Updated and Validated
[betaflight.git] / src / main / common / sdft.c
blob10dc861a63860359853ea81a4825dd6953e82a9d
1 /*
2 * This file is part of Cleanflight and Betaflight.
4 * Cleanflight and Betaflight are free software. You can redistribute
5 * this software and/or modify this software under the terms of the
6 * GNU General Public License as published by the Free Software
7 * Foundation, either version 3 of the License, or (at your option)
8 * any later version.
10 * Cleanflight and Betaflight are distributed in the hope that they
11 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
12 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 * See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this software.
18 * If not, see <http://www.gnu.org/licenses/>.
21 #include <math.h>
22 #include <stdbool.h>
24 #include "platform.h"
26 #include "common/maths.h"
27 #include "common/sdft.h"
29 #define SDFT_R 0.9999f // damping factor for guaranteed SDFT stability (r < 1.0f)
31 static FAST_DATA_ZERO_INIT float rPowerN; // SDFT_R to the power of SDFT_SAMPLE_SIZE
32 static FAST_DATA_ZERO_INIT bool isInitialized;
33 static FAST_DATA_ZERO_INIT complex_t twiddle[SDFT_BIN_COUNT];
35 static void applySqrt(const sdft_t *sdft, float *data);
38 void sdftInit(sdft_t *sdft, const int startBin, const int endBin, const int numBatches)
40 if (!isInitialized) {
41 rPowerN = powf(SDFT_R, SDFT_SAMPLE_SIZE);
42 const float c = 2.0f * M_PIf / (float)SDFT_SAMPLE_SIZE;
43 float phi = 0.0f;
44 for (int i = 0; i < SDFT_BIN_COUNT; i++) {
45 phi = c * i;
46 twiddle[i] = SDFT_R * (cos_approx(phi) + _Complex_I * sin_approx(phi));
48 isInitialized = true;
51 sdft->idx = 0;
53 // Add 1 bin on either side outside of range (if possible) to get proper windowing up to range limits
54 sdft->startBin = constrain(startBin - 1, 0, SDFT_BIN_COUNT - 1);
55 sdft->endBin = constrain(endBin + 1, sdft->startBin, SDFT_BIN_COUNT - 1);
57 sdft->numBatches = MAX(numBatches, 1);
58 sdft->batchSize = (sdft->endBin - sdft->startBin) / sdft->numBatches + 1; // batchSize = ceil(numBins / numBatches)
60 for (int i = 0; i < SDFT_SAMPLE_SIZE; i++) {
61 sdft->samples[i] = 0.0f;
64 for (int i = 0; i < SDFT_BIN_COUNT; i++) {
65 sdft->data[i] = 0.0f;
70 // Add new sample to frequency spectrum
71 FAST_CODE void sdftPush(sdft_t *sdft, const float sample)
73 const float delta = sample - rPowerN * sdft->samples[sdft->idx];
75 sdft->samples[sdft->idx] = sample;
76 sdft->idx = (sdft->idx + 1) % SDFT_SAMPLE_SIZE;
78 for (int i = sdft->startBin; i <= sdft->endBin; i++) {
79 sdft->data[i] = twiddle[i] * (sdft->data[i] + delta);
84 // Add new sample to frequency spectrum in parts
85 FAST_CODE void sdftPushBatch(sdft_t* sdft, const float sample, const int batchIdx)
87 const int batchStart = sdft->batchSize * batchIdx;
88 int batchEnd = batchStart;
90 const float delta = sample - rPowerN * sdft->samples[sdft->idx];
92 if (batchIdx == sdft->numBatches - 1) {
93 sdft->samples[sdft->idx] = sample;
94 sdft->idx = (sdft->idx + 1) % SDFT_SAMPLE_SIZE;
95 batchEnd += sdft->endBin - batchStart + 1;
96 } else {
97 batchEnd += sdft->batchSize;
100 for (int i = batchStart; i < batchEnd; i++) {
101 sdft->data[i] = twiddle[i] * (sdft->data[i] + delta);
106 // Get squared magnitude of frequency spectrum
107 FAST_CODE void sdftMagSq(const sdft_t *sdft, float *output)
109 float re;
110 float im;
112 for (int i = sdft->startBin; i <= sdft->endBin; i++) {
113 re = crealf(sdft->data[i]);
114 im = cimagf(sdft->data[i]);
115 output[i] = re * re + im * im;
120 // Get magnitude of frequency spectrum (slower)
121 FAST_CODE void sdftMagnitude(const sdft_t *sdft, float *output)
123 sdftMagSq(sdft, output);
124 applySqrt(sdft, output);
128 // Get squared magnitude of frequency spectrum with Hann window applied
129 // Hann window in frequency domain: X[k] = -0.25 * X[k-1] +0.5 * X[k] -0.25 * X[k+1]
130 FAST_CODE void sdftWinSq(const sdft_t *sdft, float *output)
132 complex_t val;
133 float re;
134 float im;
136 for (int i = (sdft->startBin + 1); i < sdft->endBin; i++) {
137 val = sdft->data[i] - 0.5f * (sdft->data[i - 1] + sdft->data[i + 1]); // multiply by 2 to save one multiplication
138 re = crealf(val);
139 im = cimagf(val);
140 output[i] = re * re + im * im;
145 // Get magnitude of frequency spectrum with Hann window applied (slower)
146 FAST_CODE void sdftWindow(const sdft_t *sdft, float *output)
148 sdftWinSq(sdft, output);
149 applySqrt(sdft, output);
153 // Apply square root to the whole sdft range
154 static FAST_CODE void applySqrt(const sdft_t *sdft, float *data)
156 for (int i = sdft->startBin; i <= sdft->endBin; i++) {
157 data[i] = sqrtf(data[i]);