Updated and Validated
[betaflight.git] / lib / main / CMSIS / DSP / Source / TransformFunctions / arm_cfft_q31.c
blobff4ff94795db70bb462cb5796ab6b7f1c9b304d3
1 /* ----------------------------------------------------------------------
2 * Project: CMSIS DSP Library
3 * Title: arm_cfft_q31.c
4 * Description: Combined Radix Decimation in Frequency CFFT fixed point processing function
6 * $Date: 27. January 2017
7 * $Revision: V.1.5.1
9 * Target Processor: Cortex-M cores
10 * -------------------------------------------------------------------- */
12 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
14 * SPDX-License-Identifier: Apache-2.0
16 * Licensed under the Apache License, Version 2.0 (the License); you may
17 * not use this file except in compliance with the License.
18 * You may obtain a copy of the License at
20 * www.apache.org/licenses/LICENSE-2.0
22 * Unless required by applicable law or agreed to in writing, software
23 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25 * See the License for the specific language governing permissions and
26 * limitations under the License.
29 #include "arm_math.h"
31 extern void arm_radix4_butterfly_q31(
32 q31_t * pSrc,
33 uint32_t fftLen,
34 q31_t * pCoef,
35 uint32_t twidCoefModifier);
37 extern void arm_radix4_butterfly_inverse_q31(
38 q31_t * pSrc,
39 uint32_t fftLen,
40 q31_t * pCoef,
41 uint32_t twidCoefModifier);
43 extern void arm_bitreversal_32(
44 uint32_t * pSrc,
45 const uint16_t bitRevLen,
46 const uint16_t * pBitRevTable);
48 void arm_cfft_radix4by2_q31(
49 q31_t * pSrc,
50 uint32_t fftLen,
51 const q31_t * pCoef);
53 void arm_cfft_radix4by2_inverse_q31(
54 q31_t * pSrc,
55 uint32_t fftLen,
56 const q31_t * pCoef);
58 /**
59 * @ingroup groupTransforms
62 /**
63 * @addtogroup ComplexFFT
64 * @{
67 /**
68 * @details
69 * @brief Processing function for the fixed-point complex FFT in Q31 format.
70 * @param[in] *S points to an instance of the fixed-point CFFT structure.
71 * @param[in, out] *p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.
72 * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
73 * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
74 * @return none.
77 void arm_cfft_q31(
78 const arm_cfft_instance_q31 * S,
79 q31_t * p1,
80 uint8_t ifftFlag,
81 uint8_t bitReverseFlag)
83 uint32_t L = S->fftLen;
85 if (ifftFlag == 1U)
87 switch (L)
89 case 16:
90 case 64:
91 case 256:
92 case 1024:
93 case 4096:
94 arm_radix4_butterfly_inverse_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 );
95 break;
97 case 32:
98 case 128:
99 case 512:
100 case 2048:
101 arm_cfft_radix4by2_inverse_q31 ( p1, L, S->pTwiddle );
102 break;
105 else
107 switch (L)
109 case 16:
110 case 64:
111 case 256:
112 case 1024:
113 case 4096:
114 arm_radix4_butterfly_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 );
115 break;
117 case 32:
118 case 128:
119 case 512:
120 case 2048:
121 arm_cfft_radix4by2_q31 ( p1, L, S->pTwiddle );
122 break;
126 if ( bitReverseFlag )
127 arm_bitreversal_32((uint32_t*)p1,S->bitRevLength,S->pBitRevTable);
131 * @} end of ComplexFFT group
134 void arm_cfft_radix4by2_q31(
135 q31_t * pSrc,
136 uint32_t fftLen,
137 const q31_t * pCoef)
139 uint32_t i, l;
140 uint32_t n2, ia;
141 q31_t xt, yt, cosVal, sinVal;
142 q31_t p0, p1;
144 n2 = fftLen >> 1;
145 ia = 0;
146 for (i = 0; i < n2; i++)
148 cosVal = pCoef[2*ia];
149 sinVal = pCoef[2*ia + 1];
150 ia++;
152 l = i + n2;
153 xt = (pSrc[2 * i] >> 2) - (pSrc[2 * l] >> 2);
154 pSrc[2 * i] = (pSrc[2 * i] >> 2) + (pSrc[2 * l] >> 2);
156 yt = (pSrc[2 * i + 1] >> 2) - (pSrc[2 * l + 1] >> 2);
157 pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2) + (pSrc[2 * i + 1] >> 2);
159 mult_32x32_keep32_R(p0, xt, cosVal);
160 mult_32x32_keep32_R(p1, yt, cosVal);
161 multAcc_32x32_keep32_R(p0, yt, sinVal);
162 multSub_32x32_keep32_R(p1, xt, sinVal);
164 pSrc[2U * l] = p0 << 1;
165 pSrc[2U * l + 1U] = p1 << 1;
169 // first col
170 arm_radix4_butterfly_q31( pSrc, n2, (q31_t*)pCoef, 2U);
171 // second col
172 arm_radix4_butterfly_q31( pSrc + fftLen, n2, (q31_t*)pCoef, 2U);
174 for (i = 0; i < fftLen >> 1; i++)
176 p0 = pSrc[4*i+0];
177 p1 = pSrc[4*i+1];
178 xt = pSrc[4*i+2];
179 yt = pSrc[4*i+3];
181 p0 <<= 1;
182 p1 <<= 1;
183 xt <<= 1;
184 yt <<= 1;
186 pSrc[4*i+0] = p0;
187 pSrc[4*i+1] = p1;
188 pSrc[4*i+2] = xt;
189 pSrc[4*i+3] = yt;
194 void arm_cfft_radix4by2_inverse_q31(
195 q31_t * pSrc,
196 uint32_t fftLen,
197 const q31_t * pCoef)
199 uint32_t i, l;
200 uint32_t n2, ia;
201 q31_t xt, yt, cosVal, sinVal;
202 q31_t p0, p1;
204 n2 = fftLen >> 1;
205 ia = 0;
206 for (i = 0; i < n2; i++)
208 cosVal = pCoef[2*ia];
209 sinVal = pCoef[2*ia + 1];
210 ia++;
212 l = i + n2;
213 xt = (pSrc[2 * i] >> 2) - (pSrc[2 * l] >> 2);
214 pSrc[2 * i] = (pSrc[2 * i] >> 2) + (pSrc[2 * l] >> 2);
216 yt = (pSrc[2 * i + 1] >> 2) - (pSrc[2 * l + 1] >> 2);
217 pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2) + (pSrc[2 * i + 1] >> 2);
219 mult_32x32_keep32_R(p0, xt, cosVal);
220 mult_32x32_keep32_R(p1, yt, cosVal);
221 multSub_32x32_keep32_R(p0, yt, sinVal);
222 multAcc_32x32_keep32_R(p1, xt, sinVal);
224 pSrc[2U * l] = p0 << 1;
225 pSrc[2U * l + 1U] = p1 << 1;
229 // first col
230 arm_radix4_butterfly_inverse_q31( pSrc, n2, (q31_t*)pCoef, 2U);
231 // second col
232 arm_radix4_butterfly_inverse_q31( pSrc + fftLen, n2, (q31_t*)pCoef, 2U);
234 for (i = 0; i < fftLen >> 1; i++)
236 p0 = pSrc[4*i+0];
237 p1 = pSrc[4*i+1];
238 xt = pSrc[4*i+2];
239 yt = pSrc[4*i+3];
241 p0 <<= 1;
242 p1 <<= 1;
243 xt <<= 1;
244 yt <<= 1;
246 pSrc[4*i+0] = p0;
247 pSrc[4*i+1] = p1;
248 pSrc[4*i+2] = xt;
249 pSrc[4*i+3] = yt;