Updated and Validated
[betaflight.git] / src / main / blackbox / blackbox.c
blob552760f1418cb17d8d481896b0a3857105e78af2
1 /*
2 * This file is part of Cleanflight and Betaflight.
4 * Cleanflight and Betaflight are free software. You can redistribute
5 * this software and/or modify this software under the terms of the
6 * GNU General Public License as published by the Free Software
7 * Foundation, either version 3 of the License, or (at your option)
8 * any later version.
10 * Cleanflight and Betaflight are distributed in the hope that they
11 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
12 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 * See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this software.
18 * If not, see <http://www.gnu.org/licenses/>.
21 #include <stdbool.h>
22 #include <stdint.h>
23 #include <string.h>
24 #include <math.h>
26 #include "platform.h"
28 #ifdef USE_BLACKBOX
30 #include "blackbox.h"
31 #include "blackbox_encoding.h"
32 #include "blackbox_fielddefs.h"
33 #include "blackbox_io.h"
35 #include "build/build_config.h"
36 #include "build/debug.h"
37 #include "build/version.h"
39 #include "common/axis.h"
40 #include "common/encoding.h"
41 #include "common/maths.h"
42 #include "common/time.h"
43 #include "common/utils.h"
45 #include "config/config.h"
46 #include "config/feature.h"
48 #include "drivers/compass/compass.h"
49 #include "drivers/sensor.h"
50 #include "drivers/time.h"
52 #include "fc/board_info.h"
53 #include "fc/controlrate_profile.h"
54 #include "fc/parameter_names.h"
55 #include "fc/rc.h"
56 #include "fc/rc_controls.h"
57 #include "fc/rc_modes.h"
58 #include "fc/runtime_config.h"
60 #include "flight/failsafe.h"
61 #include "flight/mixer.h"
62 #include "flight/pid.h"
63 #include "flight/rpm_filter.h"
64 #include "flight/servos.h"
66 #include "io/beeper.h"
67 #include "io/gps.h"
68 #include "io/serial.h"
70 #include "pg/pg.h"
71 #include "pg/pg_ids.h"
72 #include "pg/motor.h"
73 #include "pg/rx.h"
75 #include "rx/rx.h"
77 #include "sensors/acceleration.h"
78 #include "sensors/barometer.h"
79 #include "sensors/battery.h"
80 #include "sensors/compass.h"
81 #include "sensors/gyro.h"
82 #include "sensors/rangefinder.h"
84 #if defined(ENABLE_BLACKBOX_LOGGING_ON_SPIFLASH_BY_DEFAULT)
85 #define DEFAULT_BLACKBOX_DEVICE BLACKBOX_DEVICE_FLASH
86 #elif defined(ENABLE_BLACKBOX_LOGGING_ON_SDCARD_BY_DEFAULT)
87 #define DEFAULT_BLACKBOX_DEVICE BLACKBOX_DEVICE_SDCARD
88 #else
89 #define DEFAULT_BLACKBOX_DEVICE BLACKBOX_DEVICE_SERIAL
90 #endif
92 PG_REGISTER_WITH_RESET_TEMPLATE(blackboxConfig_t, blackboxConfig, PG_BLACKBOX_CONFIG, 2);
94 PG_RESET_TEMPLATE(blackboxConfig_t, blackboxConfig,
95 .sample_rate = BLACKBOX_RATE_QUARTER,
96 .device = DEFAULT_BLACKBOX_DEVICE,
97 .fields_disabled_mask = 0, // default log all fields
98 .mode = BLACKBOX_MODE_NORMAL
101 STATIC_ASSERT((sizeof(blackboxConfig()->fields_disabled_mask) * 8) >= FLIGHT_LOG_FIELD_SELECT_COUNT, too_many_flight_log_fields_selections);
103 #define BLACKBOX_SHUTDOWN_TIMEOUT_MILLIS 200
105 // Some macros to make writing FLIGHT_LOG_FIELD_* constants shorter:
107 #define PREDICT(x) CONCAT(FLIGHT_LOG_FIELD_PREDICTOR_, x)
108 #define ENCODING(x) CONCAT(FLIGHT_LOG_FIELD_ENCODING_, x)
109 #define CONDITION(x) CONCAT(FLIGHT_LOG_FIELD_CONDITION_, x)
110 #define FIELD_SELECT(x) CONCAT(FLIGHT_LOG_FIELD_SELECT_, x)
111 #define UNSIGNED FLIGHT_LOG_FIELD_UNSIGNED
112 #define SIGNED FLIGHT_LOG_FIELD_SIGNED
114 static const char blackboxHeader[] =
115 "H Product:Blackbox flight data recorder by Nicholas Sherlock\n"
116 "H Data version:2\n";
118 static const char* const blackboxFieldHeaderNames[] = {
119 "name",
120 "signed",
121 "predictor",
122 "encoding",
123 "predictor",
124 "encoding"
127 /* All field definition structs should look like this (but with longer arrs): */
128 typedef struct blackboxFieldDefinition_s {
129 const char *name;
130 // If the field name has a number to be included in square brackets [1] afterwards, set it here, or -1 for no brackets:
131 int8_t fieldNameIndex;
133 // Each member of this array will be the value to print for this field for the given header index
134 uint8_t arr[1];
135 } blackboxFieldDefinition_t;
137 #define BLACKBOX_DELTA_FIELD_HEADER_COUNT ARRAYLEN(blackboxFieldHeaderNames)
138 #define BLACKBOX_SIMPLE_FIELD_HEADER_COUNT (BLACKBOX_DELTA_FIELD_HEADER_COUNT - 2)
139 #define BLACKBOX_CONDITIONAL_FIELD_HEADER_COUNT (BLACKBOX_DELTA_FIELD_HEADER_COUNT - 2)
141 typedef struct blackboxSimpleFieldDefinition_s {
142 const char *name;
143 int8_t fieldNameIndex;
145 uint8_t isSigned;
146 uint8_t predict;
147 uint8_t encode;
148 } blackboxSimpleFieldDefinition_t;
150 typedef struct blackboxConditionalFieldDefinition_s {
151 const char *name;
152 int8_t fieldNameIndex;
154 uint8_t isSigned;
155 uint8_t predict;
156 uint8_t encode;
157 uint8_t condition; // Decide whether this field should appear in the log
158 } blackboxConditionalFieldDefinition_t;
160 typedef struct blackboxDeltaFieldDefinition_s {
161 const char *name;
162 int8_t fieldNameIndex;
164 uint8_t isSigned;
165 uint8_t Ipredict;
166 uint8_t Iencode;
167 uint8_t Ppredict;
168 uint8_t Pencode;
169 uint8_t condition; // Decide whether this field should appear in the log
170 } blackboxDeltaFieldDefinition_t;
173 * Description of the blackbox fields we are writing in our main intra (I) and inter (P) frames. This description is
174 * written into the flight log header so the log can be properly interpreted (but these definitions don't actually cause
175 * the encoding to happen, we have to encode the flight log ourselves in write{Inter|Intra}frame() in a way that matches
176 * the encoding we've promised here).
178 static const blackboxDeltaFieldDefinition_t blackboxMainFields[] = {
179 /* loopIteration doesn't appear in P frames since it always increments */
180 {"loopIteration",-1, UNSIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(UNSIGNED_VB), .Ppredict = PREDICT(INC), .Pencode = FLIGHT_LOG_FIELD_ENCODING_NULL, CONDITION(ALWAYS)},
181 /* Time advances pretty steadily so the P-frame prediction is a straight line */
182 {"time", -1, UNSIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(UNSIGNED_VB), .Ppredict = PREDICT(STRAIGHT_LINE), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
183 {"axisP", 0, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(PID)},
184 {"axisP", 1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(PID)},
185 {"axisP", 2, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(PID)},
186 /* I terms get special packed encoding in P frames: */
187 {"axisI", 0, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG2_3S32), CONDITION(PID)},
188 {"axisI", 1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG2_3S32), CONDITION(PID)},
189 {"axisI", 2, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG2_3S32), CONDITION(PID)},
190 {"axisD", 0, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(NONZERO_PID_D_0)},
191 {"axisD", 1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(NONZERO_PID_D_1)},
192 {"axisD", 2, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(NONZERO_PID_D_2)},
193 {"axisF", 0, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(PID)},
194 {"axisF", 1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(PID)},
195 {"axisF", 2, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(PID)},
196 /* rcCommands are encoded together as a group in P-frames: */
197 {"rcCommand", 0, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_4S16), CONDITION(RC_COMMANDS)},
198 {"rcCommand", 1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_4S16), CONDITION(RC_COMMANDS)},
199 {"rcCommand", 2, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_4S16), CONDITION(RC_COMMANDS)},
200 {"rcCommand", 3, UNSIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(UNSIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_4S16), CONDITION(RC_COMMANDS)},
202 // setpoint - define 4 fields like rcCommand to use the same encoding. setpoint[4] contains the mixer throttle
203 {"setpoint", 0, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_4S16), CONDITION(SETPOINT)},
204 {"setpoint", 1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_4S16), CONDITION(SETPOINT)},
205 {"setpoint", 2, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_4S16), CONDITION(SETPOINT)},
206 {"setpoint", 3, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_4S16), CONDITION(SETPOINT)},
208 {"vbatLatest", -1, UNSIGNED, .Ipredict = PREDICT(VBATREF), .Iencode = ENCODING(NEG_14BIT), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), CONDITION(VBAT)},
209 {"amperageLatest",-1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), CONDITION(AMPERAGE_ADC)},
211 #ifdef USE_MAG
212 {"magADC", 0, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), CONDITION(MAG)},
213 {"magADC", 1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), CONDITION(MAG)},
214 {"magADC", 2, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), CONDITION(MAG)},
215 #endif
216 #ifdef USE_BARO
217 {"BaroAlt", -1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), CONDITION(BARO)},
218 #endif
219 #ifdef USE_RANGEFINDER
220 {"surfaceRaw", -1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), CONDITION(RANGEFINDER)},
221 #endif
222 {"rssi", -1, UNSIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(UNSIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), CONDITION(RSSI)},
224 /* Gyros and accelerometers base their P-predictions on the average of the previous 2 frames to reduce noise impact */
225 {"gyroADC", 0, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(GYRO)},
226 {"gyroADC", 1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(GYRO)},
227 {"gyroADC", 2, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(GYRO)},
228 {"accSmooth", 0, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(ACC)},
229 {"accSmooth", 1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(ACC)},
230 {"accSmooth", 2, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(ACC)},
231 {"debug", 0, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(DEBUG_LOG)},
232 {"debug", 1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(DEBUG_LOG)},
233 {"debug", 2, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(DEBUG_LOG)},
234 {"debug", 3, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(DEBUG_LOG)},
235 /* Motors only rarely drops under minthrottle (when stick falls below mincommand), so predict minthrottle for it and use *unsigned* encoding (which is large for negative numbers but more compact for positive ones): */
236 {"motor", 0, UNSIGNED, .Ipredict = PREDICT(MINMOTOR), .Iencode = ENCODING(UNSIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_1)},
237 /* Subsequent motors base their I-frame values on the first one, P-frame values on the average of last two frames: */
238 {"motor", 1, UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_2)},
239 {"motor", 2, UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_3)},
240 {"motor", 3, UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_4)},
241 {"motor", 4, UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_5)},
242 {"motor", 5, UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_6)},
243 {"motor", 6, UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_7)},
244 {"motor", 7, UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_8)},
246 /* Tricopter tail servo */
247 {"servo", 5, UNSIGNED, .Ipredict = PREDICT(1500), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(TRICOPTER)}
250 #ifdef USE_GPS
251 // GPS position/vel frame
252 static const blackboxConditionalFieldDefinition_t blackboxGpsGFields[] = {
253 {"time", -1, UNSIGNED, PREDICT(LAST_MAIN_FRAME_TIME), ENCODING(UNSIGNED_VB), CONDITION(NOT_LOGGING_EVERY_FRAME)},
254 {"GPS_numSat", -1, UNSIGNED, PREDICT(0), ENCODING(UNSIGNED_VB), CONDITION(ALWAYS)},
255 {"GPS_coord", 0, SIGNED, PREDICT(HOME_COORD), ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
256 {"GPS_coord", 1, SIGNED, PREDICT(HOME_COORD), ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
257 {"GPS_altitude", -1, UNSIGNED, PREDICT(0), ENCODING(UNSIGNED_VB), CONDITION(ALWAYS)},
258 {"GPS_speed", -1, UNSIGNED, PREDICT(0), ENCODING(UNSIGNED_VB), CONDITION(ALWAYS)},
259 {"GPS_ground_course", -1, UNSIGNED, PREDICT(0), ENCODING(UNSIGNED_VB), CONDITION(ALWAYS)}
262 // GPS home frame
263 static const blackboxSimpleFieldDefinition_t blackboxGpsHFields[] = {
264 {"GPS_home", 0, SIGNED, PREDICT(0), ENCODING(SIGNED_VB)},
265 {"GPS_home", 1, SIGNED, PREDICT(0), ENCODING(SIGNED_VB)}
267 #endif
269 // Rarely-updated fields
270 static const blackboxSimpleFieldDefinition_t blackboxSlowFields[] = {
271 {"flightModeFlags", -1, UNSIGNED, PREDICT(0), ENCODING(UNSIGNED_VB)},
272 {"stateFlags", -1, UNSIGNED, PREDICT(0), ENCODING(UNSIGNED_VB)},
274 {"failsafePhase", -1, UNSIGNED, PREDICT(0), ENCODING(TAG2_3S32)},
275 {"rxSignalReceived", -1, UNSIGNED, PREDICT(0), ENCODING(TAG2_3S32)},
276 {"rxFlightChannelsValid", -1, UNSIGNED, PREDICT(0), ENCODING(TAG2_3S32)}
279 typedef enum BlackboxState {
280 BLACKBOX_STATE_DISABLED = 0,
281 BLACKBOX_STATE_STOPPED,
282 BLACKBOX_STATE_PREPARE_LOG_FILE,
283 BLACKBOX_STATE_SEND_HEADER,
284 BLACKBOX_STATE_SEND_MAIN_FIELD_HEADER,
285 BLACKBOX_STATE_SEND_GPS_H_HEADER,
286 BLACKBOX_STATE_SEND_GPS_G_HEADER,
287 BLACKBOX_STATE_SEND_SLOW_HEADER,
288 BLACKBOX_STATE_SEND_SYSINFO,
289 BLACKBOX_STATE_CACHE_FLUSH,
290 BLACKBOX_STATE_PAUSED,
291 BLACKBOX_STATE_RUNNING,
292 BLACKBOX_STATE_SHUTTING_DOWN,
293 BLACKBOX_STATE_START_ERASE,
294 BLACKBOX_STATE_ERASING,
295 BLACKBOX_STATE_ERASED
296 } BlackboxState;
299 typedef struct blackboxMainState_s {
300 uint32_t time;
302 int32_t axisPID_P[XYZ_AXIS_COUNT];
303 int32_t axisPID_I[XYZ_AXIS_COUNT];
304 int32_t axisPID_D[XYZ_AXIS_COUNT];
305 int32_t axisPID_F[XYZ_AXIS_COUNT];
307 int16_t rcCommand[4];
308 int16_t setpoint[4];
309 int16_t gyroADC[XYZ_AXIS_COUNT];
310 int16_t accADC[XYZ_AXIS_COUNT];
311 int16_t debug[DEBUG16_VALUE_COUNT];
312 int16_t motor[MAX_SUPPORTED_MOTORS];
313 int16_t servo[MAX_SUPPORTED_SERVOS];
315 uint16_t vbatLatest;
316 int32_t amperageLatest;
318 #ifdef USE_BARO
319 int32_t BaroAlt;
320 #endif
321 #ifdef USE_MAG
322 int16_t magADC[XYZ_AXIS_COUNT];
323 #endif
324 #ifdef USE_RANGEFINDER
325 int32_t surfaceRaw;
326 #endif
327 uint16_t rssi;
328 } blackboxMainState_t;
330 typedef struct blackboxGpsState_s {
331 int32_t GPS_home[2];
332 int32_t GPS_coord[2];
333 uint8_t GPS_numSat;
334 } blackboxGpsState_t;
336 // This data is updated really infrequently:
337 typedef struct blackboxSlowState_s {
338 uint32_t flightModeFlags; // extend this data size (from uint16_t)
339 uint8_t stateFlags;
340 uint8_t failsafePhase;
341 bool rxSignalReceived;
342 bool rxFlightChannelsValid;
343 } __attribute__((__packed__)) blackboxSlowState_t; // We pack this struct so that padding doesn't interfere with memcmp()
345 //From rc_controls.c
346 extern boxBitmask_t rcModeActivationMask;
348 static BlackboxState blackboxState = BLACKBOX_STATE_DISABLED;
350 static uint32_t blackboxLastArmingBeep = 0;
351 static uint32_t blackboxLastFlightModeFlags = 0; // New event tracking of flight modes
353 static struct {
354 uint32_t headerIndex;
356 /* Since these fields are used during different blackbox states (never simultaneously) we can
357 * overlap them to save on RAM
359 union {
360 int fieldIndex;
361 uint32_t startTime;
362 } u;
363 } xmitState;
365 // Cache for FLIGHT_LOG_FIELD_CONDITION_* test results:
366 static uint32_t blackboxConditionCache;
368 STATIC_ASSERT((sizeof(blackboxConditionCache) * 8) >= FLIGHT_LOG_FIELD_CONDITION_LAST, too_many_flight_log_conditions);
370 static uint32_t blackboxIteration;
371 static uint16_t blackboxLoopIndex;
372 static uint16_t blackboxPFrameIndex;
373 static uint16_t blackboxIFrameIndex;
374 // number of flight loop iterations before logging I-frame
375 // typically 32 for 1kHz loop, 64 for 2kHz loop etc
376 STATIC_UNIT_TESTED int16_t blackboxIInterval = 0;
377 // number of flight loop iterations before logging P-frame
378 STATIC_UNIT_TESTED int8_t blackboxPInterval = 0;
379 STATIC_UNIT_TESTED int32_t blackboxSInterval = 0;
380 STATIC_UNIT_TESTED int32_t blackboxSlowFrameIterationTimer;
381 static bool blackboxLoggedAnyFrames;
384 * We store voltages in I-frames relative to this, which was the voltage when the blackbox was activated.
385 * This helps out since the voltage is only expected to fall from that point and we can reduce our diffs
386 * to encode:
388 static uint16_t vbatReference;
390 static blackboxGpsState_t gpsHistory;
391 static blackboxSlowState_t slowHistory;
393 // Keep a history of length 2, plus a buffer for MW to store the new values into
394 static blackboxMainState_t blackboxHistoryRing[3];
396 // These point into blackboxHistoryRing, use them to know where to store history of a given age (0, 1 or 2 generations old)
397 static blackboxMainState_t* blackboxHistory[3];
399 static bool blackboxModeActivationConditionPresent = false;
402 * Return true if it is safe to edit the Blackbox configuration.
404 bool blackboxMayEditConfig(void)
406 return blackboxState <= BLACKBOX_STATE_STOPPED;
409 static bool blackboxIsOnlyLoggingIntraframes(void)
411 return blackboxPInterval == 0;
414 static bool isFieldEnabled(FlightLogFieldSelect_e field)
416 return (blackboxConfig()->fields_disabled_mask & (1 << field)) == 0;
419 static bool testBlackboxConditionUncached(FlightLogFieldCondition condition)
421 switch (condition) {
422 case CONDITION(ALWAYS):
423 return true;
425 case CONDITION(AT_LEAST_MOTORS_1):
426 case CONDITION(AT_LEAST_MOTORS_2):
427 case CONDITION(AT_LEAST_MOTORS_3):
428 case CONDITION(AT_LEAST_MOTORS_4):
429 case CONDITION(AT_LEAST_MOTORS_5):
430 case CONDITION(AT_LEAST_MOTORS_6):
431 case CONDITION(AT_LEAST_MOTORS_7):
432 case CONDITION(AT_LEAST_MOTORS_8):
433 return (getMotorCount() >= condition - FLIGHT_LOG_FIELD_CONDITION_AT_LEAST_MOTORS_1 + 1) && isFieldEnabled(FIELD_SELECT(MOTOR));
435 case CONDITION(TRICOPTER):
436 return (mixerConfig()->mixerMode == MIXER_TRI || mixerConfig()->mixerMode == MIXER_CUSTOM_TRI) && isFieldEnabled(FIELD_SELECT(MOTOR));
438 case CONDITION(PID):
439 return isFieldEnabled(FIELD_SELECT(PID));
441 case CONDITION(NONZERO_PID_D_0):
442 case CONDITION(NONZERO_PID_D_1):
443 case CONDITION(NONZERO_PID_D_2):
444 return (currentPidProfile->pid[condition - FLIGHT_LOG_FIELD_CONDITION_NONZERO_PID_D_0].D != 0) && isFieldEnabled(FIELD_SELECT(PID));
446 case CONDITION(RC_COMMANDS):
447 return isFieldEnabled(FIELD_SELECT(RC_COMMANDS));
449 case CONDITION(SETPOINT):
450 return isFieldEnabled(FIELD_SELECT(SETPOINT));
452 case CONDITION(MAG):
453 #ifdef USE_MAG
454 return sensors(SENSOR_MAG) && isFieldEnabled(FIELD_SELECT(MAG));
455 #else
456 return false;
457 #endif
459 case CONDITION(BARO):
460 #ifdef USE_BARO
461 return sensors(SENSOR_BARO) && isFieldEnabled(FIELD_SELECT(ALTITUDE));
462 #else
463 return false;
464 #endif
466 case CONDITION(VBAT):
467 return (batteryConfig()->voltageMeterSource != VOLTAGE_METER_NONE) && isFieldEnabled(FIELD_SELECT(BATTERY));
469 case CONDITION(AMPERAGE_ADC):
470 return (batteryConfig()->currentMeterSource != CURRENT_METER_NONE) && (batteryConfig()->currentMeterSource != CURRENT_METER_VIRTUAL) && isFieldEnabled(FIELD_SELECT(BATTERY));
472 case CONDITION(RANGEFINDER):
473 #ifdef USE_RANGEFINDER
474 return sensors(SENSOR_RANGEFINDER) && isFieldEnabled(FIELD_SELECT(ALTITUDE));
475 #else
476 return false;
477 #endif
479 case CONDITION(RSSI):
480 return isRssiConfigured() && isFieldEnabled(FIELD_SELECT(RSSI));
482 case FLIGHT_LOG_FIELD_CONDITION_NOT_LOGGING_EVERY_FRAME:
483 return blackboxPInterval != blackboxIInterval;
485 case CONDITION(GYRO):
486 return isFieldEnabled(FIELD_SELECT(GYRO));
488 case CONDITION(ACC):
489 return sensors(SENSOR_ACC) && isFieldEnabled(FIELD_SELECT(ACC));
491 case CONDITION(DEBUG_LOG):
492 return (debugMode != DEBUG_NONE) && isFieldEnabled(FIELD_SELECT(DEBUG_LOG));
494 case CONDITION(NEVER):
495 return false;
497 default:
498 return false;
502 static void blackboxBuildConditionCache(void)
504 blackboxConditionCache = 0;
505 for (FlightLogFieldCondition cond = FLIGHT_LOG_FIELD_CONDITION_FIRST; cond <= FLIGHT_LOG_FIELD_CONDITION_LAST; cond++) {
506 if (testBlackboxConditionUncached(cond)) {
507 blackboxConditionCache |= 1 << cond;
512 static bool testBlackboxCondition(FlightLogFieldCondition condition)
514 return (blackboxConditionCache & (1 << condition)) != 0;
517 static void blackboxSetState(BlackboxState newState)
519 //Perform initial setup required for the new state
520 switch (newState) {
521 case BLACKBOX_STATE_PREPARE_LOG_FILE:
522 blackboxLoggedAnyFrames = false;
523 break;
524 case BLACKBOX_STATE_SEND_HEADER:
525 blackboxHeaderBudget = 0;
526 xmitState.headerIndex = 0;
527 xmitState.u.startTime = millis();
528 break;
529 case BLACKBOX_STATE_SEND_MAIN_FIELD_HEADER:
530 case BLACKBOX_STATE_SEND_GPS_G_HEADER:
531 case BLACKBOX_STATE_SEND_GPS_H_HEADER:
532 case BLACKBOX_STATE_SEND_SLOW_HEADER:
533 xmitState.headerIndex = 0;
534 xmitState.u.fieldIndex = -1;
535 break;
536 case BLACKBOX_STATE_SEND_SYSINFO:
537 xmitState.headerIndex = 0;
538 break;
539 case BLACKBOX_STATE_RUNNING:
540 blackboxSlowFrameIterationTimer = blackboxSInterval; //Force a slow frame to be written on the first iteration
541 break;
542 case BLACKBOX_STATE_SHUTTING_DOWN:
543 xmitState.u.startTime = millis();
544 break;
545 default:
548 blackboxState = newState;
551 static void writeIntraframe(void)
553 blackboxMainState_t *blackboxCurrent = blackboxHistory[0];
555 blackboxWrite('I');
557 blackboxWriteUnsignedVB(blackboxIteration);
558 blackboxWriteUnsignedVB(blackboxCurrent->time);
560 if (testBlackboxCondition(CONDITION(PID))) {
561 blackboxWriteSignedVBArray(blackboxCurrent->axisPID_P, XYZ_AXIS_COUNT);
562 blackboxWriteSignedVBArray(blackboxCurrent->axisPID_I, XYZ_AXIS_COUNT);
564 // Don't bother writing the current D term if the corresponding PID setting is zero
565 for (int x = 0; x < XYZ_AXIS_COUNT; x++) {
566 if (testBlackboxCondition(CONDITION(NONZERO_PID_D_0) + x)) {
567 blackboxWriteSignedVB(blackboxCurrent->axisPID_D[x]);
571 blackboxWriteSignedVBArray(blackboxCurrent->axisPID_F, XYZ_AXIS_COUNT);
574 if (testBlackboxCondition(CONDITION(RC_COMMANDS))) {
575 // Write roll, pitch and yaw first:
576 blackboxWriteSigned16VBArray(blackboxCurrent->rcCommand, 3);
579 * Write the throttle separately from the rest of the RC data as it's unsigned.
580 * Throttle lies in range [PWM_RANGE_MIN..PWM_RANGE_MAX]:
582 blackboxWriteUnsignedVB(blackboxCurrent->rcCommand[THROTTLE]);
585 if (testBlackboxCondition(CONDITION(SETPOINT))) {
586 // Write setpoint roll, pitch, yaw, and throttle
587 blackboxWriteSigned16VBArray(blackboxCurrent->setpoint, 4);
590 if (testBlackboxCondition(CONDITION(VBAT))) {
592 * Our voltage is expected to decrease over the course of the flight, so store our difference from
593 * the reference:
595 * Write 14 bits even if the number is negative (which would otherwise result in 32 bits)
597 blackboxWriteUnsignedVB((vbatReference - blackboxCurrent->vbatLatest) & 0x3FFF);
600 if (testBlackboxCondition(CONDITION(AMPERAGE_ADC))) {
601 // 12bit value directly from ADC
602 blackboxWriteSignedVB(blackboxCurrent->amperageLatest);
605 #ifdef USE_MAG
606 if (testBlackboxCondition(CONDITION(MAG))) {
607 blackboxWriteSigned16VBArray(blackboxCurrent->magADC, XYZ_AXIS_COUNT);
609 #endif
611 #ifdef USE_BARO
612 if (testBlackboxCondition(CONDITION(BARO))) {
613 blackboxWriteSignedVB(blackboxCurrent->BaroAlt);
615 #endif
617 #ifdef USE_RANGEFINDER
618 if (testBlackboxCondition(CONDITION(RANGEFINDER))) {
619 blackboxWriteSignedVB(blackboxCurrent->surfaceRaw);
621 #endif
623 if (testBlackboxCondition(CONDITION(RSSI))) {
624 blackboxWriteUnsignedVB(blackboxCurrent->rssi);
627 if (testBlackboxCondition(CONDITION(GYRO))) {
628 blackboxWriteSigned16VBArray(blackboxCurrent->gyroADC, XYZ_AXIS_COUNT);
631 if (testBlackboxCondition(CONDITION(ACC))) {
632 blackboxWriteSigned16VBArray(blackboxCurrent->accADC, XYZ_AXIS_COUNT);
635 if (testBlackboxCondition(CONDITION(DEBUG_LOG))) {
636 blackboxWriteSigned16VBArray(blackboxCurrent->debug, DEBUG16_VALUE_COUNT);
639 if (isFieldEnabled(FIELD_SELECT(MOTOR))) {
640 //Motors can be below minimum output when disarmed, but that doesn't happen much
641 blackboxWriteUnsignedVB(blackboxCurrent->motor[0] - getMotorOutputLow());
643 //Motors tend to be similar to each other so use the first motor's value as a predictor of the others
644 const int motorCount = getMotorCount();
645 for (int x = 1; x < motorCount; x++) {
646 blackboxWriteSignedVB(blackboxCurrent->motor[x] - blackboxCurrent->motor[0]);
649 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_TRICOPTER)) {
650 //Assume the tail spends most of its time around the center
651 blackboxWriteSignedVB(blackboxCurrent->servo[5] - 1500);
655 //Rotate our history buffers:
657 //The current state becomes the new "before" state
658 blackboxHistory[1] = blackboxHistory[0];
659 //And since we have no other history, we also use it for the "before, before" state
660 blackboxHistory[2] = blackboxHistory[0];
661 //And advance the current state over to a blank space ready to be filled
662 blackboxHistory[0] = ((blackboxHistory[0] - blackboxHistoryRing + 1) % 3) + blackboxHistoryRing;
664 blackboxLoggedAnyFrames = true;
667 static void blackboxWriteMainStateArrayUsingAveragePredictor(int arrOffsetInHistory, int count)
669 int16_t *curr = (int16_t*) ((char*) (blackboxHistory[0]) + arrOffsetInHistory);
670 int16_t *prev1 = (int16_t*) ((char*) (blackboxHistory[1]) + arrOffsetInHistory);
671 int16_t *prev2 = (int16_t*) ((char*) (blackboxHistory[2]) + arrOffsetInHistory);
673 for (int i = 0; i < count; i++) {
674 // Predictor is the average of the previous two history states
675 int32_t predictor = (prev1[i] + prev2[i]) / 2;
677 blackboxWriteSignedVB(curr[i] - predictor);
681 static void writeInterframe(void)
683 blackboxMainState_t *blackboxCurrent = blackboxHistory[0];
684 blackboxMainState_t *blackboxLast = blackboxHistory[1];
686 blackboxWrite('P');
688 //No need to store iteration count since its delta is always 1
691 * Since the difference between the difference between successive times will be nearly zero (due to consistent
692 * looptime spacing), use second-order differences.
694 blackboxWriteSignedVB((int32_t) (blackboxHistory[0]->time - 2 * blackboxHistory[1]->time + blackboxHistory[2]->time));
696 int32_t deltas[8];
697 int32_t setpointDeltas[4];
699 if (testBlackboxCondition(CONDITION(PID))) {
700 arraySubInt32(deltas, blackboxCurrent->axisPID_P, blackboxLast->axisPID_P, XYZ_AXIS_COUNT);
701 blackboxWriteSignedVBArray(deltas, XYZ_AXIS_COUNT);
704 * The PID I field changes very slowly, most of the time +-2, so use an encoding
705 * that can pack all three fields into one byte in that situation.
707 arraySubInt32(deltas, blackboxCurrent->axisPID_I, blackboxLast->axisPID_I, XYZ_AXIS_COUNT);
708 blackboxWriteTag2_3S32(deltas);
711 * The PID D term is frequently set to zero for yaw, which makes the result from the calculation
712 * always zero. So don't bother recording D results when PID D terms are zero.
714 for (int x = 0; x < XYZ_AXIS_COUNT; x++) {
715 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_NONZERO_PID_D_0 + x)) {
716 blackboxWriteSignedVB(blackboxCurrent->axisPID_D[x] - blackboxLast->axisPID_D[x]);
720 arraySubInt32(deltas, blackboxCurrent->axisPID_F, blackboxLast->axisPID_F, XYZ_AXIS_COUNT);
721 blackboxWriteSignedVBArray(deltas, XYZ_AXIS_COUNT);
725 * RC tends to stay the same or fairly small for many frames at a time, so use an encoding that
726 * can pack multiple values per byte:
728 for (int x = 0; x < 4; x++) {
729 deltas[x] = blackboxCurrent->rcCommand[x] - blackboxLast->rcCommand[x];
730 setpointDeltas[x] = blackboxCurrent->setpoint[x] - blackboxLast->setpoint[x];
733 if (testBlackboxCondition(CONDITION(RC_COMMANDS))) {
734 blackboxWriteTag8_4S16(deltas);
736 if (testBlackboxCondition(CONDITION(SETPOINT))) {
737 blackboxWriteTag8_4S16(setpointDeltas);
740 //Check for sensors that are updated periodically (so deltas are normally zero)
741 int optionalFieldCount = 0;
743 if (testBlackboxCondition(CONDITION(VBAT))) {
744 deltas[optionalFieldCount++] = (int32_t) blackboxCurrent->vbatLatest - blackboxLast->vbatLatest;
747 if (testBlackboxCondition(CONDITION(AMPERAGE_ADC))) {
748 deltas[optionalFieldCount++] = blackboxCurrent->amperageLatest - blackboxLast->amperageLatest;
751 #ifdef USE_MAG
752 if (testBlackboxCondition(CONDITION(MAG))) {
753 for (int x = 0; x < XYZ_AXIS_COUNT; x++) {
754 deltas[optionalFieldCount++] = blackboxCurrent->magADC[x] - blackboxLast->magADC[x];
757 #endif
759 #ifdef USE_BARO
760 if (testBlackboxCondition(CONDITION(BARO))) {
761 deltas[optionalFieldCount++] = blackboxCurrent->BaroAlt - blackboxLast->BaroAlt;
763 #endif
765 #ifdef USE_RANGEFINDER
766 if (testBlackboxCondition(CONDITION(RANGEFINDER))) {
767 deltas[optionalFieldCount++] = blackboxCurrent->surfaceRaw - blackboxLast->surfaceRaw;
769 #endif
771 if (testBlackboxCondition(CONDITION(RSSI))) {
772 deltas[optionalFieldCount++] = (int32_t) blackboxCurrent->rssi - blackboxLast->rssi;
775 blackboxWriteTag8_8SVB(deltas, optionalFieldCount);
777 //Since gyros, accs and motors are noisy, base their predictions on the average of the history:
778 if (testBlackboxCondition(CONDITION(GYRO))) {
779 blackboxWriteMainStateArrayUsingAveragePredictor(offsetof(blackboxMainState_t, gyroADC), XYZ_AXIS_COUNT);
781 if (testBlackboxCondition(CONDITION(ACC))) {
782 blackboxWriteMainStateArrayUsingAveragePredictor(offsetof(blackboxMainState_t, accADC), XYZ_AXIS_COUNT);
784 if (testBlackboxCondition(CONDITION(DEBUG_LOG))) {
785 blackboxWriteMainStateArrayUsingAveragePredictor(offsetof(blackboxMainState_t, debug), DEBUG16_VALUE_COUNT);
788 if (isFieldEnabled(FIELD_SELECT(MOTOR))) {
789 blackboxWriteMainStateArrayUsingAveragePredictor(offsetof(blackboxMainState_t, motor), getMotorCount());
791 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_TRICOPTER)) {
792 blackboxWriteSignedVB(blackboxCurrent->servo[5] - blackboxLast->servo[5]);
796 //Rotate our history buffers
797 blackboxHistory[2] = blackboxHistory[1];
798 blackboxHistory[1] = blackboxHistory[0];
799 blackboxHistory[0] = ((blackboxHistory[0] - blackboxHistoryRing + 1) % 3) + blackboxHistoryRing;
801 blackboxLoggedAnyFrames = true;
804 /* Write the contents of the global "slowHistory" to the log as an "S" frame. Because this data is logged so
805 * infrequently, delta updates are not reasonable, so we log independent frames. */
806 static void writeSlowFrame(void)
808 int32_t values[3];
810 blackboxWrite('S');
812 blackboxWriteUnsignedVB(slowHistory.flightModeFlags);
813 blackboxWriteUnsignedVB(slowHistory.stateFlags);
816 * Most of the time these three values will be able to pack into one byte for us:
818 values[0] = slowHistory.failsafePhase;
819 values[1] = slowHistory.rxSignalReceived ? 1 : 0;
820 values[2] = slowHistory.rxFlightChannelsValid ? 1 : 0;
821 blackboxWriteTag2_3S32(values);
823 blackboxSlowFrameIterationTimer = 0;
827 * Load rarely-changing values from the FC into the given structure
829 static void loadSlowState(blackboxSlowState_t *slow)
831 memcpy(&slow->flightModeFlags, &rcModeActivationMask, sizeof(slow->flightModeFlags)); //was flightModeFlags;
832 slow->stateFlags = stateFlags;
833 slow->failsafePhase = failsafePhase();
834 slow->rxSignalReceived = rxIsReceivingSignal();
835 slow->rxFlightChannelsValid = rxAreFlightChannelsValid();
839 * If the data in the slow frame has changed, log a slow frame.
841 * If allowPeriodicWrite is true, the frame is also logged if it has been more than blackboxSInterval logging iterations
842 * since the field was last logged.
844 STATIC_UNIT_TESTED bool writeSlowFrameIfNeeded(void)
846 // Write the slow frame peridocially so it can be recovered if we ever lose sync
847 bool shouldWrite = blackboxSlowFrameIterationTimer >= blackboxSInterval;
849 if (shouldWrite) {
850 loadSlowState(&slowHistory);
851 } else {
852 blackboxSlowState_t newSlowState;
854 loadSlowState(&newSlowState);
856 // Only write a slow frame if it was different from the previous state
857 if (memcmp(&newSlowState, &slowHistory, sizeof(slowHistory)) != 0) {
858 // Use the new state as our new history
859 memcpy(&slowHistory, &newSlowState, sizeof(slowHistory));
860 shouldWrite = true;
864 if (shouldWrite) {
865 writeSlowFrame();
867 return shouldWrite;
870 void blackboxValidateConfig(void)
872 // If we've chosen an unsupported device, change the device to serial
873 switch (blackboxConfig()->device) {
874 #ifdef USE_FLASHFS
875 case BLACKBOX_DEVICE_FLASH:
876 #endif
877 #ifdef USE_SDCARD
878 case BLACKBOX_DEVICE_SDCARD:
879 #endif
880 case BLACKBOX_DEVICE_SERIAL:
881 // Device supported, leave the setting alone
882 break;
884 default:
885 blackboxConfigMutable()->device = BLACKBOX_DEVICE_SERIAL;
889 static void blackboxResetIterationTimers(void)
891 blackboxIteration = 0;
892 blackboxLoopIndex = 0;
893 blackboxIFrameIndex = 0;
894 blackboxPFrameIndex = 0;
895 blackboxSlowFrameIterationTimer = 0;
899 * Start Blackbox logging if it is not already running. Intended to be called upon arming.
901 static void blackboxStart(void)
903 blackboxValidateConfig();
905 if (!blackboxDeviceOpen()) {
906 blackboxSetState(BLACKBOX_STATE_DISABLED);
907 return;
910 memset(&gpsHistory, 0, sizeof(gpsHistory));
912 blackboxHistory[0] = &blackboxHistoryRing[0];
913 blackboxHistory[1] = &blackboxHistoryRing[1];
914 blackboxHistory[2] = &blackboxHistoryRing[2];
916 vbatReference = getBatteryVoltageLatest();
918 //No need to clear the content of blackboxHistoryRing since our first frame will be an intra which overwrites it
921 * We use conditional tests to decide whether or not certain fields should be logged. Since our headers
922 * must always agree with the logged data, the results of these tests must not change during logging. So
923 * cache those now.
925 blackboxBuildConditionCache();
927 blackboxModeActivationConditionPresent = isModeActivationConditionPresent(BOXBLACKBOX);
929 blackboxResetIterationTimers();
932 * Record the beeper's current idea of the last arming beep time, so that we can detect it changing when
933 * it finally plays the beep for this arming event.
935 blackboxLastArmingBeep = getArmingBeepTimeMicros();
936 memcpy(&blackboxLastFlightModeFlags, &rcModeActivationMask, sizeof(blackboxLastFlightModeFlags)); // record startup status
938 blackboxSetState(BLACKBOX_STATE_PREPARE_LOG_FILE);
942 * Begin Blackbox shutdown.
944 void blackboxFinish(void)
946 switch (blackboxState) {
947 case BLACKBOX_STATE_DISABLED:
948 case BLACKBOX_STATE_STOPPED:
949 case BLACKBOX_STATE_SHUTTING_DOWN:
950 // We're already stopped/shutting down
951 break;
952 case BLACKBOX_STATE_RUNNING:
953 case BLACKBOX_STATE_PAUSED:
954 blackboxLogEvent(FLIGHT_LOG_EVENT_LOG_END, NULL);
955 FALLTHROUGH;
956 default:
957 blackboxSetState(BLACKBOX_STATE_SHUTTING_DOWN);
962 * Test Motors Blackbox Logging
964 static bool startedLoggingInTestMode = false;
966 static void startInTestMode(void)
968 if (!startedLoggingInTestMode) {
969 if (blackboxConfig()->device == BLACKBOX_DEVICE_SERIAL) {
970 serialPort_t *sharedBlackboxAndMspPort = findSharedSerialPort(FUNCTION_BLACKBOX, FUNCTION_MSP);
971 if (sharedBlackboxAndMspPort) {
972 return; // When in test mode, we cannot share the MSP and serial logger port!
975 blackboxStart();
976 startedLoggingInTestMode = true;
980 static void stopInTestMode(void)
982 if (startedLoggingInTestMode) {
983 blackboxFinish();
984 startedLoggingInTestMode = false;
988 * We are going to monitor the MSP_SET_MOTOR target variables motor_disarmed[] for values other than minthrottle
989 * on reading a value (i.e. the user is testing the motors), then we enable test mode logging;
990 * we monitor when the values return to minthrottle and start a delay timer (5 seconds); if
991 * the test motors are left at minimum throttle for this delay timer, then we assume we are done testing and
992 * shutdown the logger.
994 * Of course, after the 5 seconds and shutdown of the logger, the system will be re-enabled to allow the
995 * test mode to trigger again; its just that the data will be in a second, third, fourth etc log file.
997 static bool inMotorTestMode(void) {
998 static uint32_t resetTime = 0;
1000 if (!ARMING_FLAG(ARMED) && areMotorsRunning()) {
1001 resetTime = millis() + 5000; // add 5 seconds
1002 return true;
1003 } else {
1004 // Monitor the duration at minimum
1005 return (millis() < resetTime);
1007 return false;
1010 #ifdef USE_GPS
1011 static void writeGPSHomeFrame(void)
1013 blackboxWrite('H');
1015 blackboxWriteSignedVB(GPS_home[0]);
1016 blackboxWriteSignedVB(GPS_home[1]);
1017 //TODO it'd be great if we could grab the GPS current time and write that too
1019 gpsHistory.GPS_home[0] = GPS_home[0];
1020 gpsHistory.GPS_home[1] = GPS_home[1];
1023 static void writeGPSFrame(timeUs_t currentTimeUs)
1025 blackboxWrite('G');
1028 * If we're logging every frame, then a GPS frame always appears just after a frame with the
1029 * currentTime timestamp in the log, so the reader can just use that timestamp for the GPS frame.
1031 * If we're not logging every frame, we need to store the time of this GPS frame.
1033 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_NOT_LOGGING_EVERY_FRAME)) {
1034 // Predict the time of the last frame in the main log
1035 blackboxWriteUnsignedVB(currentTimeUs - blackboxHistory[1]->time);
1038 blackboxWriteUnsignedVB(gpsSol.numSat);
1039 blackboxWriteSignedVB(gpsSol.llh.lat - gpsHistory.GPS_home[GPS_LATITUDE]);
1040 blackboxWriteSignedVB(gpsSol.llh.lon - gpsHistory.GPS_home[GPS_LONGITUDE]);
1041 blackboxWriteUnsignedVB(gpsSol.llh.altCm / 10); // was originally designed to transport meters in int16, but +-3276.7m is a good compromise
1042 blackboxWriteUnsignedVB(gpsSol.groundSpeed);
1043 blackboxWriteUnsignedVB(gpsSol.groundCourse);
1045 gpsHistory.GPS_numSat = gpsSol.numSat;
1046 gpsHistory.GPS_coord[GPS_LATITUDE] = gpsSol.llh.lat;
1047 gpsHistory.GPS_coord[GPS_LONGITUDE] = gpsSol.llh.lon;
1049 #endif
1052 * Fill the current state of the blackbox using values read from the flight controller
1054 static void loadMainState(timeUs_t currentTimeUs)
1056 #ifndef UNIT_TEST
1057 blackboxMainState_t *blackboxCurrent = blackboxHistory[0];
1059 blackboxCurrent->time = currentTimeUs;
1061 for (int i = 0; i < XYZ_AXIS_COUNT; i++) {
1062 blackboxCurrent->axisPID_P[i] = pidData[i].P;
1063 blackboxCurrent->axisPID_I[i] = pidData[i].I;
1064 blackboxCurrent->axisPID_D[i] = pidData[i].D;
1065 blackboxCurrent->axisPID_F[i] = pidData[i].F;
1066 blackboxCurrent->gyroADC[i] = lrintf(gyro.gyroADCf[i]);
1067 #if defined(USE_ACC)
1068 blackboxCurrent->accADC[i] = lrintf(acc.accADC[i]);
1069 #endif
1070 #ifdef USE_MAG
1071 blackboxCurrent->magADC[i] = mag.magADC[i];
1072 #endif
1075 for (int i = 0; i < 4; i++) {
1076 blackboxCurrent->rcCommand[i] = lrintf(rcCommand[i]);
1079 // log the currentPidSetpoint values applied to the PID controller
1080 for (int i = 0; i < XYZ_AXIS_COUNT; i++) {
1081 blackboxCurrent->setpoint[i] = lrintf(pidGetPreviousSetpoint(i));
1083 // log the final throttle value used in the mixer
1084 blackboxCurrent->setpoint[3] = lrintf(mixerGetThrottle() * 1000);
1086 for (int i = 0; i < DEBUG16_VALUE_COUNT; i++) {
1087 blackboxCurrent->debug[i] = debug[i];
1090 const int motorCount = getMotorCount();
1091 for (int i = 0; i < motorCount; i++) {
1092 blackboxCurrent->motor[i] = lrintf(motor[i]);
1095 blackboxCurrent->vbatLatest = getBatteryVoltageLatest();
1096 blackboxCurrent->amperageLatest = getAmperageLatest();
1098 #ifdef USE_BARO
1099 blackboxCurrent->BaroAlt = baro.BaroAlt;
1100 #endif
1102 #ifdef USE_RANGEFINDER
1103 // Store the raw sonar value without applying tilt correction
1104 blackboxCurrent->surfaceRaw = rangefinderGetLatestAltitude();
1105 #endif
1107 blackboxCurrent->rssi = getRssi();
1109 #ifdef USE_SERVOS
1110 //Tail servo for tricopters
1111 blackboxCurrent->servo[5] = servo[5];
1112 #endif
1113 #else
1114 UNUSED(currentTimeUs);
1115 #endif // UNIT_TEST
1119 * Transmit the header information for the given field definitions. Transmitted header lines look like:
1121 * H Field I name:a,b,c
1122 * H Field I predictor:0,1,2
1124 * For all header types, provide a "mainFrameChar" which is the name for the field and will be used to refer to it in the
1125 * header (e.g. P, I etc). For blackboxDeltaField_t fields, also provide deltaFrameChar, otherwise set this to zero.
1127 * Provide an array 'conditions' of FlightLogFieldCondition enums if you want these conditions to decide whether a field
1128 * should be included or not. Otherwise provide NULL for this parameter and NULL for secondCondition.
1130 * Set xmitState.headerIndex to 0 and xmitState.u.fieldIndex to -1 before calling for the first time.
1132 * secondFieldDefinition and secondCondition element pointers need to be provided in order to compute the stride of the
1133 * fieldDefinition and secondCondition arrays.
1135 * Returns true if there is still header left to transmit (so call again to continue transmission).
1137 static bool sendFieldDefinition(char mainFrameChar, char deltaFrameChar, const void *fieldDefinitions,
1138 const void *secondFieldDefinition, int fieldCount, const uint8_t *conditions, const uint8_t *secondCondition)
1140 const blackboxFieldDefinition_t *def;
1141 unsigned int headerCount;
1142 static bool needComma = false;
1143 size_t definitionStride = (char*) secondFieldDefinition - (char*) fieldDefinitions;
1144 size_t conditionsStride = (char*) secondCondition - (char*) conditions;
1146 if (deltaFrameChar) {
1147 headerCount = BLACKBOX_DELTA_FIELD_HEADER_COUNT;
1148 } else {
1149 headerCount = BLACKBOX_SIMPLE_FIELD_HEADER_COUNT;
1153 * We're chunking up the header data so we don't exceed our datarate. So we'll be called multiple times to transmit
1154 * the whole header.
1157 // On our first call we need to print the name of the header and a colon
1158 if (xmitState.u.fieldIndex == -1) {
1159 if (xmitState.headerIndex >= headerCount) {
1160 return false; //Someone probably called us again after we had already completed transmission
1163 uint32_t charsToBeWritten = strlen("H Field x :") + strlen(blackboxFieldHeaderNames[xmitState.headerIndex]);
1165 if (blackboxDeviceReserveBufferSpace(charsToBeWritten) != BLACKBOX_RESERVE_SUCCESS) {
1166 return true; // Try again later
1169 blackboxHeaderBudget -= blackboxPrintf("H Field %c %s:", xmitState.headerIndex >= BLACKBOX_SIMPLE_FIELD_HEADER_COUNT ? deltaFrameChar : mainFrameChar, blackboxFieldHeaderNames[xmitState.headerIndex]);
1171 xmitState.u.fieldIndex++;
1172 needComma = false;
1175 // The longest we expect an integer to be as a string:
1176 const uint32_t LONGEST_INTEGER_STRLEN = 2;
1178 for (; xmitState.u.fieldIndex < fieldCount; xmitState.u.fieldIndex++) {
1179 def = (const blackboxFieldDefinition_t*) ((const char*)fieldDefinitions + definitionStride * xmitState.u.fieldIndex);
1181 if (!conditions || testBlackboxCondition(conditions[conditionsStride * xmitState.u.fieldIndex])) {
1182 // First (over)estimate the length of the string we want to print
1184 int32_t bytesToWrite = 1; // Leading comma
1186 // The first header is a field name
1187 if (xmitState.headerIndex == 0) {
1188 bytesToWrite += strlen(def->name) + strlen("[]") + LONGEST_INTEGER_STRLEN;
1189 } else {
1190 //The other headers are integers
1191 bytesToWrite += LONGEST_INTEGER_STRLEN;
1194 // Now perform the write if the buffer is large enough
1195 if (blackboxDeviceReserveBufferSpace(bytesToWrite) != BLACKBOX_RESERVE_SUCCESS) {
1196 // Ran out of space!
1197 return true;
1200 blackboxHeaderBudget -= bytesToWrite;
1202 if (needComma) {
1203 blackboxWrite(',');
1204 } else {
1205 needComma = true;
1208 // The first header is a field name
1209 if (xmitState.headerIndex == 0) {
1210 blackboxWriteString(def->name);
1212 // Do we need to print an index in brackets after the name?
1213 if (def->fieldNameIndex != -1) {
1214 blackboxPrintf("[%d]", def->fieldNameIndex);
1216 } else {
1217 //The other headers are integers
1218 blackboxPrintf("%d", def->arr[xmitState.headerIndex - 1]);
1223 // Did we complete this line?
1224 if (xmitState.u.fieldIndex == fieldCount && blackboxDeviceReserveBufferSpace(1) == BLACKBOX_RESERVE_SUCCESS) {
1225 blackboxHeaderBudget--;
1226 blackboxWrite('\n');
1227 xmitState.headerIndex++;
1228 xmitState.u.fieldIndex = -1;
1231 return xmitState.headerIndex < headerCount;
1234 // Buf must be at least FORMATTED_DATE_TIME_BUFSIZE
1235 STATIC_UNIT_TESTED char *blackboxGetStartDateTime(char *buf)
1237 #ifdef USE_RTC_TIME
1238 dateTime_t dt;
1239 // rtcGetDateTime will fill dt with 0000-01-01T00:00:00
1240 // when time is not known.
1241 rtcGetDateTime(&dt);
1242 dateTimeFormatLocal(buf, &dt);
1243 #else
1244 buf = "0000-01-01T00:00:00.000";
1245 #endif
1247 return buf;
1250 #ifndef BLACKBOX_PRINT_HEADER_LINE
1251 #define BLACKBOX_PRINT_HEADER_LINE(name, format, ...) case __COUNTER__: \
1252 blackboxPrintfHeaderLine(name, format, __VA_ARGS__); \
1253 break;
1254 #define BLACKBOX_PRINT_HEADER_LINE_CUSTOM(...) case __COUNTER__: \
1255 {__VA_ARGS__}; \
1256 break;
1257 #endif
1260 * Transmit a portion of the system information headers. Call the first time with xmitState.headerIndex == 0. Returns
1261 * true iff transmission is complete, otherwise call again later to continue transmission.
1263 static bool blackboxWriteSysinfo(void)
1265 #ifndef UNIT_TEST
1266 const uint16_t motorOutputLowInt = lrintf(getMotorOutputLow());
1267 const uint16_t motorOutputHighInt = lrintf(getMotorOutputHigh());
1269 // Make sure we have enough room in the buffer for our longest line (as of this writing, the "Firmware date" line)
1270 if (blackboxDeviceReserveBufferSpace(64) != BLACKBOX_RESERVE_SUCCESS) {
1271 return false;
1274 char buf[FORMATTED_DATE_TIME_BUFSIZE];
1276 #ifdef USE_RC_SMOOTHING_FILTER
1277 rcSmoothingFilter_t *rcSmoothingData = getRcSmoothingData();
1278 #endif
1280 const controlRateConfig_t *currentControlRateProfile = controlRateProfiles(systemConfig()->activeRateProfile);
1281 switch (xmitState.headerIndex) {
1282 BLACKBOX_PRINT_HEADER_LINE("Firmware type", "%s", "Cleanflight");
1283 BLACKBOX_PRINT_HEADER_LINE("Firmware revision", "%s %s (%s) %s", FC_FIRMWARE_NAME, FC_VERSION_STRING, shortGitRevision, targetName);
1284 BLACKBOX_PRINT_HEADER_LINE("Firmware date", "%s %s", buildDate, buildTime);
1285 #ifdef USE_BOARD_INFO
1286 BLACKBOX_PRINT_HEADER_LINE("Board information", "%s %s", getManufacturerId(), getBoardName());
1287 #endif
1288 BLACKBOX_PRINT_HEADER_LINE("Log start datetime", "%s", blackboxGetStartDateTime(buf));
1289 BLACKBOX_PRINT_HEADER_LINE("Craft name", "%s", pilotConfig()->name);
1290 BLACKBOX_PRINT_HEADER_LINE("I interval", "%d", blackboxIInterval);
1291 BLACKBOX_PRINT_HEADER_LINE("P interval", "%d", blackboxPInterval);
1292 BLACKBOX_PRINT_HEADER_LINE("P ratio", "%d", (uint16_t)(blackboxIInterval / blackboxPInterval));
1293 BLACKBOX_PRINT_HEADER_LINE("minthrottle", "%d", motorConfig()->minthrottle);
1294 BLACKBOX_PRINT_HEADER_LINE("maxthrottle", "%d", motorConfig()->maxthrottle);
1295 BLACKBOX_PRINT_HEADER_LINE("gyro_scale","0x%x", castFloatBytesToInt(1.0f));
1296 BLACKBOX_PRINT_HEADER_LINE("motorOutput", "%d,%d", motorOutputLowInt, motorOutputHighInt);
1297 #if defined(USE_ACC)
1298 BLACKBOX_PRINT_HEADER_LINE("acc_1G", "%u", acc.dev.acc_1G);
1299 #endif
1301 BLACKBOX_PRINT_HEADER_LINE_CUSTOM(
1302 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_VBAT)) {
1303 blackboxPrintfHeaderLine("vbat_scale", "%u", voltageSensorADCConfig(VOLTAGE_SENSOR_ADC_VBAT)->vbatscale);
1304 } else {
1305 xmitState.headerIndex += 2; // Skip the next two vbat fields too
1309 BLACKBOX_PRINT_HEADER_LINE("vbatcellvoltage", "%u,%u,%u", batteryConfig()->vbatmincellvoltage,
1310 batteryConfig()->vbatwarningcellvoltage,
1311 batteryConfig()->vbatmaxcellvoltage);
1312 BLACKBOX_PRINT_HEADER_LINE("vbatref", "%u", vbatReference);
1314 BLACKBOX_PRINT_HEADER_LINE_CUSTOM(
1315 if (batteryConfig()->currentMeterSource == CURRENT_METER_ADC) {
1316 blackboxPrintfHeaderLine("currentSensor", "%d,%d",currentSensorADCConfig()->offset, currentSensorADCConfig()->scale);
1320 BLACKBOX_PRINT_HEADER_LINE("looptime", "%d", gyro.sampleLooptime);
1321 BLACKBOX_PRINT_HEADER_LINE("gyro_sync_denom", "%d", 1);
1322 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_PID_PROCESS_DENOM, "%d", activePidLoopDenom);
1323 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_THR_MID, "%d", currentControlRateProfile->thrMid8);
1324 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_THR_EXPO, "%d", currentControlRateProfile->thrExpo8);
1325 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_TPA_RATE, "%d", currentControlRateProfile->tpa_rate);
1326 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_TPA_BREAKPOINT, "%d", currentControlRateProfile->tpa_breakpoint);
1327 BLACKBOX_PRINT_HEADER_LINE("rc_rates", "%d,%d,%d", currentControlRateProfile->rcRates[ROLL],
1328 currentControlRateProfile->rcRates[PITCH],
1329 currentControlRateProfile->rcRates[YAW]);
1330 BLACKBOX_PRINT_HEADER_LINE("rc_expo", "%d,%d,%d", currentControlRateProfile->rcExpo[ROLL],
1331 currentControlRateProfile->rcExpo[PITCH],
1332 currentControlRateProfile->rcExpo[YAW]);
1333 BLACKBOX_PRINT_HEADER_LINE("rates", "%d,%d,%d", currentControlRateProfile->rates[ROLL],
1334 currentControlRateProfile->rates[PITCH],
1335 currentControlRateProfile->rates[YAW]);
1336 BLACKBOX_PRINT_HEADER_LINE("rate_limits", "%d,%d,%d", currentControlRateProfile->rate_limit[ROLL],
1337 currentControlRateProfile->rate_limit[PITCH],
1338 currentControlRateProfile->rate_limit[YAW]);
1339 BLACKBOX_PRINT_HEADER_LINE("rollPID", "%d,%d,%d", currentPidProfile->pid[PID_ROLL].P,
1340 currentPidProfile->pid[PID_ROLL].I,
1341 currentPidProfile->pid[PID_ROLL].D);
1342 BLACKBOX_PRINT_HEADER_LINE("pitchPID", "%d,%d,%d", currentPidProfile->pid[PID_PITCH].P,
1343 currentPidProfile->pid[PID_PITCH].I,
1344 currentPidProfile->pid[PID_PITCH].D);
1345 BLACKBOX_PRINT_HEADER_LINE("yawPID", "%d,%d,%d", currentPidProfile->pid[PID_YAW].P,
1346 currentPidProfile->pid[PID_YAW].I,
1347 currentPidProfile->pid[PID_YAW].D);
1348 BLACKBOX_PRINT_HEADER_LINE("levelPID", "%d,%d,%d", currentPidProfile->pid[PID_LEVEL].P,
1349 currentPidProfile->pid[PID_LEVEL].I,
1350 currentPidProfile->pid[PID_LEVEL].D);
1351 BLACKBOX_PRINT_HEADER_LINE("magPID", "%d", currentPidProfile->pid[PID_MAG].P);
1352 #ifdef USE_D_MIN
1353 BLACKBOX_PRINT_HEADER_LINE("d_min", "%d,%d,%d", currentPidProfile->d_min[ROLL],
1354 currentPidProfile->d_min[PITCH],
1355 currentPidProfile->d_min[YAW]);
1356 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_D_MAX_GAIN, "%d", currentPidProfile->d_min_gain);
1357 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_D_MAX_ADVANCE, "%d", currentPidProfile->d_min_advance);
1358 #endif
1359 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DTERM_LPF1_TYPE, "%d", currentPidProfile->dterm_lpf1_type);
1360 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DTERM_LPF1_STATIC_HZ, "%d", currentPidProfile->dterm_lpf1_static_hz);
1361 #ifdef USE_DYN_LPF
1362 BLACKBOX_PRINT_HEADER_LINE("dterm_lpf1_dyn_hz", "%d,%d", currentPidProfile->dterm_lpf1_dyn_min_hz,
1363 currentPidProfile->dterm_lpf1_dyn_max_hz);
1364 #endif
1365 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DTERM_LPF2_TYPE, "%d", currentPidProfile->dterm_lpf2_type);
1366 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DTERM_LPF2_STATIC_HZ, "%d", currentPidProfile->dterm_lpf2_static_hz);
1367 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_YAW_LOWPASS_HZ, "%d", currentPidProfile->yaw_lowpass_hz);
1368 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DTERM_NOTCH_HZ, "%d", currentPidProfile->dterm_notch_hz);
1369 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DTERM_NOTCH_CUTOFF, "%d", currentPidProfile->dterm_notch_cutoff);
1370 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_ITERM_WINDUP, "%d", currentPidProfile->itermWindupPointPercent);
1371 #if defined(USE_ITERM_RELAX)
1372 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_ITERM_RELAX, "%d", currentPidProfile->iterm_relax);
1373 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_ITERM_RELAX_TYPE, "%d", currentPidProfile->iterm_relax_type);
1374 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_ITERM_RELAX_CUTOFF, "%d", currentPidProfile->iterm_relax_cutoff);
1375 #endif
1376 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_PID_AT_MIN_THROTTLE, "%d", currentPidProfile->pidAtMinThrottle);
1378 // Betaflight PID controller parameters
1379 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_ANTI_GRAVITY_MODE, "%d", currentPidProfile->antiGravityMode);
1380 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_ANTI_GRAVITY_THRESHOLD, "%d", currentPidProfile->itermThrottleThreshold);
1381 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_ANTI_GRAVITY_GAIN, "%d", currentPidProfile->itermAcceleratorGain);
1382 #ifdef USE_ABSOLUTE_CONTROL
1383 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_ABS_CONTROL_GAIN, "%d", currentPidProfile->abs_control_gain);
1384 #endif
1385 #ifdef USE_INTEGRATED_YAW_CONTROL
1386 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_USE_INTEGRATED_YAW, "%d", currentPidProfile->use_integrated_yaw);
1387 #endif
1388 BLACKBOX_PRINT_HEADER_LINE("ff_weight", "%d,%d,%d", currentPidProfile->pid[PID_ROLL].F,
1389 currentPidProfile->pid[PID_PITCH].F,
1390 currentPidProfile->pid[PID_YAW].F);
1391 #ifdef USE_FEEDFORWARD
1392 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_FEEDFORWARD_TRANSITION, "%d", currentPidProfile->feedforward_transition);
1393 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_FEEDFORWARD_AVERAGING, "%d", currentPidProfile->feedforward_averaging);
1394 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_FEEDFORWARD_SMOOTH_FACTOR, "%d", currentPidProfile->feedforward_smooth_factor);
1395 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_FEEDFORWARD_JITTER_FACTOR, "%d", currentPidProfile->feedforward_jitter_factor);
1396 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_FEEDFORWARD_BOOST, "%d", currentPidProfile->feedforward_boost);
1397 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_FEEDFORWARD_MAX_RATE_LIMIT, "%d", currentPidProfile->feedforward_max_rate_limit);
1398 #endif
1400 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_ACC_LIMIT_YAW, "%d", currentPidProfile->yawRateAccelLimit);
1401 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_ACC_LIMIT, "%d", currentPidProfile->rateAccelLimit);
1402 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_PIDSUM_LIMIT, "%d", currentPidProfile->pidSumLimit);
1403 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_PIDSUM_LIMIT_YAW, "%d", currentPidProfile->pidSumLimitYaw);
1404 // End of Betaflight controller parameters
1406 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DEADBAND, "%d", rcControlsConfig()->deadband);
1407 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_YAW_DEADBAND, "%d", rcControlsConfig()->yaw_deadband);
1409 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_GYRO_HARDWARE_LPF, "%d", gyroConfig()->gyro_hardware_lpf);
1410 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_GYRO_LPF1_TYPE, "%d", gyroConfig()->gyro_lpf1_type);
1411 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_GYRO_LPF1_STATIC_HZ, "%d", gyroConfig()->gyro_lpf1_static_hz);
1412 #ifdef USE_DYN_LPF
1413 BLACKBOX_PRINT_HEADER_LINE("gyro_lpf1_dyn_hz", "%d,%d", gyroConfig()->gyro_lpf1_dyn_min_hz,
1414 gyroConfig()->gyro_lpf1_dyn_max_hz);
1415 #endif
1416 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_GYRO_LPF2_TYPE, "%d", gyroConfig()->gyro_lpf2_type);
1417 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_GYRO_LPF2_STATIC_HZ, "%d", gyroConfig()->gyro_lpf2_static_hz);
1418 BLACKBOX_PRINT_HEADER_LINE("gyro_notch_hz", "%d,%d", gyroConfig()->gyro_soft_notch_hz_1,
1419 gyroConfig()->gyro_soft_notch_hz_2);
1420 BLACKBOX_PRINT_HEADER_LINE("gyro_notch_cutoff", "%d,%d", gyroConfig()->gyro_soft_notch_cutoff_1,
1421 gyroConfig()->gyro_soft_notch_cutoff_2);
1422 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_GYRO_TO_USE, "%d", gyroConfig()->gyro_to_use);
1423 #ifdef USE_DYN_NOTCH_FILTER
1424 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DYN_NOTCH_MAX_HZ, "%d", dynNotchConfig()->dyn_notch_max_hz);
1425 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DYN_NOTCH_COUNT, "%d", dynNotchConfig()->dyn_notch_count);
1426 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DYN_NOTCH_Q, "%d", dynNotchConfig()->dyn_notch_q);
1427 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DYN_NOTCH_MIN_HZ, "%d", dynNotchConfig()->dyn_notch_min_hz);
1428 #endif
1429 #ifdef USE_DSHOT_TELEMETRY
1430 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DSHOT_BIDIR, "%d", motorConfig()->dev.useDshotTelemetry);
1431 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_MOTOR_POLES, "%d", motorConfig()->motorPoleCount);
1432 #endif
1433 #ifdef USE_RPM_FILTER
1434 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_RPM_FILTER_HARMONICS, "%d", rpmFilterConfig()->rpm_filter_harmonics);
1435 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_RPM_FILTER_Q, "%d", rpmFilterConfig()->rpm_filter_q);
1436 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_RPM_FILTER_MIN_HZ, "%d", rpmFilterConfig()->rpm_filter_min_hz);
1437 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_RPM_FILTER_FADE_RANGE_HZ, "%d", rpmFilterConfig()->rpm_filter_fade_range_hz);
1438 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_RPM_FILTER_LPF_HZ, "%d", rpmFilterConfig()->rpm_filter_lpf_hz);
1439 #endif
1440 #if defined(USE_ACC)
1441 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_ACC_LPF_HZ, "%d", (int)(accelerometerConfig()->acc_lpf_hz * 100.0f));
1442 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_ACC_HARDWARE, "%d", accelerometerConfig()->acc_hardware);
1443 #endif
1444 #ifdef USE_BARO
1445 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_BARO_HARDWARE, "%d", barometerConfig()->baro_hardware);
1446 #endif
1447 #ifdef USE_MAG
1448 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_MAG_HARDWARE, "%d", compassConfig()->mag_hardware);
1449 #endif
1450 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_GYRO_CAL_ON_FIRST_ARM, "%d", armingConfig()->gyro_cal_on_first_arm);
1451 BLACKBOX_PRINT_HEADER_LINE("airmode_activate_throttle", "%d", rxConfig()->airModeActivateThreshold);
1452 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_SERIAL_RX_PROVIDER, "%d", rxConfig()->serialrx_provider);
1453 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_USE_UNSYNCED_PWM, "%d", motorConfig()->dev.useUnsyncedPwm);
1454 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_MOTOR_PWM_PROTOCOL, "%d", motorConfig()->dev.motorPwmProtocol);
1455 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_MOTOR_PWM_RATE, "%d", motorConfig()->dev.motorPwmRate);
1456 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DSHOT_IDLE_VALUE, "%d", motorConfig()->digitalIdleOffsetValue);
1457 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DEBUG_MODE, "%d", debugMode);
1458 BLACKBOX_PRINT_HEADER_LINE("features", "%d", featureConfig()->enabledFeatures);
1460 #ifdef USE_RC_SMOOTHING_FILTER
1461 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_RC_SMOOTHING, "%d", rxConfig()->rc_smoothing_mode);
1462 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_RC_SMOOTHING_AUTO_FACTOR, "%d", rxConfig()->rc_smoothing_auto_factor_rpy);
1463 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_RC_SMOOTHING_AUTO_FACTOR_THROTTLE, "%d", rxConfig()->rc_smoothing_auto_factor_throttle);
1465 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_RC_SMOOTHING_FEEDFORWARD_CUTOFF, "%d", rcSmoothingData->ffCutoffSetting);
1466 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_RC_SMOOTHING_SETPOINT_CUTOFF, "%d", rcSmoothingData->setpointCutoffSetting);
1467 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_RC_SMOOTHING_THROTTLE_CUTOFF, "%d", rcSmoothingData->throttleCutoffSetting);
1468 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_RC_SMOOTHING_DEBUG_AXIS, "%d", rcSmoothingData->debugAxis);
1469 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_RC_SMOOTHING_ACTIVE_CUTOFFS, "%d,%d,%d", rcSmoothingData->feedforwardCutoffFrequency,
1470 rcSmoothingData->setpointCutoffFrequency,
1471 rcSmoothingData->throttleCutoffFrequency);
1472 BLACKBOX_PRINT_HEADER_LINE("rc_smoothing_rx_average", "%d", rcSmoothingData->averageFrameTimeUs);
1473 #endif // USE_RC_SMOOTHING_FILTER
1474 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_RATES_TYPE, "%d", currentControlRateProfile->rates_type);
1476 BLACKBOX_PRINT_HEADER_LINE("fields_disabled_mask", "%d", blackboxConfig()->fields_disabled_mask);
1478 #ifdef USE_BATTERY_VOLTAGE_SAG_COMPENSATION
1479 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_VBAT_SAG_COMPENSATION, "%d", currentPidProfile->vbat_sag_compensation);
1480 #endif
1482 #if defined(USE_DYN_IDLE)
1483 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DYN_IDLE_MIN_RPM, "%d", currentPidProfile->dyn_idle_min_rpm);
1484 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DYN_IDLE_P_GAIN, "%d", currentPidProfile->dyn_idle_p_gain);
1485 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DYN_IDLE_I_GAIN, "%d", currentPidProfile->dyn_idle_i_gain);
1486 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DYN_IDLE_D_GAIN, "%d", currentPidProfile->dyn_idle_d_gain);
1487 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_DYN_IDLE_MAX_INCREASE, "%d", currentPidProfile->dyn_idle_max_increase);
1488 #endif
1490 #ifdef USE_SIMPLIFIED_TUNING
1491 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_SIMPLIFIED_PIDS_MODE, "%d", currentPidProfile->simplified_pids_mode);
1492 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_SIMPLIFIED_MASTER_MULTIPLIER, "%d", currentPidProfile->simplified_master_multiplier);
1493 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_SIMPLIFIED_I_GAIN, "%d", currentPidProfile->simplified_i_gain);
1494 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_SIMPLIFIED_D_GAIN, "%d", currentPidProfile->simplified_d_gain);
1495 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_SIMPLIFIED_PI_GAIN, "%d", currentPidProfile->simplified_pi_gain);
1496 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_SIMPLIFIED_DMAX_GAIN, "%d", currentPidProfile->simplified_dmin_ratio);
1497 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_SIMPLIFIED_FEEDFORWARD_GAIN, "%d", currentPidProfile->simplified_feedforward_gain);
1498 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_SIMPLIFIED_PITCH_D_GAIN, "%d", currentPidProfile->simplified_roll_pitch_ratio);
1499 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_SIMPLIFIED_PITCH_PI_GAIN, "%d", currentPidProfile->simplified_pitch_pi_gain);
1500 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_SIMPLIFIED_DTERM_FILTER, "%d", currentPidProfile->simplified_dterm_filter);
1501 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_SIMPLIFIED_DTERM_FILTER_MULTIPLIER, "%d", currentPidProfile->simplified_dterm_filter_multiplier);
1502 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_SIMPLIFIED_GYRO_FILTER, "%d", gyroConfig()->simplified_gyro_filter);
1503 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_SIMPLIFIED_GYRO_FILTER_MULTIPLIER, "%d", gyroConfig()->simplified_gyro_filter_multiplier);
1504 #endif
1506 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_MOTOR_OUTPUT_LIMIT, "%d", currentPidProfile->motor_output_limit);
1507 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_THROTTLE_LIMIT_TYPE, "%d", currentControlRateProfile->throttle_limit_type);
1508 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_THROTTLE_LIMIT_PERCENT, "%d", currentControlRateProfile->throttle_limit_percent);
1509 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_THROTTLE_BOOST, "%d", currentPidProfile->throttle_boost);
1510 BLACKBOX_PRINT_HEADER_LINE(PARAM_NAME_THROTTLE_BOOST_CUTOFF, "%d", currentPidProfile->throttle_boost_cutoff)
1512 default:
1513 return true;
1516 xmitState.headerIndex++;
1517 #endif // UNIT_TEST
1518 return false;
1522 * Write the given event to the log immediately
1524 void blackboxLogEvent(FlightLogEvent event, flightLogEventData_t *data)
1526 // Only allow events to be logged after headers have been written
1527 if (!(blackboxState == BLACKBOX_STATE_RUNNING || blackboxState == BLACKBOX_STATE_PAUSED)) {
1528 return;
1531 //Shared header for event frames
1532 blackboxWrite('E');
1533 blackboxWrite(event);
1535 //Now serialize the data for this specific frame type
1536 switch (event) {
1537 case FLIGHT_LOG_EVENT_SYNC_BEEP:
1538 blackboxWriteUnsignedVB(data->syncBeep.time);
1539 break;
1540 case FLIGHT_LOG_EVENT_FLIGHTMODE: // New flightmode flags write
1541 blackboxWriteUnsignedVB(data->flightMode.flags);
1542 blackboxWriteUnsignedVB(data->flightMode.lastFlags);
1543 break;
1544 case FLIGHT_LOG_EVENT_DISARM:
1545 blackboxWriteUnsignedVB(data->disarm.reason);
1546 break;
1547 case FLIGHT_LOG_EVENT_INFLIGHT_ADJUSTMENT:
1548 if (data->inflightAdjustment.floatFlag) {
1549 blackboxWrite(data->inflightAdjustment.adjustmentFunction + FLIGHT_LOG_EVENT_INFLIGHT_ADJUSTMENT_FUNCTION_FLOAT_VALUE_FLAG);
1550 blackboxWriteFloat(data->inflightAdjustment.newFloatValue);
1551 } else {
1552 blackboxWrite(data->inflightAdjustment.adjustmentFunction);
1553 blackboxWriteSignedVB(data->inflightAdjustment.newValue);
1555 break;
1556 case FLIGHT_LOG_EVENT_LOGGING_RESUME:
1557 blackboxWriteUnsignedVB(data->loggingResume.logIteration);
1558 blackboxWriteUnsignedVB(data->loggingResume.currentTime);
1559 break;
1560 case FLIGHT_LOG_EVENT_LOG_END:
1561 blackboxWriteString("End of log");
1562 blackboxWrite(0);
1563 break;
1564 default:
1565 break;
1569 /* If an arming beep has played since it was last logged, write the time of the arming beep to the log as a synchronization point */
1570 static void blackboxCheckAndLogArmingBeep(void)
1572 // Use != so that we can still detect a change if the counter wraps
1573 if (getArmingBeepTimeMicros() != blackboxLastArmingBeep) {
1574 blackboxLastArmingBeep = getArmingBeepTimeMicros();
1575 flightLogEvent_syncBeep_t eventData;
1576 eventData.time = blackboxLastArmingBeep;
1577 blackboxLogEvent(FLIGHT_LOG_EVENT_SYNC_BEEP, (flightLogEventData_t *)&eventData);
1581 /* monitor the flight mode event status and trigger an event record if the state changes */
1582 static void blackboxCheckAndLogFlightMode(void)
1584 // Use != so that we can still detect a change if the counter wraps
1585 if (memcmp(&rcModeActivationMask, &blackboxLastFlightModeFlags, sizeof(blackboxLastFlightModeFlags))) {
1586 flightLogEvent_flightMode_t eventData; // Add new data for current flight mode flags
1587 eventData.lastFlags = blackboxLastFlightModeFlags;
1588 memcpy(&blackboxLastFlightModeFlags, &rcModeActivationMask, sizeof(blackboxLastFlightModeFlags));
1589 memcpy(&eventData.flags, &rcModeActivationMask, sizeof(eventData.flags));
1590 blackboxLogEvent(FLIGHT_LOG_EVENT_FLIGHTMODE, (flightLogEventData_t *)&eventData);
1594 STATIC_UNIT_TESTED bool blackboxShouldLogPFrame(void)
1596 return blackboxPFrameIndex == 0 && blackboxPInterval != 0;
1599 STATIC_UNIT_TESTED bool blackboxShouldLogIFrame(void)
1601 return blackboxLoopIndex == 0;
1605 * If the GPS home point has been updated, or every 128 I-frames (~10 seconds), write the
1606 * GPS home position.
1608 * We write it periodically so that if one Home Frame goes missing, the GPS coordinates can
1609 * still be interpreted correctly.
1611 #ifdef USE_GPS
1612 STATIC_UNIT_TESTED bool blackboxShouldLogGpsHomeFrame(void)
1614 if ((GPS_home[0] != gpsHistory.GPS_home[0] || GPS_home[1] != gpsHistory.GPS_home[1]
1615 || (blackboxPFrameIndex == blackboxIInterval / 2 && blackboxIFrameIndex % 128 == 0)) && isFieldEnabled(FIELD_SELECT(GPS))) {
1616 return true;
1618 return false;
1620 #endif // GPS
1622 // Called once every FC loop in order to keep track of how many FC loop iterations have passed
1623 STATIC_UNIT_TESTED void blackboxAdvanceIterationTimers(void)
1625 ++blackboxSlowFrameIterationTimer;
1626 ++blackboxIteration;
1628 if (++blackboxLoopIndex >= blackboxIInterval) {
1629 blackboxLoopIndex = 0;
1630 blackboxIFrameIndex++;
1631 blackboxPFrameIndex = 0;
1632 } else if (++blackboxPFrameIndex >= blackboxPInterval) {
1633 blackboxPFrameIndex = 0;
1637 // Called once every FC loop in order to log the current state
1638 STATIC_UNIT_TESTED void blackboxLogIteration(timeUs_t currentTimeUs)
1640 // Write a keyframe every blackboxIInterval frames so we can resynchronise upon missing frames
1641 if (blackboxShouldLogIFrame()) {
1643 * Don't log a slow frame if the slow data didn't change ("I" frames are already large enough without adding
1644 * an additional item to write at the same time). Unless we're *only* logging "I" frames, then we have no choice.
1646 if (blackboxIsOnlyLoggingIntraframes()) {
1647 writeSlowFrameIfNeeded();
1650 loadMainState(currentTimeUs);
1651 writeIntraframe();
1652 } else {
1653 blackboxCheckAndLogArmingBeep();
1654 blackboxCheckAndLogFlightMode(); // Check for FlightMode status change event
1656 if (blackboxShouldLogPFrame()) {
1658 * We assume that slow frames are only interesting in that they aid the interpretation of the main data stream.
1659 * So only log slow frames during loop iterations where we log a main frame.
1661 writeSlowFrameIfNeeded();
1663 loadMainState(currentTimeUs);
1664 writeInterframe();
1666 #ifdef USE_GPS
1667 if (featureIsEnabled(FEATURE_GPS) && isFieldEnabled(FIELD_SELECT(GPS))) {
1668 if (blackboxShouldLogGpsHomeFrame()) {
1669 writeGPSHomeFrame();
1670 writeGPSFrame(currentTimeUs);
1671 } else if (gpsSol.numSat != gpsHistory.GPS_numSat
1672 || gpsSol.llh.lat != gpsHistory.GPS_coord[GPS_LATITUDE]
1673 || gpsSol.llh.lon != gpsHistory.GPS_coord[GPS_LONGITUDE]) {
1674 //We could check for velocity changes as well but I doubt it changes independent of position
1675 writeGPSFrame(currentTimeUs);
1678 #endif
1681 //Flush every iteration so that our runtime variance is minimized
1682 blackboxDeviceFlush();
1686 * Call each flight loop iteration to perform blackbox logging.
1688 void blackboxUpdate(timeUs_t currentTimeUs)
1690 static BlackboxState cacheFlushNextState;
1692 switch (blackboxState) {
1693 case BLACKBOX_STATE_STOPPED:
1694 if (ARMING_FLAG(ARMED)) {
1695 blackboxOpen();
1696 blackboxStart();
1698 #ifdef USE_FLASHFS
1699 if (IS_RC_MODE_ACTIVE(BOXBLACKBOXERASE)) {
1700 blackboxSetState(BLACKBOX_STATE_START_ERASE);
1702 #endif
1703 break;
1704 case BLACKBOX_STATE_PREPARE_LOG_FILE:
1705 if (blackboxDeviceBeginLog()) {
1706 blackboxSetState(BLACKBOX_STATE_SEND_HEADER);
1708 break;
1709 case BLACKBOX_STATE_SEND_HEADER:
1710 blackboxReplenishHeaderBudget();
1711 //On entry of this state, xmitState.headerIndex is 0 and startTime is intialised
1714 * Once the UART has had time to init, transmit the header in chunks so we don't overflow its transmit
1715 * buffer, overflow the OpenLog's buffer, or keep the main loop busy for too long.
1717 if (millis() > xmitState.u.startTime + 100) {
1718 if (blackboxDeviceReserveBufferSpace(BLACKBOX_TARGET_HEADER_BUDGET_PER_ITERATION) == BLACKBOX_RESERVE_SUCCESS) {
1719 for (int i = 0; i < BLACKBOX_TARGET_HEADER_BUDGET_PER_ITERATION && blackboxHeader[xmitState.headerIndex] != '\0'; i++, xmitState.headerIndex++) {
1720 blackboxWrite(blackboxHeader[xmitState.headerIndex]);
1721 blackboxHeaderBudget--;
1723 if (blackboxHeader[xmitState.headerIndex] == '\0') {
1724 blackboxSetState(BLACKBOX_STATE_SEND_MAIN_FIELD_HEADER);
1728 break;
1729 case BLACKBOX_STATE_SEND_MAIN_FIELD_HEADER:
1730 blackboxReplenishHeaderBudget();
1731 //On entry of this state, xmitState.headerIndex is 0 and xmitState.u.fieldIndex is -1
1732 if (!sendFieldDefinition('I', 'P', blackboxMainFields, blackboxMainFields + 1, ARRAYLEN(blackboxMainFields),
1733 &blackboxMainFields[0].condition, &blackboxMainFields[1].condition)) {
1734 #ifdef USE_GPS
1735 if (featureIsEnabled(FEATURE_GPS) && isFieldEnabled(FIELD_SELECT(GPS))) {
1736 blackboxSetState(BLACKBOX_STATE_SEND_GPS_H_HEADER);
1737 } else
1738 #endif
1739 blackboxSetState(BLACKBOX_STATE_SEND_SLOW_HEADER);
1741 break;
1742 #ifdef USE_GPS
1743 case BLACKBOX_STATE_SEND_GPS_H_HEADER:
1744 blackboxReplenishHeaderBudget();
1745 //On entry of this state, xmitState.headerIndex is 0 and xmitState.u.fieldIndex is -1
1746 if (!sendFieldDefinition('H', 0, blackboxGpsHFields, blackboxGpsHFields + 1, ARRAYLEN(blackboxGpsHFields),
1747 NULL, NULL) && isFieldEnabled(FIELD_SELECT(GPS))) {
1748 blackboxSetState(BLACKBOX_STATE_SEND_GPS_G_HEADER);
1750 break;
1751 case BLACKBOX_STATE_SEND_GPS_G_HEADER:
1752 blackboxReplenishHeaderBudget();
1753 //On entry of this state, xmitState.headerIndex is 0 and xmitState.u.fieldIndex is -1
1754 if (!sendFieldDefinition('G', 0, blackboxGpsGFields, blackboxGpsGFields + 1, ARRAYLEN(blackboxGpsGFields),
1755 &blackboxGpsGFields[0].condition, &blackboxGpsGFields[1].condition) && isFieldEnabled(FIELD_SELECT(GPS))) {
1756 blackboxSetState(BLACKBOX_STATE_SEND_SLOW_HEADER);
1758 break;
1759 #endif
1760 case BLACKBOX_STATE_SEND_SLOW_HEADER:
1761 blackboxReplenishHeaderBudget();
1762 //On entry of this state, xmitState.headerIndex is 0 and xmitState.u.fieldIndex is -1
1763 if (!sendFieldDefinition('S', 0, blackboxSlowFields, blackboxSlowFields + 1, ARRAYLEN(blackboxSlowFields),
1764 NULL, NULL)) {
1765 cacheFlushNextState = BLACKBOX_STATE_SEND_SYSINFO;
1766 blackboxSetState(BLACKBOX_STATE_CACHE_FLUSH);
1768 break;
1769 case BLACKBOX_STATE_SEND_SYSINFO:
1770 blackboxReplenishHeaderBudget();
1771 //On entry of this state, xmitState.headerIndex is 0
1773 //Keep writing chunks of the system info headers until it returns true to signal completion
1774 if (blackboxWriteSysinfo()) {
1776 * Wait for header buffers to drain completely before data logging begins to ensure reliable header delivery
1777 * (overflowing circular buffers causes all data to be discarded, so the first few logged iterations
1778 * could wipe out the end of the header if we weren't careful)
1780 cacheFlushNextState = BLACKBOX_STATE_RUNNING;
1781 blackboxSetState(BLACKBOX_STATE_CACHE_FLUSH);
1783 break;
1784 case BLACKBOX_STATE_CACHE_FLUSH:
1785 // Flush the cache and wait until all possible entries have been written to the media
1786 if (blackboxDeviceFlushForceComplete()) {
1787 blackboxSetState(cacheFlushNextState);
1789 break;
1790 case BLACKBOX_STATE_PAUSED:
1791 // Only allow resume to occur during an I-frame iteration, so that we have an "I" base to work from
1792 if (IS_RC_MODE_ACTIVE(BOXBLACKBOX) && blackboxShouldLogIFrame()) {
1793 // Write a log entry so the decoder is aware that our large time/iteration skip is intended
1794 flightLogEvent_loggingResume_t resume;
1796 resume.logIteration = blackboxIteration;
1797 resume.currentTime = currentTimeUs;
1799 blackboxLogEvent(FLIGHT_LOG_EVENT_LOGGING_RESUME, (flightLogEventData_t *) &resume);
1800 blackboxSetState(BLACKBOX_STATE_RUNNING);
1802 blackboxLogIteration(currentTimeUs);
1804 // Keep the logging timers ticking so our log iteration continues to advance
1805 blackboxAdvanceIterationTimers();
1806 break;
1807 case BLACKBOX_STATE_RUNNING:
1808 // On entry to this state, blackboxIteration, blackboxPFrameIndex and blackboxIFrameIndex are reset to 0
1809 // Prevent the Pausing of the log on the mode switch if in Motor Test Mode
1810 if (blackboxModeActivationConditionPresent && !IS_RC_MODE_ACTIVE(BOXBLACKBOX) && !startedLoggingInTestMode) {
1811 blackboxSetState(BLACKBOX_STATE_PAUSED);
1812 } else {
1813 blackboxLogIteration(currentTimeUs);
1815 blackboxAdvanceIterationTimers();
1816 break;
1817 case BLACKBOX_STATE_SHUTTING_DOWN:
1818 //On entry of this state, startTime is set
1820 * Wait for the log we've transmitted to make its way to the logger before we release the serial port,
1821 * since releasing the port clears the Tx buffer.
1823 * Don't wait longer than it could possibly take if something funky happens.
1825 if (blackboxDeviceEndLog(blackboxLoggedAnyFrames) && (millis() > xmitState.u.startTime + BLACKBOX_SHUTDOWN_TIMEOUT_MILLIS || blackboxDeviceFlushForce())) {
1826 blackboxDeviceClose();
1827 blackboxSetState(BLACKBOX_STATE_STOPPED);
1829 break;
1830 #ifdef USE_FLASHFS
1831 case BLACKBOX_STATE_START_ERASE:
1832 blackboxEraseAll();
1833 blackboxSetState(BLACKBOX_STATE_ERASING);
1834 beeper(BEEPER_BLACKBOX_ERASE);
1835 break;
1836 case BLACKBOX_STATE_ERASING:
1837 if (isBlackboxErased()) {
1838 //Done erasing
1839 blackboxSetState(BLACKBOX_STATE_ERASED);
1840 beeper(BEEPER_BLACKBOX_ERASE);
1842 break;
1843 case BLACKBOX_STATE_ERASED:
1844 if (!IS_RC_MODE_ACTIVE(BOXBLACKBOXERASE)) {
1845 blackboxSetState(BLACKBOX_STATE_STOPPED);
1847 break;
1848 #endif
1849 default:
1850 break;
1853 // Did we run out of room on the device? Stop!
1854 if (isBlackboxDeviceFull()) {
1855 #ifdef USE_FLASHFS
1856 if (blackboxState != BLACKBOX_STATE_ERASING
1857 && blackboxState != BLACKBOX_STATE_START_ERASE
1858 && blackboxState != BLACKBOX_STATE_ERASED)
1859 #endif
1861 blackboxSetState(BLACKBOX_STATE_STOPPED);
1862 // ensure we reset the test mode flag if we stop due to full memory card
1863 if (startedLoggingInTestMode) {
1864 startedLoggingInTestMode = false;
1867 } else { // Only log in test mode if there is room!
1868 switch (blackboxConfig()->mode) {
1869 case BLACKBOX_MODE_MOTOR_TEST:
1870 // Handle Motor Test Mode
1871 if (inMotorTestMode()) {
1872 if (blackboxState==BLACKBOX_STATE_STOPPED) {
1873 startInTestMode();
1875 } else {
1876 if (blackboxState!=BLACKBOX_STATE_STOPPED) {
1877 stopInTestMode();
1881 break;
1882 case BLACKBOX_MODE_ALWAYS_ON:
1883 if (blackboxState==BLACKBOX_STATE_STOPPED) {
1884 startInTestMode();
1887 break;
1888 case BLACKBOX_MODE_NORMAL:
1889 default:
1891 break;
1896 int blackboxCalculatePDenom(int rateNum, int rateDenom)
1898 return blackboxIInterval * rateNum / rateDenom;
1901 uint8_t blackboxGetRateDenom(void)
1903 return blackboxPInterval;
1907 uint16_t blackboxGetPRatio(void) {
1908 return blackboxIInterval / blackboxPInterval;
1911 uint8_t blackboxCalculateSampleRate(uint16_t pRatio) {
1912 return LOG2(32000 / (targetPidLooptime * pRatio));
1916 * Call during system startup to initialize the blackbox.
1918 void blackboxInit(void)
1920 blackboxResetIterationTimers();
1922 // an I-frame is written every 32ms
1923 // blackboxUpdate() is run in synchronisation with the PID loop
1924 // targetPidLooptime is 1000 for 1kHz loop, 500 for 2kHz loop etc, targetPidLooptime is rounded for short looptimes
1925 blackboxIInterval = (uint16_t)(32 * 1000 / targetPidLooptime);
1927 blackboxPInterval = 1 << blackboxConfig()->sample_rate;
1928 if (blackboxPInterval > blackboxIInterval) {
1929 blackboxPInterval = 0; // log only I frames if logging frequency is too low
1932 if (blackboxConfig()->device) {
1933 blackboxSetState(BLACKBOX_STATE_STOPPED);
1934 } else {
1935 blackboxSetState(BLACKBOX_STATE_DISABLED);
1937 blackboxSInterval = blackboxIInterval * 256; // S-frame is written every 256*32 = 8192ms, approx every 8 seconds
1939 #endif