Updated and Validated
[betaflight.git] / src / main / drivers / adc_stm32f4xx.c
blob566b4bc8d0dddb83f2603ab43c7985316160dab6
1 /*
2 * This file is part of Cleanflight and Betaflight.
4 * Cleanflight and Betaflight are free software. You can redistribute
5 * this software and/or modify this software under the terms of the
6 * GNU General Public License as published by the Free Software
7 * Foundation, either version 3 of the License, or (at your option)
8 * any later version.
10 * Cleanflight and Betaflight are distributed in the hope that they
11 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
12 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 * See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this software.
18 * If not, see <http://www.gnu.org/licenses/>.
21 #include <stdbool.h>
22 #include <stdint.h>
23 #include <string.h>
25 #include "platform.h"
27 #ifdef USE_ADC
29 #include "build/debug.h"
31 #include "drivers/dma_reqmap.h"
33 #include "drivers/io.h"
34 #include "io_impl.h"
35 #include "rcc.h"
36 #include "dma.h"
38 #include "drivers/sensor.h"
40 #include "adc.h"
41 #include "adc_impl.h"
43 #include "pg/adc.h"
45 // These are missing from STM32F4xx_StdPeriph_Driver/inc/stm32f4xx_adc.h
46 #ifdef STM32F446xx
47 #define ADC_Channel_TempSensor ADC_Channel_18
48 #endif
50 const adcDevice_t adcHardware[] = {
52 .ADCx = ADC1,
53 .rccADC = RCC_APB2(ADC1),
54 #if !defined(USE_DMA_SPEC)
55 .dmaResource = (dmaResource_t *)ADC1_DMA_STREAM,
56 .channel = DMA_Channel_0
57 #endif
59 #if !defined(STM32F411xE)
61 .ADCx = ADC2,
62 .rccADC = RCC_APB2(ADC2),
63 #if !defined(USE_DMA_SPEC)
64 .dmaResource = (dmaResource_t *)ADC2_DMA_STREAM,
65 .channel = DMA_Channel_1
66 #endif
69 .ADCx = ADC3,
70 .rccADC = RCC_APB2(ADC3),
71 #if !defined(USE_DMA_SPEC)
72 .dmaResource = (dmaResource_t *)ADC3_DMA_STREAM,
73 .channel = DMA_Channel_2
74 #endif
76 #endif
79 /* note these could be packed up for saving space */
80 const adcTagMap_t adcTagMap[] = {
82 { DEFIO_TAG_E__PF3, ADC_DEVICES_3, ADC_Channel_9 },
83 { DEFIO_TAG_E__PF4, ADC_DEVICES_3, ADC_Channel_14 },
84 { DEFIO_TAG_E__PF5, ADC_DEVICES_3, ADC_Channel_15 },
85 { DEFIO_TAG_E__PF6, ADC_DEVICES_3, ADC_Channel_4 },
86 { DEFIO_TAG_E__PF7, ADC_DEVICES_3, ADC_Channel_5 },
87 { DEFIO_TAG_E__PF8, ADC_DEVICES_3, ADC_Channel_6 },
88 { DEFIO_TAG_E__PF9, ADC_DEVICES_3, ADC_Channel_7 },
89 { DEFIO_TAG_E__PF10,ADC_DEVICES_3, ADC_Channel_8 },
91 #if defined(STM32F411xE)
92 { DEFIO_TAG_E__PC0, ADC_DEVICES_1, ADC_Channel_10 },
93 { DEFIO_TAG_E__PC1, ADC_DEVICES_1, ADC_Channel_11 },
94 { DEFIO_TAG_E__PC2, ADC_DEVICES_1, ADC_Channel_12 },
95 { DEFIO_TAG_E__PC3, ADC_DEVICES_1, ADC_Channel_13 },
96 { DEFIO_TAG_E__PC4, ADC_DEVICES_1, ADC_Channel_14 },
97 { DEFIO_TAG_E__PC5, ADC_DEVICES_1, ADC_Channel_15 },
98 { DEFIO_TAG_E__PB0, ADC_DEVICES_1, ADC_Channel_8 },
99 { DEFIO_TAG_E__PB1, ADC_DEVICES_1, ADC_Channel_9 },
100 { DEFIO_TAG_E__PA0, ADC_DEVICES_1, ADC_Channel_0 },
101 { DEFIO_TAG_E__PA1, ADC_DEVICES_1, ADC_Channel_1 },
102 { DEFIO_TAG_E__PA2, ADC_DEVICES_1, ADC_Channel_2 },
103 { DEFIO_TAG_E__PA3, ADC_DEVICES_1, ADC_Channel_3 },
104 { DEFIO_TAG_E__PA4, ADC_DEVICES_1, ADC_Channel_4 },
105 { DEFIO_TAG_E__PA5, ADC_DEVICES_1, ADC_Channel_5 },
106 { DEFIO_TAG_E__PA6, ADC_DEVICES_1, ADC_Channel_6 },
107 { DEFIO_TAG_E__PA7, ADC_DEVICES_1, ADC_Channel_7 },
108 #else
109 { DEFIO_TAG_E__PC0, ADC_DEVICES_123, ADC_Channel_10 },
110 { DEFIO_TAG_E__PC1, ADC_DEVICES_123, ADC_Channel_11 },
111 { DEFIO_TAG_E__PC2, ADC_DEVICES_123, ADC_Channel_12 },
112 { DEFIO_TAG_E__PC3, ADC_DEVICES_123, ADC_Channel_13 },
113 { DEFIO_TAG_E__PC4, ADC_DEVICES_12, ADC_Channel_14 },
114 { DEFIO_TAG_E__PC5, ADC_DEVICES_12, ADC_Channel_15 },
115 { DEFIO_TAG_E__PB0, ADC_DEVICES_12, ADC_Channel_8 },
116 { DEFIO_TAG_E__PB1, ADC_DEVICES_12, ADC_Channel_9 },
117 { DEFIO_TAG_E__PA0, ADC_DEVICES_123, ADC_Channel_0 },
118 { DEFIO_TAG_E__PA1, ADC_DEVICES_123, ADC_Channel_1 },
119 { DEFIO_TAG_E__PA2, ADC_DEVICES_123, ADC_Channel_2 },
120 { DEFIO_TAG_E__PA3, ADC_DEVICES_123, ADC_Channel_3 },
121 { DEFIO_TAG_E__PA4, ADC_DEVICES_12, ADC_Channel_4 },
122 { DEFIO_TAG_E__PA5, ADC_DEVICES_12, ADC_Channel_5 },
123 { DEFIO_TAG_E__PA6, ADC_DEVICES_12, ADC_Channel_6 },
124 { DEFIO_TAG_E__PA7, ADC_DEVICES_12, ADC_Channel_7 },
125 #endif
128 #define VREFINT_CAL_ADDR 0x1FFF7A2A
129 #define TS_CAL1_ADDR 0x1FFF7A2C
130 #define TS_CAL2_ADDR 0x1FFF7A2E
132 void adcInitDevice(ADC_TypeDef *adcdev, int channelCount)
134 ADC_InitTypeDef ADC_InitStructure;
136 ADC_StructInit(&ADC_InitStructure);
138 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
139 ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
140 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1;
141 ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;
142 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
143 ADC_InitStructure.ADC_NbrOfConversion = channelCount;
145 // Multiple injected channel seems to require scan conversion mode to be
146 // enabled even if main (non-injected) channel count is 1.
147 #ifdef USE_ADC_INTERNAL
148 ADC_InitStructure.ADC_ScanConvMode = ENABLE;
149 #else
150 ADC_InitStructure.ADC_ScanConvMode = channelCount > 1 ? ENABLE : DISABLE; // 1=scan more that one channel in group
151 #endif
152 ADC_Init(adcdev, &ADC_InitStructure);
155 #ifdef USE_ADC_INTERNAL
156 void adcInitInternalInjected(const adcConfig_t *config)
158 ADC_TempSensorVrefintCmd(ENABLE);
159 ADC_InjectedDiscModeCmd(ADC1, DISABLE);
160 ADC_InjectedSequencerLengthConfig(ADC1, 2);
161 ADC_InjectedChannelConfig(ADC1, ADC_Channel_Vrefint, 1, ADC_SampleTime_480Cycles);
162 ADC_InjectedChannelConfig(ADC1, ADC_Channel_TempSensor, 2, ADC_SampleTime_480Cycles);
164 adcVREFINTCAL = config->vrefIntCalibration ? config->vrefIntCalibration : *(uint16_t *)VREFINT_CAL_ADDR;
165 adcTSCAL1 = config->tempSensorCalibration1 ? config->tempSensorCalibration1 : *(uint16_t *)TS_CAL1_ADDR;
166 adcTSCAL2 = config->tempSensorCalibration2 ? config->tempSensorCalibration2 : *(uint16_t *)TS_CAL2_ADDR;
168 adcTSSlopeK = (110 - 30) * 1000 / (adcTSCAL2 - adcTSCAL1);
171 // Note on sampling time for temperature sensor and vrefint:
172 // Both sources have minimum sample time of 10us.
173 // With prescaler = 8:
174 // 168MHz : fAPB2 = 84MHz, fADC = 10.5MHz, tcycle = 0.090us, 10us = 105cycle < 144cycle
175 // 240MHz : fAPB2 = 120MHz, fADC = 15.0MHz, tcycle = 0.067usk 10us = 150cycle < 480cycle
177 // 480cycles@15.0MHz = 32us
179 static bool adcInternalConversionInProgress = false;
181 bool adcInternalIsBusy(void)
183 if (adcInternalConversionInProgress) {
184 if (ADC_GetFlagStatus(ADC1, ADC_FLAG_JEOC) != RESET) {
185 adcInternalConversionInProgress = false;
189 return adcInternalConversionInProgress;
192 void adcInternalStartConversion(void)
194 ADC_ClearFlag(ADC1, ADC_FLAG_JEOC);
195 ADC_SoftwareStartInjectedConv(ADC1);
197 adcInternalConversionInProgress = true;
200 uint16_t adcInternalReadVrefint(void)
202 return ADC_GetInjectedConversionValue(ADC1, ADC_InjectedChannel_1);
205 uint16_t adcInternalReadTempsensor(void)
207 return ADC_GetInjectedConversionValue(ADC1, ADC_InjectedChannel_2);
209 #endif
211 void adcInit(const adcConfig_t *config)
213 uint8_t i;
214 uint8_t configuredAdcChannels = 0;
216 memset(&adcOperatingConfig, 0, sizeof(adcOperatingConfig));
218 if (config->vbat.enabled) {
219 adcOperatingConfig[ADC_BATTERY].tag = config->vbat.ioTag;
222 if (config->rssi.enabled) {
223 adcOperatingConfig[ADC_RSSI].tag = config->rssi.ioTag; //RSSI_ADC_CHANNEL;
226 if (config->external1.enabled) {
227 adcOperatingConfig[ADC_EXTERNAL1].tag = config->external1.ioTag; //EXTERNAL1_ADC_CHANNEL;
230 if (config->current.enabled) {
231 adcOperatingConfig[ADC_CURRENT].tag = config->current.ioTag; //CURRENT_METER_ADC_CHANNEL;
234 ADCDevice device = ADC_CFG_TO_DEV(config->device);
236 if (device == ADCINVALID) {
237 return;
240 adcDevice_t adc = adcHardware[device];
242 bool adcActive = false;
243 for (int i = 0; i < ADC_CHANNEL_COUNT; i++) {
244 if (!adcVerifyPin(adcOperatingConfig[i].tag, device)) {
245 continue;
248 adcActive = true;
249 IOInit(IOGetByTag(adcOperatingConfig[i].tag), OWNER_ADC_BATT + i, 0);
250 IOConfigGPIO(IOGetByTag(adcOperatingConfig[i].tag), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));
251 adcOperatingConfig[i].adcChannel = adcChannelByTag(adcOperatingConfig[i].tag);
252 adcOperatingConfig[i].dmaIndex = configuredAdcChannels++;
253 adcOperatingConfig[i].sampleTime = ADC_SampleTime_480Cycles;
254 adcOperatingConfig[i].enabled = true;
257 #ifndef USE_ADC_INTERNAL
258 if (!adcActive) {
259 return;
261 #endif
263 RCC_ClockCmd(adc.rccADC, ENABLE);
265 ADC_CommonInitTypeDef ADC_CommonInitStructure;
267 ADC_CommonStructInit(&ADC_CommonInitStructure);
268 ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;
269 ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div8;
270 ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled;
271 ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
272 ADC_CommonInit(&ADC_CommonInitStructure);
274 #ifdef USE_ADC_INTERNAL
275 // If device is not ADC1 or there's no active channel, then initialize ADC1 separately
276 if (device != ADCDEV_1 || !adcActive) {
277 RCC_ClockCmd(adcHardware[ADCDEV_1].rccADC, ENABLE);
278 adcInitDevice(ADC1, 2);
279 ADC_Cmd(ADC1, ENABLE);
282 // Initialize for injected conversion
283 adcInitInternalInjected(config);
285 if (!adcActive) {
286 return;
288 #endif
290 adcInitDevice(adc.ADCx, configuredAdcChannels);
292 uint8_t rank = 1;
293 for (i = 0; i < ADC_CHANNEL_COUNT; i++) {
294 if (!adcOperatingConfig[i].enabled) {
295 continue;
297 ADC_RegularChannelConfig(adc.ADCx, adcOperatingConfig[i].adcChannel, rank++, adcOperatingConfig[i].sampleTime);
299 ADC_DMARequestAfterLastTransferCmd(adc.ADCx, ENABLE);
301 ADC_DMACmd(adc.ADCx, ENABLE);
302 ADC_Cmd(adc.ADCx, ENABLE);
304 #ifdef USE_DMA_SPEC
305 const dmaChannelSpec_t *dmaSpec = dmaGetChannelSpecByPeripheral(DMA_PERIPH_ADC, device, config->dmaopt[device]);
307 if (!dmaSpec || !dmaAllocate(dmaGetIdentifier(dmaSpec->ref), OWNER_ADC, RESOURCE_INDEX(device))) {
308 return;
311 dmaEnable(dmaGetIdentifier(dmaSpec->ref));
313 xDMA_DeInit(dmaSpec->ref);
314 #else
315 if (!dmaAllocate(dmaGetIdentifier(adc.dmaResource), OWNER_ADC, 0)) {
316 return;
319 dmaEnable(dmaGetIdentifier(adc.dmaResource));
321 xDMA_DeInit(adc.dmaResource);
322 #endif
324 DMA_InitTypeDef DMA_InitStructure;
326 DMA_StructInit(&DMA_InitStructure);
327 DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&adc.ADCx->DR;
329 #ifdef USE_DMA_SPEC
330 DMA_InitStructure.DMA_Channel = dmaSpec->channel;
331 #else
332 DMA_InitStructure.DMA_Channel = adc.channel;
333 #endif
335 DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)adcValues;
336 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
337 DMA_InitStructure.DMA_BufferSize = configuredAdcChannels;
338 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
339 DMA_InitStructure.DMA_MemoryInc = configuredAdcChannels > 1 ? DMA_MemoryInc_Enable : DMA_MemoryInc_Disable;
340 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
341 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
342 DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
343 DMA_InitStructure.DMA_Priority = DMA_Priority_High;
345 #ifdef USE_DMA_SPEC
346 xDMA_Init(dmaSpec->ref, &DMA_InitStructure);
347 xDMA_Cmd(dmaSpec->ref, ENABLE);
348 #else
349 xDMA_Init(adc.dmaResource, &DMA_InitStructure);
350 xDMA_Cmd(adc.dmaResource, ENABLE);
351 #endif
353 ADC_SoftwareStartConv(adc.ADCx);
356 void adcGetChannelValues(void)
358 // Nothing to do
360 #endif