2 ******************************************************************************
3 * @file stm32f7xx_ll_tim.c
4 * @author MCD Application Team
5 * @brief TIM LL module driver.
6 ******************************************************************************
9 * <h2><center>© Copyright (c) 2017 STMicroelectronics.
10 * All rights reserved.</center></h2>
12 * This software component is licensed by ST under BSD 3-Clause license,
13 * the "License"; You may not use this file except in compliance with the
14 * License. You may obtain a copy of the License at:
15 * opensource.org/licenses/BSD-3-Clause
17 ******************************************************************************
19 #if defined(USE_FULL_LL_DRIVER)
21 /* Includes ------------------------------------------------------------------*/
22 #include "stm32f7xx_ll_tim.h"
23 #include "stm32f7xx_ll_bus.h"
25 #ifdef USE_FULL_ASSERT
26 #include "stm32_assert.h"
28 #define assert_param(expr) ((void)0U)
31 /** @addtogroup STM32F7xx_LL_Driver
35 #if defined (TIM1) || defined (TIM8) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM9) || defined (TIM10) || defined (TIM11) || defined (TIM12) || defined (TIM13) || defined (TIM14) || defined (TIM6) || defined (TIM7)
37 /** @addtogroup TIM_LL
41 /* Private types -------------------------------------------------------------*/
42 /* Private variables ---------------------------------------------------------*/
43 /* Private constants ---------------------------------------------------------*/
44 /* Private macros ------------------------------------------------------------*/
45 /** @addtogroup TIM_LL_Private_Macros
48 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
49 || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
50 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
51 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
52 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
54 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
55 || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
56 || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
58 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
59 || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
60 || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
61 || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
62 || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
63 || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
64 || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
65 || ((__VALUE__) == LL_TIM_OCMODE_PWM2) \
66 || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM1) \
67 || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM2) \
68 || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM1) \
69 || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM2) \
70 || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM1) \
71 || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM2))
73 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
74 || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
76 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
77 || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
79 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
80 || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
82 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
83 || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
84 || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
86 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
87 || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
88 || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
89 || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
91 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
92 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
93 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
94 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
95 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
96 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
97 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
98 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
99 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
100 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
101 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
102 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
103 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
104 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
105 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
106 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
108 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
109 || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
110 || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))
112 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
113 || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
114 || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))
116 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
117 || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
119 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
120 || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
122 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
123 || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
125 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
126 || ((__VALUE__) == LL_TIM_LOCKLEVEL_1) \
127 || ((__VALUE__) == LL_TIM_LOCKLEVEL_2) \
128 || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
130 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
131 || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
133 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
134 || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
136 #define IS_LL_TIM_BREAK_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1) \
137 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N2) \
138 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N4) \
139 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N8) \
140 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N6) \
141 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N8) \
142 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N6) \
143 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N8) \
144 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N6) \
145 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N8) \
146 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N5) \
147 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N6) \
148 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N8) \
149 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N5) \
150 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N6) \
151 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N8))
153 #define IS_LL_TIM_BREAK2_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_DISABLE) \
154 || ((__VALUE__) == LL_TIM_BREAK2_ENABLE))
156 #define IS_LL_TIM_BREAK2_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_POLARITY_LOW) \
157 || ((__VALUE__) == LL_TIM_BREAK2_POLARITY_HIGH))
159 #define IS_LL_TIM_BREAK2_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1) \
160 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N2) \
161 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N4) \
162 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N8) \
163 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N6) \
164 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N8) \
165 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N6) \
166 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N8) \
167 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N6) \
168 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N8) \
169 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N5) \
170 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N6) \
171 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N8) \
172 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N5) \
173 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N6) \
174 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N8))
176 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
177 || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
183 /* Private function prototypes -----------------------------------------------*/
184 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
187 static ErrorStatus
OC1Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
);
188 static ErrorStatus
OC2Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
);
189 static ErrorStatus
OC3Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
);
190 static ErrorStatus
OC4Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
);
191 static ErrorStatus
OC5Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
);
192 static ErrorStatus
OC6Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
);
193 static ErrorStatus
IC1Config(TIM_TypeDef
*TIMx
, LL_TIM_IC_InitTypeDef
*TIM_ICInitStruct
);
194 static ErrorStatus
IC2Config(TIM_TypeDef
*TIMx
, LL_TIM_IC_InitTypeDef
*TIM_ICInitStruct
);
195 static ErrorStatus
IC3Config(TIM_TypeDef
*TIMx
, LL_TIM_IC_InitTypeDef
*TIM_ICInitStruct
);
196 static ErrorStatus
IC4Config(TIM_TypeDef
*TIMx
, LL_TIM_IC_InitTypeDef
*TIM_ICInitStruct
);
201 /* Exported functions --------------------------------------------------------*/
202 /** @addtogroup TIM_LL_Exported_Functions
206 /** @addtogroup TIM_LL_EF_Init
211 * @brief Set TIMx registers to their reset values.
212 * @param TIMx Timer instance
213 * @retval An ErrorStatus enumeration value:
214 * - SUCCESS: TIMx registers are de-initialized
215 * - ERROR: invalid TIMx instance
217 ErrorStatus
LL_TIM_DeInit(TIM_TypeDef
*TIMx
)
219 ErrorStatus result
= SUCCESS
;
221 /* Check the parameters */
222 assert_param(IS_TIM_INSTANCE(TIMx
));
226 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1
);
227 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1
);
229 else if (TIMx
== TIM2
)
231 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2
);
232 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2
);
235 else if (TIMx
== TIM3
)
237 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3
);
238 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3
);
242 else if (TIMx
== TIM4
)
244 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4
);
245 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4
);
249 else if (TIMx
== TIM5
)
251 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5
);
252 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5
);
256 else if (TIMx
== TIM6
)
258 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6
);
259 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6
);
263 else if (TIMx
== TIM7
)
265 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7
);
266 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7
);
270 else if (TIMx
== TIM8
)
272 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8
);
273 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8
);
277 else if (TIMx
== TIM9
)
279 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM9
);
280 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM9
);
284 else if (TIMx
== TIM10
)
286 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM10
);
287 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM10
);
291 else if (TIMx
== TIM11
)
293 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM11
);
294 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM11
);
298 else if (TIMx
== TIM12
)
300 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM12
);
301 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM12
);
305 else if (TIMx
== TIM13
)
307 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM13
);
308 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM13
);
312 else if (TIMx
== TIM14
)
314 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM14
);
315 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM14
);
327 * @brief Set the fields of the time base unit configuration data structure
328 * to their default values.
329 * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
332 void LL_TIM_StructInit(LL_TIM_InitTypeDef
*TIM_InitStruct
)
334 /* Set the default configuration */
335 TIM_InitStruct
->Prescaler
= (uint16_t)0x0000;
336 TIM_InitStruct
->CounterMode
= LL_TIM_COUNTERMODE_UP
;
337 TIM_InitStruct
->Autoreload
= 0xFFFFFFFFU
;
338 TIM_InitStruct
->ClockDivision
= LL_TIM_CLOCKDIVISION_DIV1
;
339 TIM_InitStruct
->RepetitionCounter
= (uint8_t)0x00;
343 * @brief Configure the TIMx time base unit.
344 * @param TIMx Timer Instance
345 * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (TIMx time base unit configuration data structure)
346 * @retval An ErrorStatus enumeration value:
347 * - SUCCESS: TIMx registers are de-initialized
348 * - ERROR: not applicable
350 ErrorStatus
LL_TIM_Init(TIM_TypeDef
*TIMx
, LL_TIM_InitTypeDef
*TIM_InitStruct
)
354 /* Check the parameters */
355 assert_param(IS_TIM_INSTANCE(TIMx
));
356 assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct
->CounterMode
));
357 assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct
->ClockDivision
));
359 tmpcr1
= LL_TIM_ReadReg(TIMx
, CR1
);
361 if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx
))
363 /* Select the Counter Mode */
364 MODIFY_REG(tmpcr1
, (TIM_CR1_DIR
| TIM_CR1_CMS
), TIM_InitStruct
->CounterMode
);
367 if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx
))
369 /* Set the clock division */
370 MODIFY_REG(tmpcr1
, TIM_CR1_CKD
, TIM_InitStruct
->ClockDivision
);
373 /* Write to TIMx CR1 */
374 LL_TIM_WriteReg(TIMx
, CR1
, tmpcr1
);
376 /* Set the Autoreload value */
377 LL_TIM_SetAutoReload(TIMx
, TIM_InitStruct
->Autoreload
);
379 /* Set the Prescaler value */
380 LL_TIM_SetPrescaler(TIMx
, TIM_InitStruct
->Prescaler
);
382 if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx
))
384 /* Set the Repetition Counter value */
385 LL_TIM_SetRepetitionCounter(TIMx
, TIM_InitStruct
->RepetitionCounter
);
388 /* Generate an update event to reload the Prescaler
389 and the repetition counter value (if applicable) immediately */
390 LL_TIM_GenerateEvent_UPDATE(TIMx
);
396 * @brief Set the fields of the TIMx output channel configuration data
397 * structure to their default values.
398 * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (the output channel configuration data structure)
401 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef
*TIM_OC_InitStruct
)
403 /* Set the default configuration */
404 TIM_OC_InitStruct
->OCMode
= LL_TIM_OCMODE_FROZEN
;
405 TIM_OC_InitStruct
->OCState
= LL_TIM_OCSTATE_DISABLE
;
406 TIM_OC_InitStruct
->OCNState
= LL_TIM_OCSTATE_DISABLE
;
407 TIM_OC_InitStruct
->CompareValue
= 0x00000000U
;
408 TIM_OC_InitStruct
->OCPolarity
= LL_TIM_OCPOLARITY_HIGH
;
409 TIM_OC_InitStruct
->OCNPolarity
= LL_TIM_OCPOLARITY_HIGH
;
410 TIM_OC_InitStruct
->OCIdleState
= LL_TIM_OCIDLESTATE_LOW
;
411 TIM_OC_InitStruct
->OCNIdleState
= LL_TIM_OCIDLESTATE_LOW
;
415 * @brief Configure the TIMx output channel.
416 * @param TIMx Timer Instance
417 * @param Channel This parameter can be one of the following values:
418 * @arg @ref LL_TIM_CHANNEL_CH1
419 * @arg @ref LL_TIM_CHANNEL_CH2
420 * @arg @ref LL_TIM_CHANNEL_CH3
421 * @arg @ref LL_TIM_CHANNEL_CH4
422 * @arg @ref LL_TIM_CHANNEL_CH5
423 * @arg @ref LL_TIM_CHANNEL_CH6
424 * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration data structure)
425 * @retval An ErrorStatus enumeration value:
426 * - SUCCESS: TIMx output channel is initialized
427 * - ERROR: TIMx output channel is not initialized
429 ErrorStatus
LL_TIM_OC_Init(TIM_TypeDef
*TIMx
, uint32_t Channel
, LL_TIM_OC_InitTypeDef
*TIM_OC_InitStruct
)
431 ErrorStatus result
= ERROR
;
435 case LL_TIM_CHANNEL_CH1
:
436 result
= OC1Config(TIMx
, TIM_OC_InitStruct
);
438 case LL_TIM_CHANNEL_CH2
:
439 result
= OC2Config(TIMx
, TIM_OC_InitStruct
);
441 case LL_TIM_CHANNEL_CH3
:
442 result
= OC3Config(TIMx
, TIM_OC_InitStruct
);
444 case LL_TIM_CHANNEL_CH4
:
445 result
= OC4Config(TIMx
, TIM_OC_InitStruct
);
447 case LL_TIM_CHANNEL_CH5
:
448 result
= OC5Config(TIMx
, TIM_OC_InitStruct
);
450 case LL_TIM_CHANNEL_CH6
:
451 result
= OC6Config(TIMx
, TIM_OC_InitStruct
);
461 * @brief Set the fields of the TIMx input channel configuration data
462 * structure to their default values.
463 * @param TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration data structure)
466 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef
*TIM_ICInitStruct
)
468 /* Set the default configuration */
469 TIM_ICInitStruct
->ICPolarity
= LL_TIM_IC_POLARITY_RISING
;
470 TIM_ICInitStruct
->ICActiveInput
= LL_TIM_ACTIVEINPUT_DIRECTTI
;
471 TIM_ICInitStruct
->ICPrescaler
= LL_TIM_ICPSC_DIV1
;
472 TIM_ICInitStruct
->ICFilter
= LL_TIM_IC_FILTER_FDIV1
;
476 * @brief Configure the TIMx input channel.
477 * @param TIMx Timer Instance
478 * @param Channel This parameter can be one of the following values:
479 * @arg @ref LL_TIM_CHANNEL_CH1
480 * @arg @ref LL_TIM_CHANNEL_CH2
481 * @arg @ref LL_TIM_CHANNEL_CH3
482 * @arg @ref LL_TIM_CHANNEL_CH4
483 * @param TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data structure)
484 * @retval An ErrorStatus enumeration value:
485 * - SUCCESS: TIMx output channel is initialized
486 * - ERROR: TIMx output channel is not initialized
488 ErrorStatus
LL_TIM_IC_Init(TIM_TypeDef
*TIMx
, uint32_t Channel
, LL_TIM_IC_InitTypeDef
*TIM_IC_InitStruct
)
490 ErrorStatus result
= ERROR
;
494 case LL_TIM_CHANNEL_CH1
:
495 result
= IC1Config(TIMx
, TIM_IC_InitStruct
);
497 case LL_TIM_CHANNEL_CH2
:
498 result
= IC2Config(TIMx
, TIM_IC_InitStruct
);
500 case LL_TIM_CHANNEL_CH3
:
501 result
= IC3Config(TIMx
, TIM_IC_InitStruct
);
503 case LL_TIM_CHANNEL_CH4
:
504 result
= IC4Config(TIMx
, TIM_IC_InitStruct
);
514 * @brief Fills each TIM_EncoderInitStruct field with its default value
515 * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface configuration data structure)
518 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef
*TIM_EncoderInitStruct
)
520 /* Set the default configuration */
521 TIM_EncoderInitStruct
->EncoderMode
= LL_TIM_ENCODERMODE_X2_TI1
;
522 TIM_EncoderInitStruct
->IC1Polarity
= LL_TIM_IC_POLARITY_RISING
;
523 TIM_EncoderInitStruct
->IC1ActiveInput
= LL_TIM_ACTIVEINPUT_DIRECTTI
;
524 TIM_EncoderInitStruct
->IC1Prescaler
= LL_TIM_ICPSC_DIV1
;
525 TIM_EncoderInitStruct
->IC1Filter
= LL_TIM_IC_FILTER_FDIV1
;
526 TIM_EncoderInitStruct
->IC2Polarity
= LL_TIM_IC_POLARITY_RISING
;
527 TIM_EncoderInitStruct
->IC2ActiveInput
= LL_TIM_ACTIVEINPUT_DIRECTTI
;
528 TIM_EncoderInitStruct
->IC2Prescaler
= LL_TIM_ICPSC_DIV1
;
529 TIM_EncoderInitStruct
->IC2Filter
= LL_TIM_IC_FILTER_FDIV1
;
533 * @brief Configure the encoder interface of the timer instance.
534 * @param TIMx Timer Instance
535 * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface configuration data structure)
536 * @retval An ErrorStatus enumeration value:
537 * - SUCCESS: TIMx registers are de-initialized
538 * - ERROR: not applicable
540 ErrorStatus
LL_TIM_ENCODER_Init(TIM_TypeDef
*TIMx
, LL_TIM_ENCODER_InitTypeDef
*TIM_EncoderInitStruct
)
545 /* Check the parameters */
546 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx
));
547 assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct
->EncoderMode
));
548 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct
->IC1Polarity
));
549 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct
->IC1ActiveInput
));
550 assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct
->IC1Prescaler
));
551 assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct
->IC1Filter
));
552 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct
->IC2Polarity
));
553 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct
->IC2ActiveInput
));
554 assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct
->IC2Prescaler
));
555 assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct
->IC2Filter
));
557 /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
558 TIMx
->CCER
&= (uint32_t)~(TIM_CCER_CC1E
| TIM_CCER_CC2E
);
560 /* Get the TIMx CCMR1 register value */
561 tmpccmr1
= LL_TIM_ReadReg(TIMx
, CCMR1
);
563 /* Get the TIMx CCER register value */
564 tmpccer
= LL_TIM_ReadReg(TIMx
, CCER
);
567 tmpccmr1
&= (uint32_t)~(TIM_CCMR1_CC1S
| TIM_CCMR1_IC1F
| TIM_CCMR1_IC1PSC
);
568 tmpccmr1
|= (uint32_t)(TIM_EncoderInitStruct
->IC1ActiveInput
>> 16U);
569 tmpccmr1
|= (uint32_t)(TIM_EncoderInitStruct
->IC1Filter
>> 16U);
570 tmpccmr1
|= (uint32_t)(TIM_EncoderInitStruct
->IC1Prescaler
>> 16U);
573 tmpccmr1
&= (uint32_t)~(TIM_CCMR1_CC2S
| TIM_CCMR1_IC2F
| TIM_CCMR1_IC2PSC
);
574 tmpccmr1
|= (uint32_t)(TIM_EncoderInitStruct
->IC2ActiveInput
>> 8U);
575 tmpccmr1
|= (uint32_t)(TIM_EncoderInitStruct
->IC2Filter
>> 8U);
576 tmpccmr1
|= (uint32_t)(TIM_EncoderInitStruct
->IC2Prescaler
>> 8U);
578 /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
579 tmpccer
&= (uint32_t)~(TIM_CCER_CC1P
| TIM_CCER_CC1NP
| TIM_CCER_CC2P
| TIM_CCER_CC2NP
);
580 tmpccer
|= (uint32_t)(TIM_EncoderInitStruct
->IC1Polarity
);
581 tmpccer
|= (uint32_t)(TIM_EncoderInitStruct
->IC2Polarity
<< 4U);
582 tmpccer
|= (uint32_t)(TIM_CCER_CC1E
| TIM_CCER_CC2E
);
584 /* Set encoder mode */
585 LL_TIM_SetEncoderMode(TIMx
, TIM_EncoderInitStruct
->EncoderMode
);
587 /* Write to TIMx CCMR1 */
588 LL_TIM_WriteReg(TIMx
, CCMR1
, tmpccmr1
);
590 /* Write to TIMx CCER */
591 LL_TIM_WriteReg(TIMx
, CCER
, tmpccer
);
597 * @brief Set the fields of the TIMx Hall sensor interface configuration data
598 * structure to their default values.
599 * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface configuration data structure)
602 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef
*TIM_HallSensorInitStruct
)
604 /* Set the default configuration */
605 TIM_HallSensorInitStruct
->IC1Polarity
= LL_TIM_IC_POLARITY_RISING
;
606 TIM_HallSensorInitStruct
->IC1Prescaler
= LL_TIM_ICPSC_DIV1
;
607 TIM_HallSensorInitStruct
->IC1Filter
= LL_TIM_IC_FILTER_FDIV1
;
608 TIM_HallSensorInitStruct
->CommutationDelay
= 0U;
612 * @brief Configure the Hall sensor interface of the timer instance.
613 * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
614 * to the TI1 input channel
615 * @note TIMx slave mode controller is configured in reset mode.
616 Selected internal trigger is TI1F_ED.
617 * @note Channel 1 is configured as input, IC1 is mapped on TRC.
618 * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
619 * between 2 changes on the inputs. It gives information about motor speed.
620 * @note Channel 2 is configured in output PWM 2 mode.
621 * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
622 * @note OC2REF is selected as trigger output on TRGO.
623 * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used
624 * when TIMx operates in Hall sensor interface mode.
625 * @param TIMx Timer Instance
626 * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor interface configuration data structure)
627 * @retval An ErrorStatus enumeration value:
628 * - SUCCESS: TIMx registers are de-initialized
629 * - ERROR: not applicable
631 ErrorStatus
LL_TIM_HALLSENSOR_Init(TIM_TypeDef
*TIMx
, LL_TIM_HALLSENSOR_InitTypeDef
*TIM_HallSensorInitStruct
)
638 /* Check the parameters */
639 assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx
));
640 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct
->IC1Polarity
));
641 assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct
->IC1Prescaler
));
642 assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct
->IC1Filter
));
644 /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
645 TIMx
->CCER
&= (uint32_t)~(TIM_CCER_CC1E
| TIM_CCER_CC2E
);
647 /* Get the TIMx CR2 register value */
648 tmpcr2
= LL_TIM_ReadReg(TIMx
, CR2
);
650 /* Get the TIMx CCMR1 register value */
651 tmpccmr1
= LL_TIM_ReadReg(TIMx
, CCMR1
);
653 /* Get the TIMx CCER register value */
654 tmpccer
= LL_TIM_ReadReg(TIMx
, CCER
);
656 /* Get the TIMx SMCR register value */
657 tmpsmcr
= LL_TIM_ReadReg(TIMx
, SMCR
);
659 /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
660 tmpcr2
|= TIM_CR2_TI1S
;
662 /* OC2REF signal is used as trigger output (TRGO) */
663 tmpcr2
|= LL_TIM_TRGO_OC2REF
;
665 /* Configure the slave mode controller */
666 tmpsmcr
&= (uint32_t)~(TIM_SMCR_TS
| TIM_SMCR_SMS
);
667 tmpsmcr
|= LL_TIM_TS_TI1F_ED
;
668 tmpsmcr
|= LL_TIM_SLAVEMODE_RESET
;
670 /* Configure input channel 1 */
671 tmpccmr1
&= (uint32_t)~(TIM_CCMR1_CC1S
| TIM_CCMR1_IC1F
| TIM_CCMR1_IC1PSC
);
672 tmpccmr1
|= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC
>> 16U);
673 tmpccmr1
|= (uint32_t)(TIM_HallSensorInitStruct
->IC1Filter
>> 16U);
674 tmpccmr1
|= (uint32_t)(TIM_HallSensorInitStruct
->IC1Prescaler
>> 16U);
676 /* Configure input channel 2 */
677 tmpccmr1
&= (uint32_t)~(TIM_CCMR1_OC2M
| TIM_CCMR1_OC2FE
| TIM_CCMR1_OC2PE
| TIM_CCMR1_OC2CE
);
678 tmpccmr1
|= (uint32_t)(LL_TIM_OCMODE_PWM2
<< 8U);
680 /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
681 tmpccer
&= (uint32_t)~(TIM_CCER_CC1P
| TIM_CCER_CC1NP
| TIM_CCER_CC2P
| TIM_CCER_CC2NP
);
682 tmpccer
|= (uint32_t)(TIM_HallSensorInitStruct
->IC1Polarity
);
683 tmpccer
|= (uint32_t)(TIM_CCER_CC1E
| TIM_CCER_CC2E
);
685 /* Write to TIMx CR2 */
686 LL_TIM_WriteReg(TIMx
, CR2
, tmpcr2
);
688 /* Write to TIMx SMCR */
689 LL_TIM_WriteReg(TIMx
, SMCR
, tmpsmcr
);
691 /* Write to TIMx CCMR1 */
692 LL_TIM_WriteReg(TIMx
, CCMR1
, tmpccmr1
);
694 /* Write to TIMx CCER */
695 LL_TIM_WriteReg(TIMx
, CCER
, tmpccer
);
697 /* Write to TIMx CCR2 */
698 LL_TIM_OC_SetCompareCH2(TIMx
, TIM_HallSensorInitStruct
->CommutationDelay
);
704 * @brief Set the fields of the Break and Dead Time configuration data structure
705 * to their default values.
706 * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
709 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef
*TIM_BDTRInitStruct
)
711 /* Set the default configuration */
712 TIM_BDTRInitStruct
->OSSRState
= LL_TIM_OSSR_DISABLE
;
713 TIM_BDTRInitStruct
->OSSIState
= LL_TIM_OSSI_DISABLE
;
714 TIM_BDTRInitStruct
->LockLevel
= LL_TIM_LOCKLEVEL_OFF
;
715 TIM_BDTRInitStruct
->DeadTime
= (uint8_t)0x00;
716 TIM_BDTRInitStruct
->BreakState
= LL_TIM_BREAK_DISABLE
;
717 TIM_BDTRInitStruct
->BreakPolarity
= LL_TIM_BREAK_POLARITY_LOW
;
718 TIM_BDTRInitStruct
->BreakFilter
= LL_TIM_BREAK_FILTER_FDIV1
;
719 TIM_BDTRInitStruct
->Break2State
= LL_TIM_BREAK2_DISABLE
;
720 TIM_BDTRInitStruct
->Break2Polarity
= LL_TIM_BREAK2_POLARITY_LOW
;
721 TIM_BDTRInitStruct
->Break2Filter
= LL_TIM_BREAK2_FILTER_FDIV1
;
722 TIM_BDTRInitStruct
->AutomaticOutput
= LL_TIM_AUTOMATICOUTPUT_DISABLE
;
726 * @brief Configure the Break and Dead Time feature of the timer instance.
727 * @note As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR
728 * and DTG[7:0] can be write-locked depending on the LOCK configuration, it
729 * can be necessary to configure all of them during the first write access to
730 * the TIMx_BDTR register.
731 * @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
732 * a timer instance provides a break input.
733 * @note Macro @ref IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
734 * a timer instance provides a second break input.
735 * @param TIMx Timer Instance
736 * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
737 * @retval An ErrorStatus enumeration value:
738 * - SUCCESS: Break and Dead Time is initialized
739 * - ERROR: not applicable
741 ErrorStatus
LL_TIM_BDTR_Init(TIM_TypeDef
*TIMx
, LL_TIM_BDTR_InitTypeDef
*TIM_BDTRInitStruct
)
743 uint32_t tmpbdtr
= 0;
745 /* Check the parameters */
746 assert_param(IS_TIM_BREAK_INSTANCE(TIMx
));
747 assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct
->OSSRState
));
748 assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct
->OSSIState
));
749 assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct
->LockLevel
));
750 assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct
->BreakState
));
751 assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct
->BreakPolarity
));
752 assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct
->AutomaticOutput
));
754 /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
755 the OSSI State, the dead time value and the Automatic Output Enable Bit */
757 /* Set the BDTR bits */
758 MODIFY_REG(tmpbdtr
, TIM_BDTR_DTG
, TIM_BDTRInitStruct
->DeadTime
);
759 MODIFY_REG(tmpbdtr
, TIM_BDTR_LOCK
, TIM_BDTRInitStruct
->LockLevel
);
760 MODIFY_REG(tmpbdtr
, TIM_BDTR_OSSI
, TIM_BDTRInitStruct
->OSSIState
);
761 MODIFY_REG(tmpbdtr
, TIM_BDTR_OSSR
, TIM_BDTRInitStruct
->OSSRState
);
762 MODIFY_REG(tmpbdtr
, TIM_BDTR_BKE
, TIM_BDTRInitStruct
->BreakState
);
763 MODIFY_REG(tmpbdtr
, TIM_BDTR_BKP
, TIM_BDTRInitStruct
->BreakPolarity
);
764 MODIFY_REG(tmpbdtr
, TIM_BDTR_AOE
, TIM_BDTRInitStruct
->AutomaticOutput
);
765 MODIFY_REG(tmpbdtr
, TIM_BDTR_MOE
, TIM_BDTRInitStruct
->AutomaticOutput
);
766 if (IS_TIM_ADVANCED_INSTANCE(TIMx
))
768 assert_param(IS_LL_TIM_BREAK_FILTER(TIM_BDTRInitStruct
->BreakFilter
));
769 MODIFY_REG(tmpbdtr
, TIM_BDTR_BKF
, TIM_BDTRInitStruct
->BreakFilter
);
772 if (IS_TIM_BKIN2_INSTANCE(TIMx
))
774 assert_param(IS_LL_TIM_BREAK2_STATE(TIM_BDTRInitStruct
->Break2State
));
775 assert_param(IS_LL_TIM_BREAK2_POLARITY(TIM_BDTRInitStruct
->Break2Polarity
));
776 assert_param(IS_LL_TIM_BREAK2_FILTER(TIM_BDTRInitStruct
->Break2Filter
));
778 /* Set the BREAK2 input related BDTR bit-fields */
779 MODIFY_REG(tmpbdtr
, TIM_BDTR_BK2F
, (TIM_BDTRInitStruct
->Break2Filter
));
780 MODIFY_REG(tmpbdtr
, TIM_BDTR_BK2E
, TIM_BDTRInitStruct
->Break2State
);
781 MODIFY_REG(tmpbdtr
, TIM_BDTR_BK2P
, TIM_BDTRInitStruct
->Break2Polarity
);
785 LL_TIM_WriteReg(TIMx
, BDTR
, tmpbdtr
);
797 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
798 * @brief Private functions
802 * @brief Configure the TIMx output channel 1.
803 * @param TIMx Timer Instance
804 * @param TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
805 * @retval An ErrorStatus enumeration value:
806 * - SUCCESS: TIMx registers are de-initialized
807 * - ERROR: not applicable
809 static ErrorStatus
OC1Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
)
815 /* Check the parameters */
816 assert_param(IS_TIM_CC1_INSTANCE(TIMx
));
817 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct
->OCMode
));
818 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCState
));
819 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCPolarity
));
820 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCNState
));
821 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCNPolarity
));
823 /* Disable the Channel 1: Reset the CC1E Bit */
824 CLEAR_BIT(TIMx
->CCER
, TIM_CCER_CC1E
);
826 /* Get the TIMx CCER register value */
827 tmpccer
= LL_TIM_ReadReg(TIMx
, CCER
);
829 /* Get the TIMx CR2 register value */
830 tmpcr2
= LL_TIM_ReadReg(TIMx
, CR2
);
832 /* Get the TIMx CCMR1 register value */
833 tmpccmr1
= LL_TIM_ReadReg(TIMx
, CCMR1
);
835 /* Reset Capture/Compare selection Bits */
836 CLEAR_BIT(tmpccmr1
, TIM_CCMR1_CC1S
);
838 /* Set the Output Compare Mode */
839 MODIFY_REG(tmpccmr1
, TIM_CCMR1_OC1M
, TIM_OCInitStruct
->OCMode
);
841 /* Set the Output Compare Polarity */
842 MODIFY_REG(tmpccer
, TIM_CCER_CC1P
, TIM_OCInitStruct
->OCPolarity
);
844 /* Set the Output State */
845 MODIFY_REG(tmpccer
, TIM_CCER_CC1E
, TIM_OCInitStruct
->OCState
);
847 if (IS_TIM_BREAK_INSTANCE(TIMx
))
849 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCNIdleState
));
850 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCIdleState
));
852 /* Set the complementary output Polarity */
853 MODIFY_REG(tmpccer
, TIM_CCER_CC1NP
, TIM_OCInitStruct
->OCNPolarity
<< 2U);
855 /* Set the complementary output State */
856 MODIFY_REG(tmpccer
, TIM_CCER_CC1NE
, TIM_OCInitStruct
->OCNState
<< 2U);
858 /* Set the Output Idle state */
859 MODIFY_REG(tmpcr2
, TIM_CR2_OIS1
, TIM_OCInitStruct
->OCIdleState
);
861 /* Set the complementary output Idle state */
862 MODIFY_REG(tmpcr2
, TIM_CR2_OIS1N
, TIM_OCInitStruct
->OCNIdleState
<< 1U);
865 /* Write to TIMx CR2 */
866 LL_TIM_WriteReg(TIMx
, CR2
, tmpcr2
);
868 /* Write to TIMx CCMR1 */
869 LL_TIM_WriteReg(TIMx
, CCMR1
, tmpccmr1
);
871 /* Set the Capture Compare Register value */
872 LL_TIM_OC_SetCompareCH1(TIMx
, TIM_OCInitStruct
->CompareValue
);
874 /* Write to TIMx CCER */
875 LL_TIM_WriteReg(TIMx
, CCER
, tmpccer
);
881 * @brief Configure the TIMx output channel 2.
882 * @param TIMx Timer Instance
883 * @param TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
884 * @retval An ErrorStatus enumeration value:
885 * - SUCCESS: TIMx registers are de-initialized
886 * - ERROR: not applicable
888 static ErrorStatus
OC2Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
)
894 /* Check the parameters */
895 assert_param(IS_TIM_CC2_INSTANCE(TIMx
));
896 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct
->OCMode
));
897 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCState
));
898 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCPolarity
));
899 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCNState
));
900 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCNPolarity
));
902 /* Disable the Channel 2: Reset the CC2E Bit */
903 CLEAR_BIT(TIMx
->CCER
, TIM_CCER_CC2E
);
905 /* Get the TIMx CCER register value */
906 tmpccer
= LL_TIM_ReadReg(TIMx
, CCER
);
908 /* Get the TIMx CR2 register value */
909 tmpcr2
= LL_TIM_ReadReg(TIMx
, CR2
);
911 /* Get the TIMx CCMR1 register value */
912 tmpccmr1
= LL_TIM_ReadReg(TIMx
, CCMR1
);
914 /* Reset Capture/Compare selection Bits */
915 CLEAR_BIT(tmpccmr1
, TIM_CCMR1_CC2S
);
917 /* Select the Output Compare Mode */
918 MODIFY_REG(tmpccmr1
, TIM_CCMR1_OC2M
, TIM_OCInitStruct
->OCMode
<< 8U);
920 /* Set the Output Compare Polarity */
921 MODIFY_REG(tmpccer
, TIM_CCER_CC2P
, TIM_OCInitStruct
->OCPolarity
<< 4U);
923 /* Set the Output State */
924 MODIFY_REG(tmpccer
, TIM_CCER_CC2E
, TIM_OCInitStruct
->OCState
<< 4U);
926 if (IS_TIM_BREAK_INSTANCE(TIMx
))
928 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCNIdleState
));
929 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCIdleState
));
931 /* Set the complementary output Polarity */
932 MODIFY_REG(tmpccer
, TIM_CCER_CC2NP
, TIM_OCInitStruct
->OCNPolarity
<< 6U);
934 /* Set the complementary output State */
935 MODIFY_REG(tmpccer
, TIM_CCER_CC2NE
, TIM_OCInitStruct
->OCNState
<< 6U);
937 /* Set the Output Idle state */
938 MODIFY_REG(tmpcr2
, TIM_CR2_OIS2
, TIM_OCInitStruct
->OCIdleState
<< 2U);
940 /* Set the complementary output Idle state */
941 MODIFY_REG(tmpcr2
, TIM_CR2_OIS2N
, TIM_OCInitStruct
->OCNIdleState
<< 3U);
944 /* Write to TIMx CR2 */
945 LL_TIM_WriteReg(TIMx
, CR2
, tmpcr2
);
947 /* Write to TIMx CCMR1 */
948 LL_TIM_WriteReg(TIMx
, CCMR1
, tmpccmr1
);
950 /* Set the Capture Compare Register value */
951 LL_TIM_OC_SetCompareCH2(TIMx
, TIM_OCInitStruct
->CompareValue
);
953 /* Write to TIMx CCER */
954 LL_TIM_WriteReg(TIMx
, CCER
, tmpccer
);
960 * @brief Configure the TIMx output channel 3.
961 * @param TIMx Timer Instance
962 * @param TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
963 * @retval An ErrorStatus enumeration value:
964 * - SUCCESS: TIMx registers are de-initialized
965 * - ERROR: not applicable
967 static ErrorStatus
OC3Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
)
973 /* Check the parameters */
974 assert_param(IS_TIM_CC3_INSTANCE(TIMx
));
975 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct
->OCMode
));
976 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCState
));
977 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCPolarity
));
978 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCNState
));
979 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCNPolarity
));
981 /* Disable the Channel 3: Reset the CC3E Bit */
982 CLEAR_BIT(TIMx
->CCER
, TIM_CCER_CC3E
);
984 /* Get the TIMx CCER register value */
985 tmpccer
= LL_TIM_ReadReg(TIMx
, CCER
);
987 /* Get the TIMx CR2 register value */
988 tmpcr2
= LL_TIM_ReadReg(TIMx
, CR2
);
990 /* Get the TIMx CCMR2 register value */
991 tmpccmr2
= LL_TIM_ReadReg(TIMx
, CCMR2
);
993 /* Reset Capture/Compare selection Bits */
994 CLEAR_BIT(tmpccmr2
, TIM_CCMR2_CC3S
);
996 /* Select the Output Compare Mode */
997 MODIFY_REG(tmpccmr2
, TIM_CCMR2_OC3M
, TIM_OCInitStruct
->OCMode
);
999 /* Set the Output Compare Polarity */
1000 MODIFY_REG(tmpccer
, TIM_CCER_CC3P
, TIM_OCInitStruct
->OCPolarity
<< 8U);
1002 /* Set the Output State */
1003 MODIFY_REG(tmpccer
, TIM_CCER_CC3E
, TIM_OCInitStruct
->OCState
<< 8U);
1005 if (IS_TIM_BREAK_INSTANCE(TIMx
))
1007 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCNIdleState
));
1008 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCIdleState
));
1010 /* Set the complementary output Polarity */
1011 MODIFY_REG(tmpccer
, TIM_CCER_CC3NP
, TIM_OCInitStruct
->OCNPolarity
<< 10U);
1013 /* Set the complementary output State */
1014 MODIFY_REG(tmpccer
, TIM_CCER_CC3NE
, TIM_OCInitStruct
->OCNState
<< 10U);
1016 /* Set the Output Idle state */
1017 MODIFY_REG(tmpcr2
, TIM_CR2_OIS3
, TIM_OCInitStruct
->OCIdleState
<< 4U);
1019 /* Set the complementary output Idle state */
1020 MODIFY_REG(tmpcr2
, TIM_CR2_OIS3N
, TIM_OCInitStruct
->OCNIdleState
<< 5U);
1023 /* Write to TIMx CR2 */
1024 LL_TIM_WriteReg(TIMx
, CR2
, tmpcr2
);
1026 /* Write to TIMx CCMR2 */
1027 LL_TIM_WriteReg(TIMx
, CCMR2
, tmpccmr2
);
1029 /* Set the Capture Compare Register value */
1030 LL_TIM_OC_SetCompareCH3(TIMx
, TIM_OCInitStruct
->CompareValue
);
1032 /* Write to TIMx CCER */
1033 LL_TIM_WriteReg(TIMx
, CCER
, tmpccer
);
1039 * @brief Configure the TIMx output channel 4.
1040 * @param TIMx Timer Instance
1041 * @param TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
1042 * @retval An ErrorStatus enumeration value:
1043 * - SUCCESS: TIMx registers are de-initialized
1044 * - ERROR: not applicable
1046 static ErrorStatus
OC4Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
)
1052 /* Check the parameters */
1053 assert_param(IS_TIM_CC4_INSTANCE(TIMx
));
1054 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct
->OCMode
));
1055 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCState
));
1056 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCPolarity
));
1057 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCNPolarity
));
1058 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCNState
));
1060 /* Disable the Channel 4: Reset the CC4E Bit */
1061 CLEAR_BIT(TIMx
->CCER
, TIM_CCER_CC4E
);
1063 /* Get the TIMx CCER register value */
1064 tmpccer
= LL_TIM_ReadReg(TIMx
, CCER
);
1066 /* Get the TIMx CR2 register value */
1067 tmpcr2
= LL_TIM_ReadReg(TIMx
, CR2
);
1069 /* Get the TIMx CCMR2 register value */
1070 tmpccmr2
= LL_TIM_ReadReg(TIMx
, CCMR2
);
1072 /* Reset Capture/Compare selection Bits */
1073 CLEAR_BIT(tmpccmr2
, TIM_CCMR2_CC4S
);
1075 /* Select the Output Compare Mode */
1076 MODIFY_REG(tmpccmr2
, TIM_CCMR2_OC4M
, TIM_OCInitStruct
->OCMode
<< 8U);
1078 /* Set the Output Compare Polarity */
1079 MODIFY_REG(tmpccer
, TIM_CCER_CC4P
, TIM_OCInitStruct
->OCPolarity
<< 12U);
1081 /* Set the Output State */
1082 MODIFY_REG(tmpccer
, TIM_CCER_CC4E
, TIM_OCInitStruct
->OCState
<< 12U);
1084 if (IS_TIM_BREAK_INSTANCE(TIMx
))
1086 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCNIdleState
));
1087 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCIdleState
));
1089 /* Set the Output Idle state */
1090 MODIFY_REG(tmpcr2
, TIM_CR2_OIS4
, TIM_OCInitStruct
->OCIdleState
<< 6U);
1093 /* Write to TIMx CR2 */
1094 LL_TIM_WriteReg(TIMx
, CR2
, tmpcr2
);
1096 /* Write to TIMx CCMR2 */
1097 LL_TIM_WriteReg(TIMx
, CCMR2
, tmpccmr2
);
1099 /* Set the Capture Compare Register value */
1100 LL_TIM_OC_SetCompareCH4(TIMx
, TIM_OCInitStruct
->CompareValue
);
1102 /* Write to TIMx CCER */
1103 LL_TIM_WriteReg(TIMx
, CCER
, tmpccer
);
1109 * @brief Configure the TIMx output channel 5.
1110 * @param TIMx Timer Instance
1111 * @param TIM_OCInitStruct pointer to the the TIMx output channel 5 configuration data structure
1112 * @retval An ErrorStatus enumeration value:
1113 * - SUCCESS: TIMx registers are de-initialized
1114 * - ERROR: not applicable
1116 static ErrorStatus
OC5Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
)
1121 /* Check the parameters */
1122 assert_param(IS_TIM_CC5_INSTANCE(TIMx
));
1123 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct
->OCMode
));
1124 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCState
));
1125 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCPolarity
));
1126 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCNPolarity
));
1127 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCNState
));
1129 /* Disable the Channel 5: Reset the CC5E Bit */
1130 CLEAR_BIT(TIMx
->CCER
, TIM_CCER_CC5E
);
1132 /* Get the TIMx CCER register value */
1133 tmpccer
= LL_TIM_ReadReg(TIMx
, CCER
);
1135 /* Get the TIMx CCMR3 register value */
1136 tmpccmr3
= LL_TIM_ReadReg(TIMx
, CCMR3
);
1138 /* Select the Output Compare Mode */
1139 MODIFY_REG(tmpccmr3
, TIM_CCMR3_OC5M
, TIM_OCInitStruct
->OCMode
);
1141 /* Set the Output Compare Polarity */
1142 MODIFY_REG(tmpccer
, TIM_CCER_CC5P
, TIM_OCInitStruct
->OCPolarity
<< 16U);
1144 /* Set the Output State */
1145 MODIFY_REG(tmpccer
, TIM_CCER_CC5E
, TIM_OCInitStruct
->OCState
<< 16U);
1147 if (IS_TIM_BREAK_INSTANCE(TIMx
))
1149 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCNIdleState
));
1150 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCIdleState
));
1152 /* Set the Output Idle state */
1153 MODIFY_REG(TIMx
->CR2
, TIM_CR2_OIS5
, TIM_OCInitStruct
->OCIdleState
<< 8U);
1157 /* Write to TIMx CCMR3 */
1158 LL_TIM_WriteReg(TIMx
, CCMR3
, tmpccmr3
);
1160 /* Set the Capture Compare Register value */
1161 LL_TIM_OC_SetCompareCH5(TIMx
, TIM_OCInitStruct
->CompareValue
);
1163 /* Write to TIMx CCER */
1164 LL_TIM_WriteReg(TIMx
, CCER
, tmpccer
);
1170 * @brief Configure the TIMx output channel 6.
1171 * @param TIMx Timer Instance
1172 * @param TIM_OCInitStruct pointer to the the TIMx output channel 6 configuration data structure
1173 * @retval An ErrorStatus enumeration value:
1174 * - SUCCESS: TIMx registers are de-initialized
1175 * - ERROR: not applicable
1177 static ErrorStatus
OC6Config(TIM_TypeDef
*TIMx
, LL_TIM_OC_InitTypeDef
*TIM_OCInitStruct
)
1182 /* Check the parameters */
1183 assert_param(IS_TIM_CC6_INSTANCE(TIMx
));
1184 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct
->OCMode
));
1185 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCState
));
1186 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCPolarity
));
1187 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct
->OCNPolarity
));
1188 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct
->OCNState
));
1190 /* Disable the Channel 5: Reset the CC6E Bit */
1191 CLEAR_BIT(TIMx
->CCER
, TIM_CCER_CC6E
);
1193 /* Get the TIMx CCER register value */
1194 tmpccer
= LL_TIM_ReadReg(TIMx
, CCER
);
1196 /* Get the TIMx CCMR3 register value */
1197 tmpccmr3
= LL_TIM_ReadReg(TIMx
, CCMR3
);
1199 /* Select the Output Compare Mode */
1200 MODIFY_REG(tmpccmr3
, TIM_CCMR3_OC6M
, TIM_OCInitStruct
->OCMode
<< 8U);
1202 /* Set the Output Compare Polarity */
1203 MODIFY_REG(tmpccer
, TIM_CCER_CC6P
, TIM_OCInitStruct
->OCPolarity
<< 20U);
1205 /* Set the Output State */
1206 MODIFY_REG(tmpccer
, TIM_CCER_CC6E
, TIM_OCInitStruct
->OCState
<< 20U);
1208 if (IS_TIM_BREAK_INSTANCE(TIMx
))
1210 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCNIdleState
));
1211 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct
->OCIdleState
));
1213 /* Set the Output Idle state */
1214 MODIFY_REG(TIMx
->CR2
, TIM_CR2_OIS6
, TIM_OCInitStruct
->OCIdleState
<< 10U);
1217 /* Write to TIMx CCMR3 */
1218 LL_TIM_WriteReg(TIMx
, CCMR3
, tmpccmr3
);
1220 /* Set the Capture Compare Register value */
1221 LL_TIM_OC_SetCompareCH6(TIMx
, TIM_OCInitStruct
->CompareValue
);
1223 /* Write to TIMx CCER */
1224 LL_TIM_WriteReg(TIMx
, CCER
, tmpccer
);
1230 * @brief Configure the TIMx input channel 1.
1231 * @param TIMx Timer Instance
1232 * @param TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1233 * @retval An ErrorStatus enumeration value:
1234 * - SUCCESS: TIMx registers are de-initialized
1235 * - ERROR: not applicable
1237 static ErrorStatus
IC1Config(TIM_TypeDef
*TIMx
, LL_TIM_IC_InitTypeDef
*TIM_ICInitStruct
)
1239 /* Check the parameters */
1240 assert_param(IS_TIM_CC1_INSTANCE(TIMx
));
1241 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct
->ICPolarity
));
1242 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct
->ICActiveInput
));
1243 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct
->ICPrescaler
));
1244 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct
->ICFilter
));
1246 /* Disable the Channel 1: Reset the CC1E Bit */
1247 TIMx
->CCER
&= (uint32_t)~TIM_CCER_CC1E
;
1249 /* Select the Input and set the filter and the prescaler value */
1250 MODIFY_REG(TIMx
->CCMR1
,
1251 (TIM_CCMR1_CC1S
| TIM_CCMR1_IC1F
| TIM_CCMR1_IC1PSC
),
1252 (TIM_ICInitStruct
->ICActiveInput
| TIM_ICInitStruct
->ICFilter
| TIM_ICInitStruct
->ICPrescaler
) >> 16U);
1254 /* Select the Polarity and set the CC1E Bit */
1255 MODIFY_REG(TIMx
->CCER
,
1256 (TIM_CCER_CC1P
| TIM_CCER_CC1NP
),
1257 (TIM_ICInitStruct
->ICPolarity
| TIM_CCER_CC1E
));
1263 * @brief Configure the TIMx input channel 2.
1264 * @param TIMx Timer Instance
1265 * @param TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1266 * @retval An ErrorStatus enumeration value:
1267 * - SUCCESS: TIMx registers are de-initialized
1268 * - ERROR: not applicable
1270 static ErrorStatus
IC2Config(TIM_TypeDef
*TIMx
, LL_TIM_IC_InitTypeDef
*TIM_ICInitStruct
)
1272 /* Check the parameters */
1273 assert_param(IS_TIM_CC2_INSTANCE(TIMx
));
1274 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct
->ICPolarity
));
1275 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct
->ICActiveInput
));
1276 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct
->ICPrescaler
));
1277 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct
->ICFilter
));
1279 /* Disable the Channel 2: Reset the CC2E Bit */
1280 TIMx
->CCER
&= (uint32_t)~TIM_CCER_CC2E
;
1282 /* Select the Input and set the filter and the prescaler value */
1283 MODIFY_REG(TIMx
->CCMR1
,
1284 (TIM_CCMR1_CC2S
| TIM_CCMR1_IC2F
| TIM_CCMR1_IC2PSC
),
1285 (TIM_ICInitStruct
->ICActiveInput
| TIM_ICInitStruct
->ICFilter
| TIM_ICInitStruct
->ICPrescaler
) >> 8U);
1287 /* Select the Polarity and set the CC2E Bit */
1288 MODIFY_REG(TIMx
->CCER
,
1289 (TIM_CCER_CC2P
| TIM_CCER_CC2NP
),
1290 ((TIM_ICInitStruct
->ICPolarity
<< 4U) | TIM_CCER_CC2E
));
1296 * @brief Configure the TIMx input channel 3.
1297 * @param TIMx Timer Instance
1298 * @param TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1299 * @retval An ErrorStatus enumeration value:
1300 * - SUCCESS: TIMx registers are de-initialized
1301 * - ERROR: not applicable
1303 static ErrorStatus
IC3Config(TIM_TypeDef
*TIMx
, LL_TIM_IC_InitTypeDef
*TIM_ICInitStruct
)
1305 /* Check the parameters */
1306 assert_param(IS_TIM_CC3_INSTANCE(TIMx
));
1307 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct
->ICPolarity
));
1308 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct
->ICActiveInput
));
1309 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct
->ICPrescaler
));
1310 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct
->ICFilter
));
1312 /* Disable the Channel 3: Reset the CC3E Bit */
1313 TIMx
->CCER
&= (uint32_t)~TIM_CCER_CC3E
;
1315 /* Select the Input and set the filter and the prescaler value */
1316 MODIFY_REG(TIMx
->CCMR2
,
1317 (TIM_CCMR2_CC3S
| TIM_CCMR2_IC3F
| TIM_CCMR2_IC3PSC
),
1318 (TIM_ICInitStruct
->ICActiveInput
| TIM_ICInitStruct
->ICFilter
| TIM_ICInitStruct
->ICPrescaler
) >> 16U);
1320 /* Select the Polarity and set the CC3E Bit */
1321 MODIFY_REG(TIMx
->CCER
,
1322 (TIM_CCER_CC3P
| TIM_CCER_CC3NP
),
1323 ((TIM_ICInitStruct
->ICPolarity
<< 8U) | TIM_CCER_CC3E
));
1329 * @brief Configure the TIMx input channel 4.
1330 * @param TIMx Timer Instance
1331 * @param TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1332 * @retval An ErrorStatus enumeration value:
1333 * - SUCCESS: TIMx registers are de-initialized
1334 * - ERROR: not applicable
1336 static ErrorStatus
IC4Config(TIM_TypeDef
*TIMx
, LL_TIM_IC_InitTypeDef
*TIM_ICInitStruct
)
1338 /* Check the parameters */
1339 assert_param(IS_TIM_CC4_INSTANCE(TIMx
));
1340 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct
->ICPolarity
));
1341 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct
->ICActiveInput
));
1342 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct
->ICPrescaler
));
1343 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct
->ICFilter
));
1345 /* Disable the Channel 4: Reset the CC4E Bit */
1346 TIMx
->CCER
&= (uint32_t)~TIM_CCER_CC4E
;
1348 /* Select the Input and set the filter and the prescaler value */
1349 MODIFY_REG(TIMx
->CCMR2
,
1350 (TIM_CCMR2_CC4S
| TIM_CCMR2_IC4F
| TIM_CCMR2_IC4PSC
),
1351 (TIM_ICInitStruct
->ICActiveInput
| TIM_ICInitStruct
->ICFilter
| TIM_ICInitStruct
->ICPrescaler
) >> 8U);
1353 /* Select the Polarity and set the CC2E Bit */
1354 MODIFY_REG(TIMx
->CCER
,
1355 (TIM_CCER_CC4P
| TIM_CCER_CC4NP
),
1356 ((TIM_ICInitStruct
->ICPolarity
<< 12U) | TIM_CCER_CC4E
));
1370 #endif /* TIM1 || TIM8 || TIM2 || TIM3 || TIM4 || TIM5 ||TIM9 || TIM10 || TIM11 || TIM12 || TIM13 || TIM14 || TIM6 || TIM7 */
1376 #endif /* USE_FULL_LL_DRIVER */
1378 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/