Merge pull request #11494 from haslinghuis/dshot_gpio
[betaflight.git] / src / main / config / simplified_tuning.c
blob33e77dc6b6ba5eb19264e258da6ce363f6e41855
1 /*
2 * This file is part of Cleanflight and Betaflight.
4 * Cleanflight and Betaflight are free software. You can redistribute
5 * this software and/or modify this software under the terms of the
6 * GNU General Public License as published by the Free Software
7 * Foundation, either version 3 of the License, or (at your option)
8 * any later version.
10 * Cleanflight and Betaflight are distributed in the hope that they
11 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
12 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 * See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this software.
18 * If not, see <http://www.gnu.org/licenses/>.
21 #include <math.h>
22 #include "platform.h"
24 #ifdef USE_SIMPLIFIED_TUNING
26 #include "common/axis.h"
27 #include "common/maths.h"
29 #include "config/simplified_tuning.h"
31 static void calculateNewPidValues(pidProfile_t *pidProfile)
33 const pidf_t pidDefaults[FLIGHT_DYNAMICS_INDEX_COUNT] = {
34 [PID_ROLL] = PID_ROLL_DEFAULT,
35 [PID_PITCH] = PID_PITCH_DEFAULT,
36 [PID_YAW] = PID_YAW_DEFAULT,
39 #ifdef USE_D_MIN
40 const int dMinDefaults[FLIGHT_DYNAMICS_INDEX_COUNT] = D_MIN_DEFAULT;
41 #endif
42 const float masterMultiplier = pidProfile->simplified_master_multiplier / 100.0f;
43 const float piGain = pidProfile->simplified_pi_gain / 100.0f;
44 const float dGain = pidProfile->simplified_d_gain / 100.0f;
45 const float feedforwardGain = pidProfile->simplified_feedforward_gain / 100.0f;
46 const float iGain = pidProfile->simplified_i_gain / 100.0f;
48 for (int axis = FD_ROLL; axis <= pidProfile->simplified_pids_mode; ++axis) {
49 const float pitchDGain = (axis == FD_PITCH) ? pidProfile->simplified_roll_pitch_ratio / 100.0f : 1.0f;
50 const float pitchPiGain = (axis == FD_PITCH) ? pidProfile->simplified_pitch_pi_gain / 100.0f : 1.0f;
51 pidProfile->pid[axis].P = constrain(pidDefaults[axis].P * masterMultiplier * piGain * pitchPiGain, 0, PID_GAIN_MAX);
52 pidProfile->pid[axis].I = constrain(pidDefaults[axis].I * masterMultiplier * piGain * iGain * pitchPiGain, 0, PID_GAIN_MAX);
53 #ifdef USE_D_MIN
54 const float dminRatio = (dMinDefaults[axis] > 0) ? 1.0f + (((float)pidDefaults[axis].D - dMinDefaults[axis]) / dMinDefaults[axis]) * (pidProfile->simplified_dmin_ratio / 100.0f) : 1.0f;
55 pidProfile->pid[axis].D = constrain(dMinDefaults[axis] * masterMultiplier * dGain * pitchDGain * dminRatio, 0, PID_GAIN_MAX);
56 pidProfile->d_min[axis] = constrain(dMinDefaults[axis] * masterMultiplier * dGain * pitchDGain, 0, PID_GAIN_MAX);
57 #else
58 pidProfile->pid[axis].D = constrain(dMinDefaults[axis] * masterMultiplier * dGain * pitchDGain, 0, PID_GAIN_MAX);
59 #endif
60 pidProfile->pid[axis].F = constrain(pidDefaults[axis].F * masterMultiplier * pitchPiGain * feedforwardGain, 0, F_GAIN_MAX);
64 static void calculateNewDTermFilterValues(pidProfile_t *pidProfile)
66 if (pidProfile->dterm_lpf1_dyn_min_hz) {
67 pidProfile->dterm_lpf1_dyn_min_hz = constrain(DTERM_LPF1_DYN_MIN_HZ_DEFAULT * pidProfile->simplified_dterm_filter_multiplier / 100, 0, DYN_LPF_MAX_HZ);
68 pidProfile->dterm_lpf1_dyn_max_hz = constrain(DTERM_LPF1_DYN_MAX_HZ_DEFAULT * pidProfile->simplified_dterm_filter_multiplier / 100, 0, DYN_LPF_MAX_HZ);
71 if (pidProfile->dterm_lpf1_static_hz) {
72 pidProfile->dterm_lpf1_static_hz = constrain(DTERM_LPF1_DYN_MIN_HZ_DEFAULT * pidProfile->simplified_dterm_filter_multiplier / 100, 0, DYN_LPF_MAX_HZ);
75 if (pidProfile->dterm_lpf2_static_hz) {
76 pidProfile->dterm_lpf2_static_hz = constrain(DTERM_LPF2_HZ_DEFAULT * pidProfile->simplified_dterm_filter_multiplier / 100, 0, LPF_MAX_HZ);
80 static void calculateNewGyroFilterValues(gyroConfig_t *gyroConfig)
82 if (gyroConfig->gyro_lpf1_dyn_min_hz) {
83 gyroConfig->gyro_lpf1_dyn_min_hz = constrain(GYRO_LPF1_DYN_MIN_HZ_DEFAULT * gyroConfig->simplified_gyro_filter_multiplier / 100, 0, DYN_LPF_MAX_HZ);
84 gyroConfig->gyro_lpf1_dyn_max_hz = constrain(GYRO_LPF1_DYN_MAX_HZ_DEFAULT * gyroConfig->simplified_gyro_filter_multiplier / 100, 0, DYN_LPF_MAX_HZ);
87 if (gyroConfig->gyro_lpf1_static_hz) {
88 gyroConfig->gyro_lpf1_static_hz = constrain(GYRO_LPF1_DYN_MIN_HZ_DEFAULT * gyroConfig->simplified_gyro_filter_multiplier / 100, 0, DYN_LPF_MAX_HZ);
91 if (gyroConfig->gyro_lpf2_static_hz) {
92 gyroConfig->gyro_lpf2_static_hz = constrain(GYRO_LPF2_HZ_DEFAULT * gyroConfig->simplified_gyro_filter_multiplier / 100, 0, LPF_MAX_HZ);
96 void applySimplifiedTuningPids(pidProfile_t *pidProfile)
98 if (pidProfile->simplified_pids_mode != PID_SIMPLIFIED_TUNING_OFF) {
99 calculateNewPidValues(pidProfile);
103 void applySimplifiedTuningDtermFilters(pidProfile_t *pidProfile)
105 if (pidProfile->simplified_dterm_filter) {
106 calculateNewDTermFilterValues(pidProfile);
110 void applySimplifiedTuningGyroFilters(gyroConfig_t *gyroConfig)
112 if (gyroConfig->simplified_gyro_filter) {
113 calculateNewGyroFilterValues(gyroConfig);
118 void applySimplifiedTuning(pidProfile_t *pidProfile, gyroConfig_t *gyroConfig)
120 applySimplifiedTuningPids(pidProfile);
121 applySimplifiedTuningDtermFilters(pidProfile);
122 applySimplifiedTuningGyroFilters(gyroConfig);
125 void disableSimplifiedTuning(pidProfile_t *pidProfile, gyroConfig_t *gyroConfig)
127 pidProfile->simplified_pids_mode = PID_SIMPLIFIED_TUNING_OFF;
129 pidProfile->simplified_dterm_filter = false;
131 gyroConfig->simplified_gyro_filter = false;
133 #endif // USE_SIMPLIFIED_TUNING