CCMR3 */
1217 LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1219 /* Set the Capture Compare Register value */
1220 LL_TIM_OC_SetCompareCH6(TIMx, TIM_OCInitStruct->CompareValue);
1222 /* Write to TIMx CCER */
1223 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1225 return SUCCESS;
1229 * @brief Configure the TIMx input channel 1.
1230 * @param TIMx Timer Instance
1231 * @param TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1232 * @retval An ErrorStatus enumeration value:
1233 * - SUCCESS: TIMx registers are de-initialized
1234 * - ERROR: not applicable
1236 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1238 /* Check the parameters */
1239 assert_param(IS_TIM_CC1_INSTANCE(TIMx));
1240 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1241 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1242 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1243 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1245 /* Disable the Channel 1: Reset the CC1E Bit */
1246 TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
1248 /* Select the Input and set the filter and the prescaler value */
1249 MODIFY_REG(TIMx->CCMR1,
1250 (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
1251 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1253 /* Select the Polarity and set the CC1E Bit */
1254 MODIFY_REG(TIMx->CCER,
1255 (TIM_CCER_CC1P | TIM_CCER_CC1NP),
1256 (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
1258 return SUCCESS;
1262 * @brief Configure the TIMx input channel 2.
1263 * @param TIMx Timer Instance
1264 * @param TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1265 * @retval An ErrorStatus enumeration value:
1266 * - SUCCESS: TIMx registers are de-initialized
1267 * - ERROR: not applicable
1269 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1271 /* Check the parameters */
1272 assert_param(IS_TIM_CC2_INSTANCE(TIMx));
1273 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1274 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1275 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1276 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1278 /* Disable the Channel 2: Reset the CC2E Bit */
1279 TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
1281 /* Select the Input and set the filter and the prescaler value */
1282 MODIFY_REG(TIMx->CCMR1,
1283 (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
1284 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1286 /* Select the Polarity and set the CC2E Bit */
1287 MODIFY_REG(TIMx->CCER,
1288 (TIM_CCER_CC2P | TIM_CCER_CC2NP),
1289 ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1291 return SUCCESS;
1295 * @brief Configure the TIMx input channel 3.
1296 * @param TIMx Timer Instance
1297 * @param TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1298 * @retval An ErrorStatus enumeration value:
1299 * - SUCCESS: TIMx registers are de-initialized
1300 * - ERROR: not applicable
1302 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1304 /* Check the parameters */
1305 assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1306 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1307 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1308 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1309 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1311 /* Disable the Channel 3: Reset the CC3E Bit */
1312 TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
1314 /* Select the Input and set the filter and the prescaler value */
1315 MODIFY_REG(TIMx->CCMR2,
1316 (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
1317 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1319 /* Select the Polarity and set the CC3E Bit */
1320 MODIFY_REG(TIMx->CCER,
1321 (TIM_CCER_CC3P | TIM_CCER_CC3NP),
1322 ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1324 return SUCCESS;
1328 * @brief Configure the TIMx input channel 4.
1329 * @param TIMx Timer Instance
1330 * @param TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1331 * @retval An ErrorStatus enumeration value:
1332 * - SUCCESS: TIMx registers are de-initialized
1333 * - ERROR: not applicable
1335 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1337 /* Check the parameters */
1338 assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1339 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1340 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1341 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1342 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1344 /* Disable the Channel 4: Reset the CC4E Bit */
1345 TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
1347 /* Select the Input and set the filter and the prescaler value */
1348 MODIFY_REG(TIMx->CCMR2,
1349 (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
1350 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1352 /* Select the Polarity and set the CC2E Bit */
1353 MODIFY_REG(TIMx->CCER,
1354 (TIM_CCER_CC4P | TIM_CCER_CC4NP),
1355 ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1357 return SUCCESS;
1362 * @}
1366 * @}
1369 #endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM15 || TIM16 || TIM17 || TIM20 */
1372 * @}
1375 #endif /* USE_FULL_LL_DRIVER */
1377 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/