Updated and Validated
[betaflight.git] / lib / main / STM32F3 / Drivers / STM32F3xx_HAL_Driver / Inc / stm32f3xx_ll_spi.h
bloba9641465cd0f9516d8845782b6dc693609bd8d90
1 /**
2 ******************************************************************************
3 * @file stm32f3xx_ll_spi.h
4 * @author MCD Application Team
5 * @brief Header file of SPI LL module.
6 ******************************************************************************
7 * @attention
9 * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
11 * Redistribution and use in source and binary forms, with or without modification,
12 * are permitted provided that the following conditions are met:
13 * 1. Redistributions of source code must retain the above copyright notice,
14 * this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 * 3. Neither the name of STMicroelectronics nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
23 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
28 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 ******************************************************************************
36 /* Define to prevent recursive inclusion -------------------------------------*/
37 #ifndef __STM32F3xx_LL_SPI_H
38 #define __STM32F3xx_LL_SPI_H
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
44 /* Includes ------------------------------------------------------------------*/
45 #include "stm32f3xx.h"
47 /** @addtogroup STM32F3xx_LL_Driver
48 * @{
51 #if defined (SPI1) || defined (SPI2) || defined (SPI3) || defined (SPI4)
53 /** @defgroup SPI_LL SPI
54 * @{
57 /* Private types -------------------------------------------------------------*/
58 /* Private variables ---------------------------------------------------------*/
59 /* Private macros ------------------------------------------------------------*/
61 /* Exported types ------------------------------------------------------------*/
62 #if defined(USE_FULL_LL_DRIVER)
63 /** @defgroup SPI_LL_ES_INIT SPI Exported Init structure
64 * @{
67 /**
68 * @brief SPI Init structures definition
70 typedef struct
72 uint32_t TransferDirection; /*!< Specifies the SPI unidirectional or bidirectional data mode.
73 This parameter can be a value of @ref SPI_LL_EC_TRANSFER_MODE.
75 This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferDirection().*/
77 uint32_t Mode; /*!< Specifies the SPI mode (Master/Slave).
78 This parameter can be a value of @ref SPI_LL_EC_MODE.
80 This feature can be modified afterwards using unitary function @ref LL_SPI_SetMode().*/
82 uint32_t DataWidth; /*!< Specifies the SPI data width.
83 This parameter can be a value of @ref SPI_LL_EC_DATAWIDTH.
85 This feature can be modified afterwards using unitary function @ref LL_SPI_SetDataWidth().*/
87 uint32_t ClockPolarity; /*!< Specifies the serial clock steady state.
88 This parameter can be a value of @ref SPI_LL_EC_POLARITY.
90 This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPolarity().*/
92 uint32_t ClockPhase; /*!< Specifies the clock active edge for the bit capture.
93 This parameter can be a value of @ref SPI_LL_EC_PHASE.
95 This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPhase().*/
97 uint32_t NSS; /*!< Specifies whether the NSS signal is managed by hardware (NSS pin) or by software using the SSI bit.
98 This parameter can be a value of @ref SPI_LL_EC_NSS_MODE.
100 This feature can be modified afterwards using unitary function @ref LL_SPI_SetNSSMode().*/
102 uint32_t BaudRate; /*!< Specifies the BaudRate prescaler value which will be used to configure the transmit and receive SCK clock.
103 This parameter can be a value of @ref SPI_LL_EC_BAUDRATEPRESCALER.
104 @note The communication clock is derived from the master clock. The slave clock does not need to be set.
106 This feature can be modified afterwards using unitary function @ref LL_SPI_SetBaudRatePrescaler().*/
108 uint32_t BitOrder; /*!< Specifies whether data transfers start from MSB or LSB bit.
109 This parameter can be a value of @ref SPI_LL_EC_BIT_ORDER.
111 This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferBitOrder().*/
113 uint32_t CRCCalculation; /*!< Specifies if the CRC calculation is enabled or not.
114 This parameter can be a value of @ref SPI_LL_EC_CRC_CALCULATION.
116 This feature can be modified afterwards using unitary functions @ref LL_SPI_EnableCRC() and @ref LL_SPI_DisableCRC().*/
118 uint32_t CRCPoly; /*!< Specifies the polynomial used for the CRC calculation.
119 This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFFFF.
121 This feature can be modified afterwards using unitary function @ref LL_SPI_SetCRCPolynomial().*/
123 } LL_SPI_InitTypeDef;
126 * @}
128 #endif /* USE_FULL_LL_DRIVER */
130 /* Exported constants --------------------------------------------------------*/
131 /** @defgroup SPI_LL_Exported_Constants SPI Exported Constants
132 * @{
135 /** @defgroup SPI_LL_EC_GET_FLAG Get Flags Defines
136 * @brief Flags defines which can be used with LL_SPI_ReadReg function
137 * @{
139 #define LL_SPI_SR_RXNE SPI_SR_RXNE /*!< Rx buffer not empty flag */
140 #define LL_SPI_SR_TXE SPI_SR_TXE /*!< Tx buffer empty flag */
141 #define LL_SPI_SR_BSY SPI_SR_BSY /*!< Busy flag */
142 #define LL_SPI_SR_CRCERR SPI_SR_CRCERR /*!< CRC error flag */
143 #define LL_SPI_SR_MODF SPI_SR_MODF /*!< Mode fault flag */
144 #define LL_SPI_SR_OVR SPI_SR_OVR /*!< Overrun flag */
145 #define LL_SPI_SR_FRE SPI_SR_FRE /*!< TI mode frame format error flag */
147 * @}
150 /** @defgroup SPI_LL_EC_IT IT Defines
151 * @brief IT defines which can be used with LL_SPI_ReadReg and LL_SPI_WriteReg functions
152 * @{
154 #define LL_SPI_CR2_RXNEIE SPI_CR2_RXNEIE /*!< Rx buffer not empty interrupt enable */
155 #define LL_SPI_CR2_TXEIE SPI_CR2_TXEIE /*!< Tx buffer empty interrupt enable */
156 #define LL_SPI_CR2_ERRIE SPI_CR2_ERRIE /*!< Error interrupt enable */
158 * @}
161 /** @defgroup SPI_LL_EC_MODE Operation Mode
162 * @{
164 #define LL_SPI_MODE_MASTER (SPI_CR1_MSTR | SPI_CR1_SSI) /*!< Master configuration */
165 #define LL_SPI_MODE_SLAVE 0x00000000U /*!< Slave configuration */
167 * @}
170 /** @defgroup SPI_LL_EC_PROTOCOL Serial Protocol
171 * @{
173 #define LL_SPI_PROTOCOL_MOTOROLA 0x00000000U /*!< Motorola mode. Used as default value */
174 #define LL_SPI_PROTOCOL_TI (SPI_CR2_FRF) /*!< TI mode */
176 * @}
179 /** @defgroup SPI_LL_EC_PHASE Clock Phase
180 * @{
182 #define LL_SPI_PHASE_1EDGE 0x00000000U /*!< First clock transition is the first data capture edge */
183 #define LL_SPI_PHASE_2EDGE (SPI_CR1_CPHA) /*!< Second clock transition is the first data capture edge */
185 * @}
188 /** @defgroup SPI_LL_EC_POLARITY Clock Polarity
189 * @{
191 #define LL_SPI_POLARITY_LOW 0x00000000U /*!< Clock to 0 when idle */
192 #define LL_SPI_POLARITY_HIGH (SPI_CR1_CPOL) /*!< Clock to 1 when idle */
194 * @}
197 /** @defgroup SPI_LL_EC_BAUDRATEPRESCALER Baud Rate Prescaler
198 * @{
200 #define LL_SPI_BAUDRATEPRESCALER_DIV2 0x00000000U /*!< BaudRate control equal to fPCLK/2 */
201 #define LL_SPI_BAUDRATEPRESCALER_DIV4 (SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/4 */
202 #define LL_SPI_BAUDRATEPRESCALER_DIV8 (SPI_CR1_BR_1) /*!< BaudRate control equal to fPCLK/8 */
203 #define LL_SPI_BAUDRATEPRESCALER_DIV16 (SPI_CR1_BR_1 | SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/16 */
204 #define LL_SPI_BAUDRATEPRESCALER_DIV32 (SPI_CR1_BR_2) /*!< BaudRate control equal to fPCLK/32 */
205 #define LL_SPI_BAUDRATEPRESCALER_DIV64 (SPI_CR1_BR_2 | SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/64 */
206 #define LL_SPI_BAUDRATEPRESCALER_DIV128 (SPI_CR1_BR_2 | SPI_CR1_BR_1) /*!< BaudRate control equal to fPCLK/128 */
207 #define LL_SPI_BAUDRATEPRESCALER_DIV256 (SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/256 */
209 * @}
212 /** @defgroup SPI_LL_EC_BIT_ORDER Transmission Bit Order
213 * @{
215 #define LL_SPI_LSB_FIRST (SPI_CR1_LSBFIRST) /*!< Data is transmitted/received with the LSB first */
216 #define LL_SPI_MSB_FIRST 0x00000000U /*!< Data is transmitted/received with the MSB first */
218 * @}
221 /** @defgroup SPI_LL_EC_TRANSFER_MODE Transfer Mode
222 * @{
224 #define LL_SPI_FULL_DUPLEX 0x00000000U /*!< Full-Duplex mode. Rx and Tx transfer on 2 lines */
225 #define LL_SPI_SIMPLEX_RX (SPI_CR1_RXONLY) /*!< Simplex Rx mode. Rx transfer only on 1 line */
226 #define LL_SPI_HALF_DUPLEX_RX (SPI_CR1_BIDIMODE) /*!< Half-Duplex Rx mode. Rx transfer on 1 line */
227 #define LL_SPI_HALF_DUPLEX_TX (SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE) /*!< Half-Duplex Tx mode. Tx transfer on 1 line */
229 * @}
232 /** @defgroup SPI_LL_EC_NSS_MODE Slave Select Pin Mode
233 * @{
235 #define LL_SPI_NSS_SOFT (SPI_CR1_SSM) /*!< NSS managed internally. NSS pin not used and free */
236 #define LL_SPI_NSS_HARD_INPUT 0x00000000U /*!< NSS pin used in Input. Only used in Master mode */
237 #define LL_SPI_NSS_HARD_OUTPUT (((uint32_t)SPI_CR2_SSOE << 16U)) /*!< NSS pin used in Output. Only used in Slave mode as chip select */
239 * @}
242 /** @defgroup SPI_LL_EC_DATAWIDTH Datawidth
243 * @{
245 #define LL_SPI_DATAWIDTH_4BIT (SPI_CR2_DS_0 | SPI_CR2_DS_1) /*!< Data length for SPI transfer: 4 bits */
246 #define LL_SPI_DATAWIDTH_5BIT (SPI_CR2_DS_2) /*!< Data length for SPI transfer: 5 bits */
247 #define LL_SPI_DATAWIDTH_6BIT (SPI_CR2_DS_2 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 6 bits */
248 #define LL_SPI_DATAWIDTH_7BIT (SPI_CR2_DS_2 | SPI_CR2_DS_1) /*!< Data length for SPI transfer: 7 bits */
249 #define LL_SPI_DATAWIDTH_8BIT (SPI_CR2_DS_2 | SPI_CR2_DS_1 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 8 bits */
250 #define LL_SPI_DATAWIDTH_9BIT (SPI_CR2_DS_3) /*!< Data length for SPI transfer: 9 bits */
251 #define LL_SPI_DATAWIDTH_10BIT (SPI_CR2_DS_3 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 10 bits */
252 #define LL_SPI_DATAWIDTH_11BIT (SPI_CR2_DS_3 | SPI_CR2_DS_1) /*!< Data length for SPI transfer: 11 bits */
253 #define LL_SPI_DATAWIDTH_12BIT (SPI_CR2_DS_3 | SPI_CR2_DS_1 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 12 bits */
254 #define LL_SPI_DATAWIDTH_13BIT (SPI_CR2_DS_3 | SPI_CR2_DS_2) /*!< Data length for SPI transfer: 13 bits */
255 #define LL_SPI_DATAWIDTH_14BIT (SPI_CR2_DS_3 | SPI_CR2_DS_2 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 14 bits */
256 #define LL_SPI_DATAWIDTH_15BIT (SPI_CR2_DS_3 | SPI_CR2_DS_2 | SPI_CR2_DS_1) /*!< Data length for SPI transfer: 15 bits */
257 #define LL_SPI_DATAWIDTH_16BIT (SPI_CR2_DS_3 | SPI_CR2_DS_2 | SPI_CR2_DS_1 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 16 bits */
259 * @}
261 #if defined(USE_FULL_LL_DRIVER)
263 /** @defgroup SPI_LL_EC_CRC_CALCULATION CRC Calculation
264 * @{
266 #define LL_SPI_CRCCALCULATION_DISABLE 0x00000000U /*!< CRC calculation disabled */
267 #define LL_SPI_CRCCALCULATION_ENABLE (SPI_CR1_CRCEN) /*!< CRC calculation enabled */
269 * @}
271 #endif /* USE_FULL_LL_DRIVER */
273 /** @defgroup SPI_LL_EC_CRC_LENGTH CRC Length
274 * @{
276 #define LL_SPI_CRC_8BIT 0x00000000U /*!< 8-bit CRC length */
277 #define LL_SPI_CRC_16BIT (SPI_CR1_CRCL) /*!< 16-bit CRC length */
279 * @}
282 /** @defgroup SPI_LL_EC_RX_FIFO_TH RX FIFO Threshold
283 * @{
285 #define LL_SPI_RX_FIFO_TH_HALF 0x00000000U /*!< RXNE event is generated if FIFO level is greater than or equel to 1/2 (16-bit) */
286 #define LL_SPI_RX_FIFO_TH_QUARTER (SPI_CR2_FRXTH) /*!< RXNE event is generated if FIFO level is greater than or equel to 1/4 (8-bit) */
288 * @}
291 /** @defgroup SPI_LL_EC_RX_FIFO RX FIFO Level
292 * @{
294 #define LL_SPI_RX_FIFO_EMPTY 0x00000000U /*!< FIFO reception empty */
295 #define LL_SPI_RX_FIFO_QUARTER_FULL (SPI_SR_FRLVL_0) /*!< FIFO reception 1/4 */
296 #define LL_SPI_RX_FIFO_HALF_FULL (SPI_SR_FRLVL_1) /*!< FIFO reception 1/2 */
297 #define LL_SPI_RX_FIFO_FULL (SPI_SR_FRLVL_1 | SPI_SR_FRLVL_0) /*!< FIFO reception full */
299 * @}
302 /** @defgroup SPI_LL_EC_TX_FIFO TX FIFO Level
303 * @{
305 #define LL_SPI_TX_FIFO_EMPTY 0x00000000U /*!< FIFO transmission empty */
306 #define LL_SPI_TX_FIFO_QUARTER_FULL (SPI_SR_FTLVL_0) /*!< FIFO transmission 1/4 */
307 #define LL_SPI_TX_FIFO_HALF_FULL (SPI_SR_FTLVL_1) /*!< FIFO transmission 1/2 */
308 #define LL_SPI_TX_FIFO_FULL (SPI_SR_FTLVL_1 | SPI_SR_FTLVL_0) /*!< FIFO transmission full */
310 * @}
313 /** @defgroup SPI_LL_EC_DMA_PARITY DMA Parity
314 * @{
316 #define LL_SPI_DMA_PARITY_EVEN 0x00000000U /*!< Select DMA parity Even */
317 #define LL_SPI_DMA_PARITY_ODD 0x00000001U /*!< Select DMA parity Odd */
320 * @}
324 * @}
327 /* Exported macro ------------------------------------------------------------*/
328 /** @defgroup SPI_LL_Exported_Macros SPI Exported Macros
329 * @{
332 /** @defgroup SPI_LL_EM_WRITE_READ Common Write and read registers Macros
333 * @{
337 * @brief Write a value in SPI register
338 * @param __INSTANCE__ SPI Instance
339 * @param __REG__ Register to be written
340 * @param __VALUE__ Value to be written in the register
341 * @retval None
343 #define LL_SPI_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
346 * @brief Read a value in SPI register
347 * @param __INSTANCE__ SPI Instance
348 * @param __REG__ Register to be read
349 * @retval Register value
351 #define LL_SPI_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
353 * @}
357 * @}
360 /* Exported functions --------------------------------------------------------*/
361 /** @defgroup SPI_LL_Exported_Functions SPI Exported Functions
362 * @{
365 /** @defgroup SPI_LL_EF_Configuration Configuration
366 * @{
370 * @brief Enable SPI peripheral
371 * @rmtoll CR1 SPE LL_SPI_Enable
372 * @param SPIx SPI Instance
373 * @retval None
375 __STATIC_INLINE void LL_SPI_Enable(SPI_TypeDef *SPIx)
377 SET_BIT(SPIx->CR1, SPI_CR1_SPE);
381 * @brief Disable SPI peripheral
382 * @note When disabling the SPI, follow the procedure described in the Reference Manual.
383 * @rmtoll CR1 SPE LL_SPI_Disable
384 * @param SPIx SPI Instance
385 * @retval None
387 __STATIC_INLINE void LL_SPI_Disable(SPI_TypeDef *SPIx)
389 CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE);
393 * @brief Check if SPI peripheral is enabled
394 * @rmtoll CR1 SPE LL_SPI_IsEnabled
395 * @param SPIx SPI Instance
396 * @retval State of bit (1 or 0).
398 __STATIC_INLINE uint32_t LL_SPI_IsEnabled(SPI_TypeDef *SPIx)
400 return (READ_BIT(SPIx->CR1, SPI_CR1_SPE) == (SPI_CR1_SPE));
404 * @brief Set SPI operation mode to Master or Slave
405 * @note This bit should not be changed when communication is ongoing.
406 * @rmtoll CR1 MSTR LL_SPI_SetMode\n
407 * CR1 SSI LL_SPI_SetMode
408 * @param SPIx SPI Instance
409 * @param Mode This parameter can be one of the following values:
410 * @arg @ref LL_SPI_MODE_MASTER
411 * @arg @ref LL_SPI_MODE_SLAVE
412 * @retval None
414 __STATIC_INLINE void LL_SPI_SetMode(SPI_TypeDef *SPIx, uint32_t Mode)
416 MODIFY_REG(SPIx->CR1, SPI_CR1_MSTR | SPI_CR1_SSI, Mode);
420 * @brief Get SPI operation mode (Master or Slave)
421 * @rmtoll CR1 MSTR LL_SPI_GetMode\n
422 * CR1 SSI LL_SPI_GetMode
423 * @param SPIx SPI Instance
424 * @retval Returned value can be one of the following values:
425 * @arg @ref LL_SPI_MODE_MASTER
426 * @arg @ref LL_SPI_MODE_SLAVE
428 __STATIC_INLINE uint32_t LL_SPI_GetMode(SPI_TypeDef *SPIx)
430 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_MSTR | SPI_CR1_SSI));
434 * @brief Set serial protocol used
435 * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
436 * @rmtoll CR2 FRF LL_SPI_SetStandard
437 * @param SPIx SPI Instance
438 * @param Standard This parameter can be one of the following values:
439 * @arg @ref LL_SPI_PROTOCOL_MOTOROLA
440 * @arg @ref LL_SPI_PROTOCOL_TI
441 * @retval None
443 __STATIC_INLINE void LL_SPI_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard)
445 MODIFY_REG(SPIx->CR2, SPI_CR2_FRF, Standard);
449 * @brief Get serial protocol used
450 * @rmtoll CR2 FRF LL_SPI_GetStandard
451 * @param SPIx SPI Instance
452 * @retval Returned value can be one of the following values:
453 * @arg @ref LL_SPI_PROTOCOL_MOTOROLA
454 * @arg @ref LL_SPI_PROTOCOL_TI
456 __STATIC_INLINE uint32_t LL_SPI_GetStandard(SPI_TypeDef *SPIx)
458 return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_FRF));
462 * @brief Set clock phase
463 * @note This bit should not be changed when communication is ongoing.
464 * This bit is not used in SPI TI mode.
465 * @rmtoll CR1 CPHA LL_SPI_SetClockPhase
466 * @param SPIx SPI Instance
467 * @param ClockPhase This parameter can be one of the following values:
468 * @arg @ref LL_SPI_PHASE_1EDGE
469 * @arg @ref LL_SPI_PHASE_2EDGE
470 * @retval None
472 __STATIC_INLINE void LL_SPI_SetClockPhase(SPI_TypeDef *SPIx, uint32_t ClockPhase)
474 MODIFY_REG(SPIx->CR1, SPI_CR1_CPHA, ClockPhase);
478 * @brief Get clock phase
479 * @rmtoll CR1 CPHA LL_SPI_GetClockPhase
480 * @param SPIx SPI Instance
481 * @retval Returned value can be one of the following values:
482 * @arg @ref LL_SPI_PHASE_1EDGE
483 * @arg @ref LL_SPI_PHASE_2EDGE
485 __STATIC_INLINE uint32_t LL_SPI_GetClockPhase(SPI_TypeDef *SPIx)
487 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CPHA));
491 * @brief Set clock polarity
492 * @note This bit should not be changed when communication is ongoing.
493 * This bit is not used in SPI TI mode.
494 * @rmtoll CR1 CPOL LL_SPI_SetClockPolarity
495 * @param SPIx SPI Instance
496 * @param ClockPolarity This parameter can be one of the following values:
497 * @arg @ref LL_SPI_POLARITY_LOW
498 * @arg @ref LL_SPI_POLARITY_HIGH
499 * @retval None
501 __STATIC_INLINE void LL_SPI_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity)
503 MODIFY_REG(SPIx->CR1, SPI_CR1_CPOL, ClockPolarity);
507 * @brief Get clock polarity
508 * @rmtoll CR1 CPOL LL_SPI_GetClockPolarity
509 * @param SPIx SPI Instance
510 * @retval Returned value can be one of the following values:
511 * @arg @ref LL_SPI_POLARITY_LOW
512 * @arg @ref LL_SPI_POLARITY_HIGH
514 __STATIC_INLINE uint32_t LL_SPI_GetClockPolarity(SPI_TypeDef *SPIx)
516 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CPOL));
520 * @brief Set baud rate prescaler
521 * @note These bits should not be changed when communication is ongoing. SPI BaudRate = fPCLK/Prescaler.
522 * @rmtoll CR1 BR LL_SPI_SetBaudRatePrescaler
523 * @param SPIx SPI Instance
524 * @param BaudRate This parameter can be one of the following values:
525 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2
526 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4
527 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8
528 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16
529 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32
530 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64
531 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128
532 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256
533 * @retval None
535 __STATIC_INLINE void LL_SPI_SetBaudRatePrescaler(SPI_TypeDef *SPIx, uint32_t BaudRate)
537 MODIFY_REG(SPIx->CR1, SPI_CR1_BR, BaudRate);
541 * @brief Get baud rate prescaler
542 * @rmtoll CR1 BR LL_SPI_GetBaudRatePrescaler
543 * @param SPIx SPI Instance
544 * @retval Returned value can be one of the following values:
545 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2
546 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4
547 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8
548 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16
549 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32
550 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64
551 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128
552 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256
554 __STATIC_INLINE uint32_t LL_SPI_GetBaudRatePrescaler(SPI_TypeDef *SPIx)
556 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_BR));
560 * @brief Set transfer bit order
561 * @note This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
562 * @rmtoll CR1 LSBFIRST LL_SPI_SetTransferBitOrder
563 * @param SPIx SPI Instance
564 * @param BitOrder This parameter can be one of the following values:
565 * @arg @ref LL_SPI_LSB_FIRST
566 * @arg @ref LL_SPI_MSB_FIRST
567 * @retval None
569 __STATIC_INLINE void LL_SPI_SetTransferBitOrder(SPI_TypeDef *SPIx, uint32_t BitOrder)
571 MODIFY_REG(SPIx->CR1, SPI_CR1_LSBFIRST, BitOrder);
575 * @brief Get transfer bit order
576 * @rmtoll CR1 LSBFIRST LL_SPI_GetTransferBitOrder
577 * @param SPIx SPI Instance
578 * @retval Returned value can be one of the following values:
579 * @arg @ref LL_SPI_LSB_FIRST
580 * @arg @ref LL_SPI_MSB_FIRST
582 __STATIC_INLINE uint32_t LL_SPI_GetTransferBitOrder(SPI_TypeDef *SPIx)
584 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_LSBFIRST));
588 * @brief Set transfer direction mode
589 * @note For Half-Duplex mode, Rx Direction is set by default.
590 * In master mode, the MOSI pin is used and in slave mode, the MISO pin is used for Half-Duplex.
591 * @rmtoll CR1 RXONLY LL_SPI_SetTransferDirection\n
592 * CR1 BIDIMODE LL_SPI_SetTransferDirection\n
593 * CR1 BIDIOE LL_SPI_SetTransferDirection
594 * @param SPIx SPI Instance
595 * @param TransferDirection This parameter can be one of the following values:
596 * @arg @ref LL_SPI_FULL_DUPLEX
597 * @arg @ref LL_SPI_SIMPLEX_RX
598 * @arg @ref LL_SPI_HALF_DUPLEX_RX
599 * @arg @ref LL_SPI_HALF_DUPLEX_TX
600 * @retval None
602 __STATIC_INLINE void LL_SPI_SetTransferDirection(SPI_TypeDef *SPIx, uint32_t TransferDirection)
604 MODIFY_REG(SPIx->CR1, SPI_CR1_RXONLY | SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE, TransferDirection);
608 * @brief Get transfer direction mode
609 * @rmtoll CR1 RXONLY LL_SPI_GetTransferDirection\n
610 * CR1 BIDIMODE LL_SPI_GetTransferDirection\n
611 * CR1 BIDIOE LL_SPI_GetTransferDirection
612 * @param SPIx SPI Instance
613 * @retval Returned value can be one of the following values:
614 * @arg @ref LL_SPI_FULL_DUPLEX
615 * @arg @ref LL_SPI_SIMPLEX_RX
616 * @arg @ref LL_SPI_HALF_DUPLEX_RX
617 * @arg @ref LL_SPI_HALF_DUPLEX_TX
619 __STATIC_INLINE uint32_t LL_SPI_GetTransferDirection(SPI_TypeDef *SPIx)
621 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_RXONLY | SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE));
625 * @brief Set frame data width
626 * @rmtoll CR2 DS LL_SPI_SetDataWidth
627 * @param SPIx SPI Instance
628 * @param DataWidth This parameter can be one of the following values:
629 * @arg @ref LL_SPI_DATAWIDTH_4BIT
630 * @arg @ref LL_SPI_DATAWIDTH_5BIT
631 * @arg @ref LL_SPI_DATAWIDTH_6BIT
632 * @arg @ref LL_SPI_DATAWIDTH_7BIT
633 * @arg @ref LL_SPI_DATAWIDTH_8BIT
634 * @arg @ref LL_SPI_DATAWIDTH_9BIT
635 * @arg @ref LL_SPI_DATAWIDTH_10BIT
636 * @arg @ref LL_SPI_DATAWIDTH_11BIT
637 * @arg @ref LL_SPI_DATAWIDTH_12BIT
638 * @arg @ref LL_SPI_DATAWIDTH_13BIT
639 * @arg @ref LL_SPI_DATAWIDTH_14BIT
640 * @arg @ref LL_SPI_DATAWIDTH_15BIT
641 * @arg @ref LL_SPI_DATAWIDTH_16BIT
642 * @retval None
644 __STATIC_INLINE void LL_SPI_SetDataWidth(SPI_TypeDef *SPIx, uint32_t DataWidth)
646 MODIFY_REG(SPIx->CR2, SPI_CR2_DS, DataWidth);
650 * @brief Get frame data width
651 * @rmtoll CR2 DS LL_SPI_GetDataWidth
652 * @param SPIx SPI Instance
653 * @retval Returned value can be one of the following values:
654 * @arg @ref LL_SPI_DATAWIDTH_4BIT
655 * @arg @ref LL_SPI_DATAWIDTH_5BIT
656 * @arg @ref LL_SPI_DATAWIDTH_6BIT
657 * @arg @ref LL_SPI_DATAWIDTH_7BIT
658 * @arg @ref LL_SPI_DATAWIDTH_8BIT
659 * @arg @ref LL_SPI_DATAWIDTH_9BIT
660 * @arg @ref LL_SPI_DATAWIDTH_10BIT
661 * @arg @ref LL_SPI_DATAWIDTH_11BIT
662 * @arg @ref LL_SPI_DATAWIDTH_12BIT
663 * @arg @ref LL_SPI_DATAWIDTH_13BIT
664 * @arg @ref LL_SPI_DATAWIDTH_14BIT
665 * @arg @ref LL_SPI_DATAWIDTH_15BIT
666 * @arg @ref LL_SPI_DATAWIDTH_16BIT
668 __STATIC_INLINE uint32_t LL_SPI_GetDataWidth(SPI_TypeDef *SPIx)
670 return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_DS));
674 * @brief Set threshold of RXFIFO that triggers an RXNE event
675 * @rmtoll CR2 FRXTH LL_SPI_SetRxFIFOThreshold
676 * @param SPIx SPI Instance
677 * @param Threshold This parameter can be one of the following values:
678 * @arg @ref LL_SPI_RX_FIFO_TH_HALF
679 * @arg @ref LL_SPI_RX_FIFO_TH_QUARTER
680 * @retval None
682 __STATIC_INLINE void LL_SPI_SetRxFIFOThreshold(SPI_TypeDef *SPIx, uint32_t Threshold)
684 MODIFY_REG(SPIx->CR2, SPI_CR2_FRXTH, Threshold);
688 * @brief Get threshold of RXFIFO that triggers an RXNE event
689 * @rmtoll CR2 FRXTH LL_SPI_GetRxFIFOThreshold
690 * @param SPIx SPI Instance
691 * @retval Returned value can be one of the following values:
692 * @arg @ref LL_SPI_RX_FIFO_TH_HALF
693 * @arg @ref LL_SPI_RX_FIFO_TH_QUARTER
695 __STATIC_INLINE uint32_t LL_SPI_GetRxFIFOThreshold(SPI_TypeDef *SPIx)
697 return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_FRXTH));
701 * @}
704 /** @defgroup SPI_LL_EF_CRC_Management CRC Management
705 * @{
709 * @brief Enable CRC
710 * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
711 * @rmtoll CR1 CRCEN LL_SPI_EnableCRC
712 * @param SPIx SPI Instance
713 * @retval None
715 __STATIC_INLINE void LL_SPI_EnableCRC(SPI_TypeDef *SPIx)
717 SET_BIT(SPIx->CR1, SPI_CR1_CRCEN);
721 * @brief Disable CRC
722 * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
723 * @rmtoll CR1 CRCEN LL_SPI_DisableCRC
724 * @param SPIx SPI Instance
725 * @retval None
727 __STATIC_INLINE void LL_SPI_DisableCRC(SPI_TypeDef *SPIx)
729 CLEAR_BIT(SPIx->CR1, SPI_CR1_CRCEN);
733 * @brief Check if CRC is enabled
734 * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
735 * @rmtoll CR1 CRCEN LL_SPI_IsEnabledCRC
736 * @param SPIx SPI Instance
737 * @retval State of bit (1 or 0).
739 __STATIC_INLINE uint32_t LL_SPI_IsEnabledCRC(SPI_TypeDef *SPIx)
741 return (READ_BIT(SPIx->CR1, SPI_CR1_CRCEN) == (SPI_CR1_CRCEN));
745 * @brief Set CRC Length
746 * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
747 * @rmtoll CR1 CRCL LL_SPI_SetCRCWidth
748 * @param SPIx SPI Instance
749 * @param CRCLength This parameter can be one of the following values:
750 * @arg @ref LL_SPI_CRC_8BIT
751 * @arg @ref LL_SPI_CRC_16BIT
752 * @retval None
754 __STATIC_INLINE void LL_SPI_SetCRCWidth(SPI_TypeDef *SPIx, uint32_t CRCLength)
756 MODIFY_REG(SPIx->CR1, SPI_CR1_CRCL, CRCLength);
760 * @brief Get CRC Length
761 * @rmtoll CR1 CRCL LL_SPI_GetCRCWidth
762 * @param SPIx SPI Instance
763 * @retval Returned value can be one of the following values:
764 * @arg @ref LL_SPI_CRC_8BIT
765 * @arg @ref LL_SPI_CRC_16BIT
767 __STATIC_INLINE uint32_t LL_SPI_GetCRCWidth(SPI_TypeDef *SPIx)
769 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CRCL));
773 * @brief Set CRCNext to transfer CRC on the line
774 * @note This bit has to be written as soon as the last data is written in the SPIx_DR register.
775 * @rmtoll CR1 CRCNEXT LL_SPI_SetCRCNext
776 * @param SPIx SPI Instance
777 * @retval None
779 __STATIC_INLINE void LL_SPI_SetCRCNext(SPI_TypeDef *SPIx)
781 SET_BIT(SPIx->CR1, SPI_CR1_CRCNEXT);
785 * @brief Set polynomial for CRC calculation
786 * @rmtoll CRCPR CRCPOLY LL_SPI_SetCRCPolynomial
787 * @param SPIx SPI Instance
788 * @param CRCPoly This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFFFF
789 * @retval None
791 __STATIC_INLINE void LL_SPI_SetCRCPolynomial(SPI_TypeDef *SPIx, uint32_t CRCPoly)
793 WRITE_REG(SPIx->CRCPR, (uint16_t)CRCPoly);
797 * @brief Get polynomial for CRC calculation
798 * @rmtoll CRCPR CRCPOLY LL_SPI_GetCRCPolynomial
799 * @param SPIx SPI Instance
800 * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF
802 __STATIC_INLINE uint32_t LL_SPI_GetCRCPolynomial(SPI_TypeDef *SPIx)
804 return (uint32_t)(READ_REG(SPIx->CRCPR));
808 * @brief Get Rx CRC
809 * @rmtoll RXCRCR RXCRC LL_SPI_GetRxCRC
810 * @param SPIx SPI Instance
811 * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF
813 __STATIC_INLINE uint32_t LL_SPI_GetRxCRC(SPI_TypeDef *SPIx)
815 return (uint32_t)(READ_REG(SPIx->RXCRCR));
819 * @brief Get Tx CRC
820 * @rmtoll TXCRCR TXCRC LL_SPI_GetTxCRC
821 * @param SPIx SPI Instance
822 * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF
824 __STATIC_INLINE uint32_t LL_SPI_GetTxCRC(SPI_TypeDef *SPIx)
826 return (uint32_t)(READ_REG(SPIx->TXCRCR));
830 * @}
833 /** @defgroup SPI_LL_EF_NSS_Management Slave Select Pin Management
834 * @{
838 * @brief Set NSS mode
839 * @note LL_SPI_NSS_SOFT Mode is not used in SPI TI mode.
840 * @rmtoll CR1 SSM LL_SPI_SetNSSMode\n
841 * @rmtoll CR2 SSOE LL_SPI_SetNSSMode
842 * @param SPIx SPI Instance
843 * @param NSS This parameter can be one of the following values:
844 * @arg @ref LL_SPI_NSS_SOFT
845 * @arg @ref LL_SPI_NSS_HARD_INPUT
846 * @arg @ref LL_SPI_NSS_HARD_OUTPUT
847 * @retval None
849 __STATIC_INLINE void LL_SPI_SetNSSMode(SPI_TypeDef *SPIx, uint32_t NSS)
851 MODIFY_REG(SPIx->CR1, SPI_CR1_SSM, NSS);
852 MODIFY_REG(SPIx->CR2, SPI_CR2_SSOE, ((uint32_t)(NSS >> 16U)));
856 * @brief Get NSS mode
857 * @rmtoll CR1 SSM LL_SPI_GetNSSMode\n
858 * @rmtoll CR2 SSOE LL_SPI_GetNSSMode
859 * @param SPIx SPI Instance
860 * @retval Returned value can be one of the following values:
861 * @arg @ref LL_SPI_NSS_SOFT
862 * @arg @ref LL_SPI_NSS_HARD_INPUT
863 * @arg @ref LL_SPI_NSS_HARD_OUTPUT
865 __STATIC_INLINE uint32_t LL_SPI_GetNSSMode(SPI_TypeDef *SPIx)
867 register uint32_t Ssm = (READ_BIT(SPIx->CR1, SPI_CR1_SSM));
868 register uint32_t Ssoe = (READ_BIT(SPIx->CR2, SPI_CR2_SSOE) << 16U);
869 return (Ssm | Ssoe);
873 * @brief Enable NSS pulse management
874 * @note This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
875 * @rmtoll CR2 NSSP LL_SPI_EnableNSSPulseMgt
876 * @param SPIx SPI Instance
877 * @retval None
879 __STATIC_INLINE void LL_SPI_EnableNSSPulseMgt(SPI_TypeDef *SPIx)
881 SET_BIT(SPIx->CR2, SPI_CR2_NSSP);
885 * @brief Disable NSS pulse management
886 * @note This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
887 * @rmtoll CR2 NSSP LL_SPI_DisableNSSPulseMgt
888 * @param SPIx SPI Instance
889 * @retval None
891 __STATIC_INLINE void LL_SPI_DisableNSSPulseMgt(SPI_TypeDef *SPIx)
893 CLEAR_BIT(SPIx->CR2, SPI_CR2_NSSP);
897 * @brief Check if NSS pulse is enabled
898 * @note This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
899 * @rmtoll CR2 NSSP LL_SPI_IsEnabledNSSPulse
900 * @param SPIx SPI Instance
901 * @retval State of bit (1 or 0).
903 __STATIC_INLINE uint32_t LL_SPI_IsEnabledNSSPulse(SPI_TypeDef *SPIx)
905 return (READ_BIT(SPIx->CR2, SPI_CR2_NSSP) == (SPI_CR2_NSSP));
909 * @}
912 /** @defgroup SPI_LL_EF_FLAG_Management FLAG Management
913 * @{
917 * @brief Check if Rx buffer is not empty
918 * @rmtoll SR RXNE LL_SPI_IsActiveFlag_RXNE
919 * @param SPIx SPI Instance
920 * @retval State of bit (1 or 0).
922 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_RXNE(SPI_TypeDef *SPIx)
924 return (READ_BIT(SPIx->SR, SPI_SR_RXNE) == (SPI_SR_RXNE));
928 * @brief Check if Tx buffer is empty
929 * @rmtoll SR TXE LL_SPI_IsActiveFlag_TXE
930 * @param SPIx SPI Instance
931 * @retval State of bit (1 or 0).
933 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_TXE(SPI_TypeDef *SPIx)
935 return (READ_BIT(SPIx->SR, SPI_SR_TXE) == (SPI_SR_TXE));
939 * @brief Get CRC error flag
940 * @rmtoll SR CRCERR LL_SPI_IsActiveFlag_CRCERR
941 * @param SPIx SPI Instance
942 * @retval State of bit (1 or 0).
944 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_CRCERR(SPI_TypeDef *SPIx)
946 return (READ_BIT(SPIx->SR, SPI_SR_CRCERR) == (SPI_SR_CRCERR));
950 * @brief Get mode fault error flag
951 * @rmtoll SR MODF LL_SPI_IsActiveFlag_MODF
952 * @param SPIx SPI Instance
953 * @retval State of bit (1 or 0).
955 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_MODF(SPI_TypeDef *SPIx)
957 return (READ_BIT(SPIx->SR, SPI_SR_MODF) == (SPI_SR_MODF));
961 * @brief Get overrun error flag
962 * @rmtoll SR OVR LL_SPI_IsActiveFlag_OVR
963 * @param SPIx SPI Instance
964 * @retval State of bit (1 or 0).
966 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_OVR(SPI_TypeDef *SPIx)
968 return (READ_BIT(SPIx->SR, SPI_SR_OVR) == (SPI_SR_OVR));
972 * @brief Get busy flag
973 * @note The BSY flag is cleared under any one of the following conditions:
974 * -When the SPI is correctly disabled
975 * -When a fault is detected in Master mode (MODF bit set to 1)
976 * -In Master mode, when it finishes a data transmission and no new data is ready to be
977 * sent
978 * -In Slave mode, when the BSY flag is set to '0' for at least one SPI clock cycle between
979 * each data transfer.
980 * @rmtoll SR BSY LL_SPI_IsActiveFlag_BSY
981 * @param SPIx SPI Instance
982 * @retval State of bit (1 or 0).
984 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_BSY(SPI_TypeDef *SPIx)
986 return (READ_BIT(SPIx->SR, SPI_SR_BSY) == (SPI_SR_BSY));
990 * @brief Get frame format error flag
991 * @rmtoll SR FRE LL_SPI_IsActiveFlag_FRE
992 * @param SPIx SPI Instance
993 * @retval State of bit (1 or 0).
995 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_FRE(SPI_TypeDef *SPIx)
997 return (READ_BIT(SPIx->SR, SPI_SR_FRE) == (SPI_SR_FRE));
1001 * @brief Get FIFO reception Level
1002 * @rmtoll SR FRLVL LL_SPI_GetRxFIFOLevel
1003 * @param SPIx SPI Instance
1004 * @retval Returned value can be one of the following values:
1005 * @arg @ref LL_SPI_RX_FIFO_EMPTY
1006 * @arg @ref LL_SPI_RX_FIFO_QUARTER_FULL
1007 * @arg @ref LL_SPI_RX_FIFO_HALF_FULL
1008 * @arg @ref LL_SPI_RX_FIFO_FULL
1010 __STATIC_INLINE uint32_t LL_SPI_GetRxFIFOLevel(SPI_TypeDef *SPIx)
1012 return (uint32_t)(READ_BIT(SPIx->SR, SPI_SR_FRLVL));
1016 * @brief Get FIFO Transmission Level
1017 * @rmtoll SR FTLVL LL_SPI_GetTxFIFOLevel
1018 * @param SPIx SPI Instance
1019 * @retval Returned value can be one of the following values:
1020 * @arg @ref LL_SPI_TX_FIFO_EMPTY
1021 * @arg @ref LL_SPI_TX_FIFO_QUARTER_FULL
1022 * @arg @ref LL_SPI_TX_FIFO_HALF_FULL
1023 * @arg @ref LL_SPI_TX_FIFO_FULL
1025 __STATIC_INLINE uint32_t LL_SPI_GetTxFIFOLevel(SPI_TypeDef *SPIx)
1027 return (uint32_t)(READ_BIT(SPIx->SR, SPI_SR_FTLVL));
1031 * @brief Clear CRC error flag
1032 * @rmtoll SR CRCERR LL_SPI_ClearFlag_CRCERR
1033 * @param SPIx SPI Instance
1034 * @retval None
1036 __STATIC_INLINE void LL_SPI_ClearFlag_CRCERR(SPI_TypeDef *SPIx)
1038 CLEAR_BIT(SPIx->SR, SPI_SR_CRCERR);
1042 * @brief Clear mode fault error flag
1043 * @note Clearing this flag is done by a read access to the SPIx_SR
1044 * register followed by a write access to the SPIx_CR1 register
1045 * @rmtoll SR MODF LL_SPI_ClearFlag_MODF
1046 * @param SPIx SPI Instance
1047 * @retval None
1049 __STATIC_INLINE void LL_SPI_ClearFlag_MODF(SPI_TypeDef *SPIx)
1051 __IO uint32_t tmpreg;
1052 tmpreg = SPIx->SR;
1053 (void) tmpreg;
1054 tmpreg = CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE);
1055 (void) tmpreg;
1059 * @brief Clear overrun error flag
1060 * @note Clearing this flag is done by a read access to the SPIx_DR
1061 * register followed by a read access to the SPIx_SR register
1062 * @rmtoll SR OVR LL_SPI_ClearFlag_OVR
1063 * @param SPIx SPI Instance
1064 * @retval None
1066 __STATIC_INLINE void LL_SPI_ClearFlag_OVR(SPI_TypeDef *SPIx)
1068 __IO uint32_t tmpreg;
1069 tmpreg = SPIx->DR;
1070 (void) tmpreg;
1071 tmpreg = SPIx->SR;
1072 (void) tmpreg;
1076 * @brief Clear frame format error flag
1077 * @note Clearing this flag is done by reading SPIx_SR register
1078 * @rmtoll SR FRE LL_SPI_ClearFlag_FRE
1079 * @param SPIx SPI Instance
1080 * @retval None
1082 __STATIC_INLINE void LL_SPI_ClearFlag_FRE(SPI_TypeDef *SPIx)
1084 __IO uint32_t tmpreg;
1085 tmpreg = SPIx->SR;
1086 (void) tmpreg;
1090 * @}
1093 /** @defgroup SPI_LL_EF_IT_Management Interrupt Management
1094 * @{
1098 * @brief Enable error interrupt
1099 * @note This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode).
1100 * @rmtoll CR2 ERRIE LL_SPI_EnableIT_ERR
1101 * @param SPIx SPI Instance
1102 * @retval None
1104 __STATIC_INLINE void LL_SPI_EnableIT_ERR(SPI_TypeDef *SPIx)
1106 SET_BIT(SPIx->CR2, SPI_CR2_ERRIE);
1110 * @brief Enable Rx buffer not empty interrupt
1111 * @rmtoll CR2 RXNEIE LL_SPI_EnableIT_RXNE
1112 * @param SPIx SPI Instance
1113 * @retval None
1115 __STATIC_INLINE void LL_SPI_EnableIT_RXNE(SPI_TypeDef *SPIx)
1117 SET_BIT(SPIx->CR2, SPI_CR2_RXNEIE);
1121 * @brief Enable Tx buffer empty interrupt
1122 * @rmtoll CR2 TXEIE LL_SPI_EnableIT_TXE
1123 * @param SPIx SPI Instance
1124 * @retval None
1126 __STATIC_INLINE void LL_SPI_EnableIT_TXE(SPI_TypeDef *SPIx)
1128 SET_BIT(SPIx->CR2, SPI_CR2_TXEIE);
1132 * @brief Disable error interrupt
1133 * @note This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode).
1134 * @rmtoll CR2 ERRIE LL_SPI_DisableIT_ERR
1135 * @param SPIx SPI Instance
1136 * @retval None
1138 __STATIC_INLINE void LL_SPI_DisableIT_ERR(SPI_TypeDef *SPIx)
1140 CLEAR_BIT(SPIx->CR2, SPI_CR2_ERRIE);
1144 * @brief Disable Rx buffer not empty interrupt
1145 * @rmtoll CR2 RXNEIE LL_SPI_DisableIT_RXNE
1146 * @param SPIx SPI Instance
1147 * @retval None
1149 __STATIC_INLINE void LL_SPI_DisableIT_RXNE(SPI_TypeDef *SPIx)
1151 CLEAR_BIT(SPIx->CR2, SPI_CR2_RXNEIE);
1155 * @brief Disable Tx buffer empty interrupt
1156 * @rmtoll CR2 TXEIE LL_SPI_DisableIT_TXE
1157 * @param SPIx SPI Instance
1158 * @retval None
1160 __STATIC_INLINE void LL_SPI_DisableIT_TXE(SPI_TypeDef *SPIx)
1162 CLEAR_BIT(SPIx->CR2, SPI_CR2_TXEIE);
1166 * @brief Check if error interrupt is enabled
1167 * @rmtoll CR2 ERRIE LL_SPI_IsEnabledIT_ERR
1168 * @param SPIx SPI Instance
1169 * @retval State of bit (1 or 0).
1171 __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_ERR(SPI_TypeDef *SPIx)
1173 return (READ_BIT(SPIx->CR2, SPI_CR2_ERRIE) == (SPI_CR2_ERRIE));
1177 * @brief Check if Rx buffer not empty interrupt is enabled
1178 * @rmtoll CR2 RXNEIE LL_SPI_IsEnabledIT_RXNE
1179 * @param SPIx SPI Instance
1180 * @retval State of bit (1 or 0).
1182 __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_RXNE(SPI_TypeDef *SPIx)
1184 return (READ_BIT(SPIx->CR2, SPI_CR2_RXNEIE) == (SPI_CR2_RXNEIE));
1188 * @brief Check if Tx buffer empty interrupt
1189 * @rmtoll CR2 TXEIE LL_SPI_IsEnabledIT_TXE
1190 * @param SPIx SPI Instance
1191 * @retval State of bit (1 or 0).
1193 __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_TXE(SPI_TypeDef *SPIx)
1195 return (READ_BIT(SPIx->CR2, SPI_CR2_TXEIE) == (SPI_CR2_TXEIE));
1199 * @}
1202 /** @defgroup SPI_LL_EF_DMA_Management DMA Management
1203 * @{
1207 * @brief Enable DMA Rx
1208 * @rmtoll CR2 RXDMAEN LL_SPI_EnableDMAReq_RX
1209 * @param SPIx SPI Instance
1210 * @retval None
1212 __STATIC_INLINE void LL_SPI_EnableDMAReq_RX(SPI_TypeDef *SPIx)
1214 SET_BIT(SPIx->CR2, SPI_CR2_RXDMAEN);
1218 * @brief Disable DMA Rx
1219 * @rmtoll CR2 RXDMAEN LL_SPI_DisableDMAReq_RX
1220 * @param SPIx SPI Instance
1221 * @retval None
1223 __STATIC_INLINE void LL_SPI_DisableDMAReq_RX(SPI_TypeDef *SPIx)
1225 CLEAR_BIT(SPIx->CR2, SPI_CR2_RXDMAEN);
1229 * @brief Check if DMA Rx is enabled
1230 * @rmtoll CR2 RXDMAEN LL_SPI_IsEnabledDMAReq_RX
1231 * @param SPIx SPI Instance
1232 * @retval State of bit (1 or 0).
1234 __STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx)
1236 return (READ_BIT(SPIx->CR2, SPI_CR2_RXDMAEN) == (SPI_CR2_RXDMAEN));
1240 * @brief Enable DMA Tx
1241 * @rmtoll CR2 TXDMAEN LL_SPI_EnableDMAReq_TX
1242 * @param SPIx SPI Instance
1243 * @retval None
1245 __STATIC_INLINE void LL_SPI_EnableDMAReq_TX(SPI_TypeDef *SPIx)
1247 SET_BIT(SPIx->CR2, SPI_CR2_TXDMAEN);
1251 * @brief Disable DMA Tx
1252 * @rmtoll CR2 TXDMAEN LL_SPI_DisableDMAReq_TX
1253 * @param SPIx SPI Instance
1254 * @retval None
1256 __STATIC_INLINE void LL_SPI_DisableDMAReq_TX(SPI_TypeDef *SPIx)
1258 CLEAR_BIT(SPIx->CR2, SPI_CR2_TXDMAEN);
1262 * @brief Check if DMA Tx is enabled
1263 * @rmtoll CR2 TXDMAEN LL_SPI_IsEnabledDMAReq_TX
1264 * @param SPIx SPI Instance
1265 * @retval State of bit (1 or 0).
1267 __STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx)
1269 return (READ_BIT(SPIx->CR2, SPI_CR2_TXDMAEN) == (SPI_CR2_TXDMAEN));
1273 * @brief Set parity of Last DMA reception
1274 * @rmtoll CR2 LDMARX LL_SPI_SetDMAParity_RX
1275 * @param SPIx SPI Instance
1276 * @param Parity This parameter can be one of the following values:
1277 * @arg @ref LL_SPI_DMA_PARITY_ODD
1278 * @arg @ref LL_SPI_DMA_PARITY_EVEN
1279 * @retval None
1281 __STATIC_INLINE void LL_SPI_SetDMAParity_RX(SPI_TypeDef *SPIx, uint32_t Parity)
1283 MODIFY_REG(SPIx->CR2, SPI_CR2_LDMARX, (Parity << SPI_CR2_LDMARX_Pos));
1287 * @brief Get parity configuration for Last DMA reception
1288 * @rmtoll CR2 LDMARX LL_SPI_GetDMAParity_RX
1289 * @param SPIx SPI Instance
1290 * @retval Returned value can be one of the following values:
1291 * @arg @ref LL_SPI_DMA_PARITY_ODD
1292 * @arg @ref LL_SPI_DMA_PARITY_EVEN
1294 __STATIC_INLINE uint32_t LL_SPI_GetDMAParity_RX(SPI_TypeDef *SPIx)
1296 return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_LDMARX) >> SPI_CR2_LDMARX_Pos);
1300 * @brief Set parity of Last DMA transmission
1301 * @rmtoll CR2 LDMATX LL_SPI_SetDMAParity_TX
1302 * @param SPIx SPI Instance
1303 * @param Parity This parameter can be one of the following values:
1304 * @arg @ref LL_SPI_DMA_PARITY_ODD
1305 * @arg @ref LL_SPI_DMA_PARITY_EVEN
1306 * @retval None
1308 __STATIC_INLINE void LL_SPI_SetDMAParity_TX(SPI_TypeDef *SPIx, uint32_t Parity)
1310 MODIFY_REG(SPIx->CR2, SPI_CR2_LDMATX, (Parity << SPI_CR2_LDMATX_Pos));
1314 * @brief Get parity configuration for Last DMA transmission
1315 * @rmtoll CR2 LDMATX LL_SPI_GetDMAParity_TX
1316 * @param SPIx SPI Instance
1317 * @retval Returned value can be one of the following values:
1318 * @arg @ref LL_SPI_DMA_PARITY_ODD
1319 * @arg @ref LL_SPI_DMA_PARITY_EVEN
1321 __STATIC_INLINE uint32_t LL_SPI_GetDMAParity_TX(SPI_TypeDef *SPIx)
1323 return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_LDMATX) >> SPI_CR2_LDMATX_Pos);
1327 * @brief Get the data register address used for DMA transfer
1328 * @rmtoll DR DR LL_SPI_DMA_GetRegAddr
1329 * @param SPIx SPI Instance
1330 * @retval Address of data register
1332 __STATIC_INLINE uint32_t LL_SPI_DMA_GetRegAddr(SPI_TypeDef *SPIx)
1334 return (uint32_t) & (SPIx->DR);
1338 * @}
1341 /** @defgroup SPI_LL_EF_DATA_Management DATA Management
1342 * @{
1346 * @brief Read 8-Bits in the data register
1347 * @rmtoll DR DR LL_SPI_ReceiveData8
1348 * @param SPIx SPI Instance
1349 * @retval RxData Value between Min_Data=0x00 and Max_Data=0xFF
1351 __STATIC_INLINE uint8_t LL_SPI_ReceiveData8(SPI_TypeDef *SPIx)
1353 return (uint8_t)(READ_REG(SPIx->DR));
1357 * @brief Read 16-Bits in the data register
1358 * @rmtoll DR DR LL_SPI_ReceiveData16
1359 * @param SPIx SPI Instance
1360 * @retval RxData Value between Min_Data=0x00 and Max_Data=0xFFFF
1362 __STATIC_INLINE uint16_t LL_SPI_ReceiveData16(SPI_TypeDef *SPIx)
1364 return (uint16_t)(READ_REG(SPIx->DR));
1368 * @brief Write 8-Bits in the data register
1369 * @rmtoll DR DR LL_SPI_TransmitData8
1370 * @param SPIx SPI Instance
1371 * @param TxData Value between Min_Data=0x00 and Max_Data=0xFF
1372 * @retval None
1374 __STATIC_INLINE void LL_SPI_TransmitData8(SPI_TypeDef *SPIx, uint8_t TxData)
1376 *((__IO uint8_t *)&SPIx->DR) = TxData;
1380 * @brief Write 16-Bits in the data register
1381 * @rmtoll DR DR LL_SPI_TransmitData16
1382 * @param SPIx SPI Instance
1383 * @param TxData Value between Min_Data=0x00 and Max_Data=0xFFFF
1384 * @retval None
1386 __STATIC_INLINE void LL_SPI_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData)
1388 *((__IO uint16_t *)&SPIx->DR) = TxData;
1392 * @}
1394 #if defined(USE_FULL_LL_DRIVER)
1395 /** @defgroup SPI_LL_EF_Init Initialization and de-initialization functions
1396 * @{
1399 ErrorStatus LL_SPI_DeInit(SPI_TypeDef *SPIx);
1400 ErrorStatus LL_SPI_Init(SPI_TypeDef *SPIx, LL_SPI_InitTypeDef *SPI_InitStruct);
1401 void LL_SPI_StructInit(LL_SPI_InitTypeDef *SPI_InitStruct);
1404 * @}
1406 #endif /* USE_FULL_LL_DRIVER */
1408 * @}
1412 * @}
1415 #if defined(SPI_I2S_SUPPORT)
1416 /** @defgroup I2S_LL I2S
1417 * @{
1420 /* Private variables ---------------------------------------------------------*/
1421 /* Private constants ---------------------------------------------------------*/
1422 /* Private macros ------------------------------------------------------------*/
1424 /* Exported types ------------------------------------------------------------*/
1425 #if defined(USE_FULL_LL_DRIVER)
1426 /** @defgroup I2S_LL_ES_INIT I2S Exported Init structure
1427 * @{
1431 * @brief I2S Init structure definition
1434 typedef struct
1436 uint32_t Mode; /*!< Specifies the I2S operating mode.
1437 This parameter can be a value of @ref I2S_LL_EC_MODE
1439 This feature can be modified afterwards using unitary function @ref LL_I2S_SetTransferMode().*/
1441 uint32_t Standard; /*!< Specifies the standard used for the I2S communication.
1442 This parameter can be a value of @ref I2S_LL_EC_STANDARD
1444 This feature can be modified afterwards using unitary function @ref LL_I2S_SetStandard().*/
1447 uint32_t DataFormat; /*!< Specifies the data format for the I2S communication.
1448 This parameter can be a value of @ref I2S_LL_EC_DATA_FORMAT
1450 This feature can be modified afterwards using unitary function @ref LL_I2S_SetDataFormat().*/
1453 uint32_t MCLKOutput; /*!< Specifies whether the I2S MCLK output is enabled or not.
1454 This parameter can be a value of @ref I2S_LL_EC_MCLK_OUTPUT
1456 This feature can be modified afterwards using unitary functions @ref LL_I2S_EnableMasterClock() or @ref LL_I2S_DisableMasterClock.*/
1459 uint32_t AudioFreq; /*!< Specifies the frequency selected for the I2S communication.
1460 This parameter can be a value of @ref I2S_LL_EC_AUDIO_FREQ
1462 Audio Frequency can be modified afterwards using Reference manual formulas to calculate Prescaler Linear, Parity
1463 and unitary functions @ref LL_I2S_SetPrescalerLinear() and @ref LL_I2S_SetPrescalerParity() to set it.*/
1466 uint32_t ClockPolarity; /*!< Specifies the idle state of the I2S clock.
1467 This parameter can be a value of @ref I2S_LL_EC_POLARITY
1469 This feature can be modified afterwards using unitary function @ref LL_I2S_SetClockPolarity().*/
1471 } LL_I2S_InitTypeDef;
1474 * @}
1476 #endif /*USE_FULL_LL_DRIVER*/
1478 /* Exported constants --------------------------------------------------------*/
1479 /** @defgroup I2S_LL_Exported_Constants I2S Exported Constants
1480 * @{
1483 /** @defgroup I2S_LL_EC_GET_FLAG Get Flags Defines
1484 * @brief Flags defines which can be used with LL_I2S_ReadReg function
1485 * @{
1487 #define LL_I2S_SR_RXNE LL_SPI_SR_RXNE /*!< Rx buffer not empty flag */
1488 #define LL_I2S_SR_TXE LL_SPI_SR_TXE /*!< Tx buffer empty flag */
1489 #define LL_I2S_SR_BSY LL_SPI_SR_BSY /*!< Busy flag */
1490 #define LL_I2S_SR_UDR SPI_SR_UDR /*!< Underrun flag */
1491 #define LL_I2S_SR_OVR LL_SPI_SR_OVR /*!< Overrun flag */
1492 #define LL_I2S_SR_FRE LL_SPI_SR_FRE /*!< TI mode frame format error flag */
1494 * @}
1497 /** @defgroup SPI_LL_EC_IT IT Defines
1498 * @brief IT defines which can be used with LL_SPI_ReadReg and LL_SPI_WriteReg functions
1499 * @{
1501 #define LL_I2S_CR2_RXNEIE LL_SPI_CR2_RXNEIE /*!< Rx buffer not empty interrupt enable */
1502 #define LL_I2S_CR2_TXEIE LL_SPI_CR2_TXEIE /*!< Tx buffer empty interrupt enable */
1503 #define LL_I2S_CR2_ERRIE LL_SPI_CR2_ERRIE /*!< Error interrupt enable */
1505 * @}
1508 /** @defgroup I2S_LL_EC_DATA_FORMAT Data format
1509 * @{
1511 #define LL_I2S_DATAFORMAT_16B 0x00000000U /*!< Data length 16 bits, Channel lenght 16bit */
1512 #define LL_I2S_DATAFORMAT_16B_EXTENDED (SPI_I2SCFGR_CHLEN) /*!< Data length 16 bits, Channel lenght 32bit */
1513 #define LL_I2S_DATAFORMAT_24B (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_0) /*!< Data length 24 bits, Channel lenght 32bit */
1514 #define LL_I2S_DATAFORMAT_32B (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_1) /*!< Data length 16 bits, Channel lenght 32bit */
1516 * @}
1519 /** @defgroup I2S_LL_EC_POLARITY Clock Polarity
1520 * @{
1522 #define LL_I2S_POLARITY_LOW 0x00000000U /*!< Clock steady state is low level */
1523 #define LL_I2S_POLARITY_HIGH (SPI_I2SCFGR_CKPOL) /*!< Clock steady state is high level */
1525 * @}
1528 /** @defgroup I2S_LL_EC_STANDARD I2s Standard
1529 * @{
1531 #define LL_I2S_STANDARD_PHILIPS 0x00000000U /*!< I2S standard philips */
1532 #define LL_I2S_STANDARD_MSB (SPI_I2SCFGR_I2SSTD_0) /*!< MSB justified standard (left justified) */
1533 #define LL_I2S_STANDARD_LSB (SPI_I2SCFGR_I2SSTD_1) /*!< LSB justified standard (right justified) */
1534 #define LL_I2S_STANDARD_PCM_SHORT (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1) /*!< PCM standard, short frame synchronization */
1535 #define LL_I2S_STANDARD_PCM_LONG (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1 | SPI_I2SCFGR_PCMSYNC) /*!< PCM standard, long frame synchronization */
1537 * @}
1540 /** @defgroup I2S_LL_EC_MODE Operation Mode
1541 * @{
1543 #define LL_I2S_MODE_SLAVE_TX 0x00000000U /*!< Slave Tx configuration */
1544 #define LL_I2S_MODE_SLAVE_RX (SPI_I2SCFGR_I2SCFG_0) /*!< Slave Rx configuration */
1545 #define LL_I2S_MODE_MASTER_TX (SPI_I2SCFGR_I2SCFG_1) /*!< Master Tx configuration */
1546 #define LL_I2S_MODE_MASTER_RX (SPI_I2SCFGR_I2SCFG_0 | SPI_I2SCFGR_I2SCFG_1) /*!< Master Rx configuration */
1548 * @}
1551 /** @defgroup I2S_LL_EC_PRESCALER_FACTOR Prescaler Factor
1552 * @{
1554 #define LL_I2S_PRESCALER_PARITY_EVEN 0x00000000U /*!< Odd factor: Real divider value is = I2SDIV * 2 */
1555 #define LL_I2S_PRESCALER_PARITY_ODD (SPI_I2SPR_ODD >> 8U) /*!< Odd factor: Real divider value is = (I2SDIV * 2)+1 */
1557 * @}
1560 #if defined(USE_FULL_LL_DRIVER)
1562 /** @defgroup I2S_LL_EC_MCLK_OUTPUT MCLK Output
1563 * @{
1565 #define LL_I2S_MCLK_OUTPUT_DISABLE 0x00000000U /*!< Master clock output is disabled */
1566 #define LL_I2S_MCLK_OUTPUT_ENABLE (SPI_I2SPR_MCKOE) /*!< Master clock output is enabled */
1568 * @}
1571 /** @defgroup I2S_LL_EC_AUDIO_FREQ Audio Frequency
1572 * @{
1575 #define LL_I2S_AUDIOFREQ_192K 192000U /*!< Audio Frequency configuration 192000 Hz */
1576 #define LL_I2S_AUDIOFREQ_96K 96000U /*!< Audio Frequency configuration 96000 Hz */
1577 #define LL_I2S_AUDIOFREQ_48K 48000U /*!< Audio Frequency configuration 48000 Hz */
1578 #define LL_I2S_AUDIOFREQ_44K 44100U /*!< Audio Frequency configuration 44100 Hz */
1579 #define LL_I2S_AUDIOFREQ_32K 32000U /*!< Audio Frequency configuration 32000 Hz */
1580 #define LL_I2S_AUDIOFREQ_22K 22050U /*!< Audio Frequency configuration 22050 Hz */
1581 #define LL_I2S_AUDIOFREQ_16K 16000U /*!< Audio Frequency configuration 16000 Hz */
1582 #define LL_I2S_AUDIOFREQ_11K 11025U /*!< Audio Frequency configuration 11025 Hz */
1583 #define LL_I2S_AUDIOFREQ_8K 8000U /*!< Audio Frequency configuration 8000 Hz */
1584 #define LL_I2S_AUDIOFREQ_DEFAULT 2U /*!< Audio Freq not specified. Register I2SDIV = 2 */
1586 * @}
1588 #endif /* USE_FULL_LL_DRIVER */
1591 * @}
1594 /* Exported macro ------------------------------------------------------------*/
1595 /** @defgroup I2S_LL_Exported_Macros I2S Exported Macros
1596 * @{
1599 /** @defgroup I2S_LL_EM_WRITE_READ Common Write and read registers Macros
1600 * @{
1604 * @brief Write a value in I2S register
1605 * @param __INSTANCE__ I2S Instance
1606 * @param __REG__ Register to be written
1607 * @param __VALUE__ Value to be written in the register
1608 * @retval None
1610 #define LL_I2S_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
1613 * @brief Read a value in I2S register
1614 * @param __INSTANCE__ I2S Instance
1615 * @param __REG__ Register to be read
1616 * @retval Register value
1618 #define LL_I2S_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
1620 * @}
1624 * @}
1628 /* Exported functions --------------------------------------------------------*/
1630 /** @defgroup I2S_LL_Exported_Functions I2S Exported Functions
1631 * @{
1634 /** @defgroup I2S_LL_EF_Configuration Configuration
1635 * @{
1639 * @brief Select I2S mode and Enable I2S peripheral
1640 * @rmtoll I2SCFGR I2SMOD LL_I2S_Enable\n
1641 * I2SCFGR I2SE LL_I2S_Enable
1642 * @param SPIx SPI Instance
1643 * @retval None
1645 __STATIC_INLINE void LL_I2S_Enable(SPI_TypeDef *SPIx)
1647 SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SE);
1651 * @brief Disable I2S peripheral
1652 * @rmtoll I2SCFGR I2SE LL_I2S_Disable
1653 * @param SPIx SPI Instance
1654 * @retval None
1656 __STATIC_INLINE void LL_I2S_Disable(SPI_TypeDef *SPIx)
1658 CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SE);
1662 * @brief Check if I2S peripheral is enabled
1663 * @rmtoll I2SCFGR I2SE LL_I2S_IsEnabled
1664 * @param SPIx SPI Instance
1665 * @retval State of bit (1 or 0).
1667 __STATIC_INLINE uint32_t LL_I2S_IsEnabled(SPI_TypeDef *SPIx)
1669 return (READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SE) == (SPI_I2SCFGR_I2SE));
1673 * @brief Set I2S data frame length
1674 * @rmtoll I2SCFGR DATLEN LL_I2S_SetDataFormat\n
1675 * I2SCFGR CHLEN LL_I2S_SetDataFormat
1676 * @param SPIx SPI Instance
1677 * @param DataFormat This parameter can be one of the following values:
1678 * @arg @ref LL_I2S_DATAFORMAT_16B
1679 * @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED
1680 * @arg @ref LL_I2S_DATAFORMAT_24B
1681 * @arg @ref LL_I2S_DATAFORMAT_32B
1682 * @retval None
1684 __STATIC_INLINE void LL_I2S_SetDataFormat(SPI_TypeDef *SPIx, uint32_t DataFormat)
1686 MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN, DataFormat);
1690 * @brief Get I2S data frame length
1691 * @rmtoll I2SCFGR DATLEN LL_I2S_GetDataFormat\n
1692 * I2SCFGR CHLEN LL_I2S_GetDataFormat
1693 * @param SPIx SPI Instance
1694 * @retval Returned value can be one of the following values:
1695 * @arg @ref LL_I2S_DATAFORMAT_16B
1696 * @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED
1697 * @arg @ref LL_I2S_DATAFORMAT_24B
1698 * @arg @ref LL_I2S_DATAFORMAT_32B
1700 __STATIC_INLINE uint32_t LL_I2S_GetDataFormat(SPI_TypeDef *SPIx)
1702 return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN));
1706 * @brief Set I2S clock polarity
1707 * @rmtoll I2SCFGR CKPOL LL_I2S_SetClockPolarity
1708 * @param SPIx SPI Instance
1709 * @param ClockPolarity This parameter can be one of the following values:
1710 * @arg @ref LL_I2S_POLARITY_LOW
1711 * @arg @ref LL_I2S_POLARITY_HIGH
1712 * @retval None
1714 __STATIC_INLINE void LL_I2S_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity)
1716 SET_BIT(SPIx->I2SCFGR, ClockPolarity);
1720 * @brief Get I2S clock polarity
1721 * @rmtoll I2SCFGR CKPOL LL_I2S_GetClockPolarity
1722 * @param SPIx SPI Instance
1723 * @retval Returned value can be one of the following values:
1724 * @arg @ref LL_I2S_POLARITY_LOW
1725 * @arg @ref LL_I2S_POLARITY_HIGH
1727 __STATIC_INLINE uint32_t LL_I2S_GetClockPolarity(SPI_TypeDef *SPIx)
1729 return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_CKPOL));
1733 * @brief Set I2S standard protocol
1734 * @rmtoll I2SCFGR I2SSTD LL_I2S_SetStandard\n
1735 * I2SCFGR PCMSYNC LL_I2S_SetStandard
1736 * @param SPIx SPI Instance
1737 * @param Standard This parameter can be one of the following values:
1738 * @arg @ref LL_I2S_STANDARD_PHILIPS
1739 * @arg @ref LL_I2S_STANDARD_MSB
1740 * @arg @ref LL_I2S_STANDARD_LSB
1741 * @arg @ref LL_I2S_STANDARD_PCM_SHORT
1742 * @arg @ref LL_I2S_STANDARD_PCM_LONG
1743 * @retval None
1745 __STATIC_INLINE void LL_I2S_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard)
1747 MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC, Standard);
1751 * @brief Get I2S standard protocol
1752 * @rmtoll I2SCFGR I2SSTD LL_I2S_GetStandard\n
1753 * I2SCFGR PCMSYNC LL_I2S_GetStandard
1754 * @param SPIx SPI Instance
1755 * @retval Returned value can be one of the following values:
1756 * @arg @ref LL_I2S_STANDARD_PHILIPS
1757 * @arg @ref LL_I2S_STANDARD_MSB
1758 * @arg @ref LL_I2S_STANDARD_LSB
1759 * @arg @ref LL_I2S_STANDARD_PCM_SHORT
1760 * @arg @ref LL_I2S_STANDARD_PCM_LONG
1762 __STATIC_INLINE uint32_t LL_I2S_GetStandard(SPI_TypeDef *SPIx)
1764 return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC));
1768 * @brief Set I2S transfer mode
1769 * @rmtoll I2SCFGR I2SCFG LL_I2S_SetTransferMode
1770 * @param SPIx SPI Instance
1771 * @param Mode This parameter can be one of the following values:
1772 * @arg @ref LL_I2S_MODE_SLAVE_TX
1773 * @arg @ref LL_I2S_MODE_SLAVE_RX
1774 * @arg @ref LL_I2S_MODE_MASTER_TX
1775 * @arg @ref LL_I2S_MODE_MASTER_RX
1776 * @retval None
1778 __STATIC_INLINE void LL_I2S_SetTransferMode(SPI_TypeDef *SPIx, uint32_t Mode)
1780 MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG, Mode);
1784 * @brief Get I2S transfer mode
1785 * @rmtoll I2SCFGR I2SCFG LL_I2S_GetTransferMode
1786 * @param SPIx SPI Instance
1787 * @retval Returned value can be one of the following values:
1788 * @arg @ref LL_I2S_MODE_SLAVE_TX
1789 * @arg @ref LL_I2S_MODE_SLAVE_RX
1790 * @arg @ref LL_I2S_MODE_MASTER_TX
1791 * @arg @ref LL_I2S_MODE_MASTER_RX
1793 __STATIC_INLINE uint32_t LL_I2S_GetTransferMode(SPI_TypeDef *SPIx)
1795 return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG));
1799 * @brief Set I2S linear prescaler
1800 * @rmtoll I2SPR I2SDIV LL_I2S_SetPrescalerLinear
1801 * @param SPIx SPI Instance
1802 * @param PrescalerLinear Value between Min_Data=0x02 and Max_Data=0xFF
1803 * @retval None
1805 __STATIC_INLINE void LL_I2S_SetPrescalerLinear(SPI_TypeDef *SPIx, uint8_t PrescalerLinear)
1807 MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_I2SDIV, PrescalerLinear);
1811 * @brief Get I2S linear prescaler
1812 * @rmtoll I2SPR I2SDIV LL_I2S_GetPrescalerLinear
1813 * @param SPIx SPI Instance
1814 * @retval PrescalerLinear Value between Min_Data=0x02 and Max_Data=0xFF
1816 __STATIC_INLINE uint32_t LL_I2S_GetPrescalerLinear(SPI_TypeDef *SPIx)
1818 return (uint32_t)(READ_BIT(SPIx->I2SPR, SPI_I2SPR_I2SDIV));
1822 * @brief Set I2S parity prescaler
1823 * @rmtoll I2SPR ODD LL_I2S_SetPrescalerParity
1824 * @param SPIx SPI Instance
1825 * @param PrescalerParity This parameter can be one of the following values:
1826 * @arg @ref LL_I2S_PRESCALER_PARITY_EVEN
1827 * @arg @ref LL_I2S_PRESCALER_PARITY_ODD
1828 * @retval None
1830 __STATIC_INLINE void LL_I2S_SetPrescalerParity(SPI_TypeDef *SPIx, uint32_t PrescalerParity)
1832 MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_ODD, PrescalerParity << 8U);
1836 * @brief Get I2S parity prescaler
1837 * @rmtoll I2SPR ODD LL_I2S_GetPrescalerParity
1838 * @param SPIx SPI Instance
1839 * @retval Returned value can be one of the following values:
1840 * @arg @ref LL_I2S_PRESCALER_PARITY_EVEN
1841 * @arg @ref LL_I2S_PRESCALER_PARITY_ODD
1843 __STATIC_INLINE uint32_t LL_I2S_GetPrescalerParity(SPI_TypeDef *SPIx)
1845 return (uint32_t)(READ_BIT(SPIx->I2SPR, SPI_I2SPR_ODD) >> 8U);
1849 * @brief Enable the master clock ouput (Pin MCK)
1850 * @rmtoll I2SPR MCKOE LL_I2S_EnableMasterClock
1851 * @param SPIx SPI Instance
1852 * @retval None
1854 __STATIC_INLINE void LL_I2S_EnableMasterClock(SPI_TypeDef *SPIx)
1856 SET_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE);
1860 * @brief Disable the master clock ouput (Pin MCK)
1861 * @rmtoll I2SPR MCKOE LL_I2S_DisableMasterClock
1862 * @param SPIx SPI Instance
1863 * @retval None
1865 __STATIC_INLINE void LL_I2S_DisableMasterClock(SPI_TypeDef *SPIx)
1867 CLEAR_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE);
1871 * @brief Check if the master clock ouput (Pin MCK) is enabled
1872 * @rmtoll I2SPR MCKOE LL_I2S_IsEnabledMasterClock
1873 * @param SPIx SPI Instance
1874 * @retval State of bit (1 or 0).
1876 __STATIC_INLINE uint32_t LL_I2S_IsEnabledMasterClock(SPI_TypeDef *SPIx)
1878 return (READ_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE) == (SPI_I2SPR_MCKOE));
1882 * @}
1885 /** @defgroup I2S_LL_EF_FLAG FLAG Management
1886 * @{
1890 * @brief Check if Rx buffer is not empty
1891 * @rmtoll SR RXNE LL_I2S_IsActiveFlag_RXNE
1892 * @param SPIx SPI Instance
1893 * @retval State of bit (1 or 0).
1895 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_RXNE(SPI_TypeDef *SPIx)
1897 return LL_SPI_IsActiveFlag_RXNE(SPIx);
1901 * @brief Check if Tx buffer is empty
1902 * @rmtoll SR TXE LL_I2S_IsActiveFlag_TXE
1903 * @param SPIx SPI Instance
1904 * @retval State of bit (1 or 0).
1906 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_TXE(SPI_TypeDef *SPIx)
1908 return LL_SPI_IsActiveFlag_TXE(SPIx);
1912 * @brief Get busy flag
1913 * @rmtoll SR BSY LL_I2S_IsActiveFlag_BSY
1914 * @param SPIx SPI Instance
1915 * @retval State of bit (1 or 0).
1917 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_BSY(SPI_TypeDef *SPIx)
1919 return LL_SPI_IsActiveFlag_BSY(SPIx);
1923 * @brief Get overrun error flag
1924 * @rmtoll SR OVR LL_I2S_IsActiveFlag_OVR
1925 * @param SPIx SPI Instance
1926 * @retval State of bit (1 or 0).
1928 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_OVR(SPI_TypeDef *SPIx)
1930 return LL_SPI_IsActiveFlag_OVR(SPIx);
1934 * @brief Get underrun error flag
1935 * @rmtoll SR UDR LL_I2S_IsActiveFlag_UDR
1936 * @param SPIx SPI Instance
1937 * @retval State of bit (1 or 0).
1939 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_UDR(SPI_TypeDef *SPIx)
1941 return (READ_BIT(SPIx->SR, SPI_SR_UDR) == (SPI_SR_UDR));
1945 * @brief Get frame format error flag
1946 * @rmtoll SR FRE LL_I2S_IsActiveFlag_FRE
1947 * @param SPIx SPI Instance
1948 * @retval State of bit (1 or 0).
1950 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_FRE(SPI_TypeDef *SPIx)
1952 return LL_SPI_IsActiveFlag_FRE(SPIx);
1956 * @brief Get channel side flag.
1957 * @note 0: Channel Left has to be transmitted or has been received\n
1958 * 1: Channel Right has to be transmitted or has been received\n
1959 * It has no significance in PCM mode.
1960 * @rmtoll SR CHSIDE LL_I2S_IsActiveFlag_CHSIDE
1961 * @param SPIx SPI Instance
1962 * @retval State of bit (1 or 0).
1964 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_CHSIDE(SPI_TypeDef *SPIx)
1966 return (READ_BIT(SPIx->SR, SPI_SR_CHSIDE) == (SPI_SR_CHSIDE));
1970 * @brief Clear overrun error flag
1971 * @rmtoll SR OVR LL_I2S_ClearFlag_OVR
1972 * @param SPIx SPI Instance
1973 * @retval None
1975 __STATIC_INLINE void LL_I2S_ClearFlag_OVR(SPI_TypeDef *SPIx)
1977 LL_SPI_ClearFlag_OVR(SPIx);
1981 * @brief Clear underrun error flag
1982 * @rmtoll SR UDR LL_I2S_ClearFlag_UDR
1983 * @param SPIx SPI Instance
1984 * @retval None
1986 __STATIC_INLINE void LL_I2S_ClearFlag_UDR(SPI_TypeDef *SPIx)
1988 __IO uint32_t tmpreg;
1989 tmpreg = SPIx->SR;
1990 (void)tmpreg;
1994 * @brief Clear frame format error flag
1995 * @rmtoll SR FRE LL_I2S_ClearFlag_FRE
1996 * @param SPIx SPI Instance
1997 * @retval None
1999 __STATIC_INLINE void LL_I2S_ClearFlag_FRE(SPI_TypeDef *SPIx)
2001 LL_SPI_ClearFlag_FRE(SPIx);
2005 * @}
2008 /** @defgroup I2S_LL_EF_IT Interrupt Management
2009 * @{
2013 * @brief Enable error IT
2014 * @note This bit controls the generation of an interrupt when an error condition occurs (OVR, UDR and FRE in I2S mode).
2015 * @rmtoll CR2 ERRIE LL_I2S_EnableIT_ERR
2016 * @param SPIx SPI Instance
2017 * @retval None
2019 __STATIC_INLINE void LL_I2S_EnableIT_ERR(SPI_TypeDef *SPIx)
2021 LL_SPI_EnableIT_ERR(SPIx);
2025 * @brief Enable Rx buffer not empty IT
2026 * @rmtoll CR2 RXNEIE LL_I2S_EnableIT_RXNE
2027 * @param SPIx SPI Instance
2028 * @retval None
2030 __STATIC_INLINE void LL_I2S_EnableIT_RXNE(SPI_TypeDef *SPIx)
2032 LL_SPI_EnableIT_RXNE(SPIx);
2036 * @brief Enable Tx buffer empty IT
2037 * @rmtoll CR2 TXEIE LL_I2S_EnableIT_TXE
2038 * @param SPIx SPI Instance
2039 * @retval None
2041 __STATIC_INLINE void LL_I2S_EnableIT_TXE(SPI_TypeDef *SPIx)
2043 LL_SPI_EnableIT_TXE(SPIx);
2047 * @brief Disable error IT
2048 * @note This bit controls the generation of an interrupt when an error condition occurs (OVR, UDR and FRE in I2S mode).
2049 * @rmtoll CR2 ERRIE LL_I2S_DisableIT_ERR
2050 * @param SPIx SPI Instance
2051 * @retval None
2053 __STATIC_INLINE void LL_I2S_DisableIT_ERR(SPI_TypeDef *SPIx)
2055 LL_SPI_DisableIT_ERR(SPIx);
2059 * @brief Disable Rx buffer not empty IT
2060 * @rmtoll CR2 RXNEIE LL_I2S_DisableIT_RXNE
2061 * @param SPIx SPI Instance
2062 * @retval None
2064 __STATIC_INLINE void LL_I2S_DisableIT_RXNE(SPI_TypeDef *SPIx)
2066 LL_SPI_DisableIT_RXNE(SPIx);
2070 * @brief Disable Tx buffer empty IT
2071 * @rmtoll CR2 TXEIE LL_I2S_DisableIT_TXE
2072 * @param SPIx SPI Instance
2073 * @retval None
2075 __STATIC_INLINE void LL_I2S_DisableIT_TXE(SPI_TypeDef *SPIx)
2077 LL_SPI_DisableIT_TXE(SPIx);
2081 * @brief Check if ERR IT is enabled
2082 * @rmtoll CR2 ERRIE LL_I2S_IsEnabledIT_ERR
2083 * @param SPIx SPI Instance
2084 * @retval State of bit (1 or 0).
2086 __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_ERR(SPI_TypeDef *SPIx)
2088 return LL_SPI_IsEnabledIT_ERR(SPIx);
2092 * @brief Check if RXNE IT is enabled
2093 * @rmtoll CR2 RXNEIE LL_I2S_IsEnabledIT_RXNE
2094 * @param SPIx SPI Instance
2095 * @retval State of bit (1 or 0).
2097 __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_RXNE(SPI_TypeDef *SPIx)
2099 return LL_SPI_IsEnabledIT_RXNE(SPIx);
2103 * @brief Check if TXE IT is enabled
2104 * @rmtoll CR2 TXEIE LL_I2S_IsEnabledIT_TXE
2105 * @param SPIx SPI Instance
2106 * @retval State of bit (1 or 0).
2108 __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_TXE(SPI_TypeDef *SPIx)
2110 return LL_SPI_IsEnabledIT_TXE(SPIx);
2114 * @}
2117 /** @defgroup I2S_LL_EF_DMA DMA Management
2118 * @{
2122 * @brief Enable DMA Rx
2123 * @rmtoll CR2 RXDMAEN LL_I2S_EnableDMAReq_RX
2124 * @param SPIx SPI Instance
2125 * @retval None
2127 __STATIC_INLINE void LL_I2S_EnableDMAReq_RX(SPI_TypeDef *SPIx)
2129 LL_SPI_EnableDMAReq_RX(SPIx);
2133 * @brief Disable DMA Rx
2134 * @rmtoll CR2 RXDMAEN LL_I2S_DisableDMAReq_RX
2135 * @param SPIx SPI Instance
2136 * @retval None
2138 __STATIC_INLINE void LL_I2S_DisableDMAReq_RX(SPI_TypeDef *SPIx)
2140 LL_SPI_DisableDMAReq_RX(SPIx);
2144 * @brief Check if DMA Rx is enabled
2145 * @rmtoll CR2 RXDMAEN LL_I2S_IsEnabledDMAReq_RX
2146 * @param SPIx SPI Instance
2147 * @retval State of bit (1 or 0).
2149 __STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx)
2151 return LL_SPI_IsEnabledDMAReq_RX(SPIx);
2155 * @brief Enable DMA Tx
2156 * @rmtoll CR2 TXDMAEN LL_I2S_EnableDMAReq_TX
2157 * @param SPIx SPI Instance
2158 * @retval None
2160 __STATIC_INLINE void LL_I2S_EnableDMAReq_TX(SPI_TypeDef *SPIx)
2162 LL_SPI_EnableDMAReq_TX(SPIx);
2166 * @brief Disable DMA Tx
2167 * @rmtoll CR2 TXDMAEN LL_I2S_DisableDMAReq_TX
2168 * @param SPIx SPI Instance
2169 * @retval None
2171 __STATIC_INLINE void LL_I2S_DisableDMAReq_TX(SPI_TypeDef *SPIx)
2173 LL_SPI_DisableDMAReq_TX(SPIx);
2177 * @brief Check if DMA Tx is enabled
2178 * @rmtoll CR2 TXDMAEN LL_I2S_IsEnabledDMAReq_TX
2179 * @param SPIx SPI Instance
2180 * @retval State of bit (1 or 0).
2182 __STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx)
2184 return LL_SPI_IsEnabledDMAReq_TX(SPIx);
2188 * @}
2191 /** @defgroup I2S_LL_EF_DATA DATA Management
2192 * @{
2196 * @brief Read 16-Bits in data register
2197 * @rmtoll DR DR LL_I2S_ReceiveData16
2198 * @param SPIx SPI Instance
2199 * @retval RxData Value between Min_Data=0x0000 and Max_Data=0xFFFF
2201 __STATIC_INLINE uint16_t LL_I2S_ReceiveData16(SPI_TypeDef *SPIx)
2203 return LL_SPI_ReceiveData16(SPIx);
2207 * @brief Write 16-Bits in data register
2208 * @rmtoll DR DR LL_I2S_TransmitData16
2209 * @param SPIx SPI Instance
2210 * @param TxData Value between Min_Data=0x0000 and Max_Data=0xFFFF
2211 * @retval None
2213 __STATIC_INLINE void LL_I2S_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData)
2215 LL_SPI_TransmitData16(SPIx, TxData);
2219 * @}
2222 #if defined(USE_FULL_LL_DRIVER)
2223 /** @defgroup I2S_LL_EF_Init Initialization and de-initialization functions
2224 * @{
2227 ErrorStatus LL_I2S_DeInit(SPI_TypeDef *SPIx);
2228 ErrorStatus LL_I2S_Init(SPI_TypeDef *SPIx, LL_I2S_InitTypeDef *I2S_InitStruct);
2229 void LL_I2S_StructInit(LL_I2S_InitTypeDef *I2S_InitStruct);
2230 void LL_I2S_ConfigPrescaler(SPI_TypeDef *SPIx, uint32_t PrescalerLinear, uint32_t PrescalerParity);
2231 #if defined (SPI_I2S_FULLDUPLEX_SUPPORT)
2232 ErrorStatus LL_I2S_InitFullDuplex(SPI_TypeDef *I2Sxext, LL_I2S_InitTypeDef *I2S_InitStruct);
2233 #endif /* SPI_I2S_FULLDUPLEX_SUPPORT */
2236 * @}
2238 #endif /* USE_FULL_LL_DRIVER */
2241 * @}
2245 * @}
2247 #endif /* SPI_I2S_SUPPORT */
2249 #endif /* defined (SPI1) || defined (SPI2) || defined (SPI3) || defined (SPI4) */
2252 * @}
2255 #ifdef __cplusplus
2257 #endif
2259 #endif /* __STM32F3xx_LL_SPI_H */
2261 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/