Updated and Validated
[betaflight.git] / src / main / drivers / bus_spi_stdperiph.c
blob65b39d23a490f152a8c66b3da7a7a8f4c8ed6166
1 /*
2 * This file is part of Cleanflight and Betaflight.
4 * Cleanflight and Betaflight are free software. You can redistribute
5 * this software and/or modify this software under the terms of the
6 * GNU General Public License as published by the Free Software
7 * Foundation, either version 3 of the License, or (at your option)
8 * any later version.
10 * Cleanflight and Betaflight are distributed in the hope that they
11 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
12 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 * See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this software.
18 * If not, see <http://www.gnu.org/licenses/>.
21 #include <stdbool.h>
22 #include <stdint.h>
23 #include <string.h>
25 #include "platform.h"
27 #ifdef USE_SPI
29 // STM32F405 can't DMA to/from FASTRAM (CCM SRAM)
30 #define IS_CCM(p) (((uint32_t)p & 0xffff0000) == 0x10000000)
32 #include "common/maths.h"
33 #include "drivers/bus.h"
34 #include "drivers/bus_spi.h"
35 #include "drivers/bus_spi_impl.h"
36 #include "drivers/exti.h"
37 #include "drivers/io.h"
38 #include "drivers/rcc.h"
40 static SPI_InitTypeDef defaultInit = {
41 .SPI_Mode = SPI_Mode_Master,
42 .SPI_Direction = SPI_Direction_2Lines_FullDuplex,
43 .SPI_DataSize = SPI_DataSize_8b,
44 .SPI_NSS = SPI_NSS_Soft,
45 .SPI_FirstBit = SPI_FirstBit_MSB,
46 .SPI_CRCPolynomial = 7,
47 .SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8,
48 .SPI_CPOL = SPI_CPOL_High,
49 .SPI_CPHA = SPI_CPHA_2Edge
52 static uint16_t spiDivisorToBRbits(SPI_TypeDef *instance, uint16_t divisor)
54 // SPI2 and SPI3 are on APB1/AHB1 which PCLK is half that of APB2/AHB2.
55 #if defined(STM32F410xx) || defined(STM32F411xE)
56 UNUSED(instance);
57 #else
58 if (instance == SPI2 || instance == SPI3) {
59 divisor /= 2; // Safe for divisor == 0 or 1
61 #endif
63 divisor = constrain(divisor, 2, 256);
65 return (ffs(divisor) - 2) << 3; // SPI_CR1_BR_Pos
68 static void spiSetDivisorBRreg(SPI_TypeDef *instance, uint16_t divisor)
70 #define BR_BITS ((BIT(5) | BIT(4) | BIT(3)))
71 const uint16_t tempRegister = (instance->CR1 & ~BR_BITS);
72 instance->CR1 = tempRegister | spiDivisorToBRbits(instance, divisor);
73 #undef BR_BITS
77 void spiInitDevice(SPIDevice device)
79 spiDevice_t *spi = &(spiDevice[device]);
81 if (!spi->dev) {
82 return;
85 // Enable SPI clock
86 RCC_ClockCmd(spi->rcc, ENABLE);
87 RCC_ResetCmd(spi->rcc, ENABLE);
89 IOInit(IOGetByTag(spi->sck), OWNER_SPI_SCK, RESOURCE_INDEX(device));
90 IOInit(IOGetByTag(spi->miso), OWNER_SPI_MISO, RESOURCE_INDEX(device));
91 IOInit(IOGetByTag(spi->mosi), OWNER_SPI_MOSI, RESOURCE_INDEX(device));
93 IOConfigGPIOAF(IOGetByTag(spi->sck), SPI_IO_AF_SCK_CFG, spi->af);
94 IOConfigGPIOAF(IOGetByTag(spi->miso), SPI_IO_AF_MISO_CFG, spi->af);
95 IOConfigGPIOAF(IOGetByTag(spi->mosi), SPI_IO_AF_CFG, spi->af);
97 // Init SPI hardware
98 SPI_I2S_DeInit(spi->dev);
100 SPI_I2S_DMACmd(spi->dev, SPI_I2S_DMAReq_Tx | SPI_I2S_DMAReq_Rx, DISABLE);
101 SPI_Init(spi->dev, &defaultInit);
102 SPI_Cmd(spi->dev, ENABLE);
105 void spiInternalResetDescriptors(busDevice_t *bus)
107 DMA_InitTypeDef *initTx = bus->initTx;
109 DMA_StructInit(initTx);
110 initTx->DMA_Channel = bus->dmaTx->channel;
111 initTx->DMA_DIR = DMA_DIR_MemoryToPeripheral;
112 initTx->DMA_Mode = DMA_Mode_Normal;
113 initTx->DMA_PeripheralBaseAddr = (uint32_t)&bus->busType_u.spi.instance->DR;
114 initTx->DMA_Priority = DMA_Priority_Low;
115 initTx->DMA_PeripheralInc = DMA_PeripheralInc_Disable;
116 initTx->DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
117 initTx->DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
119 if (bus->dmaRx) {
120 DMA_InitTypeDef *initRx = bus->initRx;
122 DMA_StructInit(initRx);
123 initRx->DMA_Channel = bus->dmaRx->channel;
124 initRx->DMA_DIR = DMA_DIR_PeripheralToMemory;
125 initRx->DMA_Mode = DMA_Mode_Normal;
126 initRx->DMA_PeripheralBaseAddr = (uint32_t)&bus->busType_u.spi.instance->DR;
127 initRx->DMA_Priority = DMA_Priority_Low;
128 initRx->DMA_PeripheralInc = DMA_PeripheralInc_Disable;
129 initRx->DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
133 void spiInternalResetStream(dmaChannelDescriptor_t *descriptor)
135 DMA_Stream_TypeDef *streamRegs = (DMA_Stream_TypeDef *)descriptor->ref;
137 // Disable the stream
138 streamRegs->CR = 0U;
140 // Clear any pending interrupt flags
141 DMA_CLEAR_FLAG(descriptor, DMA_IT_HTIF | DMA_IT_TEIF | DMA_IT_TCIF);
144 static bool spiInternalReadWriteBufPolled(SPI_TypeDef *instance, const uint8_t *txData, uint8_t *rxData, int len)
146 uint8_t b;
148 while (len--) {
149 b = txData ? *(txData++) : 0xFF;
150 while (SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_TXE) == RESET);
151 SPI_I2S_SendData(instance, b);
153 while (SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_RXNE) == RESET);
154 b = SPI_I2S_ReceiveData(instance);
155 if (rxData) {
156 *(rxData++) = b;
160 return true;
163 void spiInternalInitStream(const extDevice_t *dev, bool preInit)
165 STATIC_DMA_DATA_AUTO uint8_t dummyTxByte = 0xff;
166 STATIC_DMA_DATA_AUTO uint8_t dummyRxByte;
167 busDevice_t *bus = dev->bus;
169 volatile busSegment_t *segment = bus->curSegment;
171 if (preInit) {
172 // Prepare the init structure for the next segment to reduce inter-segment interval
173 segment++;
174 if(segment->len == 0) {
175 // There's no following segment
176 return;
180 int len = segment->len;
182 uint8_t *txData = segment->u.buffers.txData;
183 DMA_InitTypeDef *initTx = bus->initTx;
185 if (txData) {
186 initTx->DMA_Memory0BaseAddr = (uint32_t)txData;
187 initTx->DMA_MemoryInc = DMA_MemoryInc_Enable;
188 } else {
189 dummyTxByte = 0xff;
190 initTx->DMA_Memory0BaseAddr = (uint32_t)&dummyTxByte;
191 initTx->DMA_MemoryInc = DMA_MemoryInc_Disable;
193 initTx->DMA_BufferSize = len;
195 if (dev->bus->dmaRx) {
196 uint8_t *rxData = segment->u.buffers.rxData;
197 DMA_InitTypeDef *initRx = bus->initRx;
199 if (rxData) {
200 initRx->DMA_Memory0BaseAddr = (uint32_t)rxData;
201 initRx->DMA_MemoryInc = DMA_MemoryInc_Enable;
202 } else {
203 initRx->DMA_Memory0BaseAddr = (uint32_t)&dummyRxByte;
204 initRx->DMA_MemoryInc = DMA_MemoryInc_Disable;
206 // If possible use 16 bit memory writes to prevent atomic access issues on gyro data
207 if ((initRx->DMA_Memory0BaseAddr & 0x1) || (len & 0x1)) {
208 initRx->DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
209 } else {
210 initRx->DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
212 initRx->DMA_BufferSize = len;
216 void spiInternalStartDMA(const extDevice_t *dev)
218 dmaChannelDescriptor_t *dmaTx = dev->bus->dmaTx;
219 dmaChannelDescriptor_t *dmaRx = dev->bus->dmaRx;
220 DMA_Stream_TypeDef *streamRegsTx = (DMA_Stream_TypeDef *)dmaTx->ref;
221 if (dmaRx) {
222 DMA_Stream_TypeDef *streamRegsRx = (DMA_Stream_TypeDef *)dmaRx->ref;
224 // Use the correct callback argument
225 dmaRx->userParam = (uint32_t)dev;
227 // Clear transfer flags
228 DMA_CLEAR_FLAG(dmaTx, DMA_IT_HTIF | DMA_IT_TEIF | DMA_IT_TCIF);
229 DMA_CLEAR_FLAG(dmaRx, DMA_IT_HTIF | DMA_IT_TEIF | DMA_IT_TCIF);
231 // Disable streams to enable update
232 streamRegsTx->CR = 0U;
233 streamRegsRx->CR = 0U;
235 /* Use the Rx interrupt as this occurs once the SPI operation is complete whereas the Tx interrupt
236 * occurs earlier when the Tx FIFO is empty, but the SPI operation is still in progress
238 DMA_ITConfig(streamRegsRx, DMA_IT_TC, ENABLE);
240 // Update streams
241 DMA_Init(streamRegsTx, dev->bus->initTx);
242 DMA_Init(streamRegsRx, dev->bus->initRx);
244 /* Note from AN4031
246 * If the user enables the used peripheral before the corresponding DMA stream, a “FEIF”
247 * (FIFO Error Interrupt Flag) may be set due to the fact the DMA is not ready to provide
248 * the first required data to the peripheral (in case of memory-to-peripheral transfer).
251 // Enable streams
252 DMA_Cmd(streamRegsTx, ENABLE);
253 DMA_Cmd(streamRegsRx, ENABLE);
255 /* Enable the SPI DMA Tx & Rx requests */
256 SPI_I2S_DMACmd(dev->bus->busType_u.spi.instance, SPI_I2S_DMAReq_Tx | SPI_I2S_DMAReq_Rx, ENABLE);
257 } else {
258 // Use the correct callback argument
259 dmaTx->userParam = (uint32_t)dev;
261 // Clear transfer flags
262 DMA_CLEAR_FLAG(dmaTx, DMA_IT_HTIF | DMA_IT_TEIF | DMA_IT_TCIF);
264 // Disable stream to enable update
265 streamRegsTx->CR = 0U;
267 DMA_ITConfig(streamRegsTx, DMA_IT_TC, ENABLE);
269 // Update stream
270 DMA_Init(streamRegsTx, dev->bus->initTx);
272 /* Note from AN4031
274 * If the user enables the used peripheral before the corresponding DMA stream, a “FEIF”
275 * (FIFO Error Interrupt Flag) may be set due to the fact the DMA is not ready to provide
276 * the first required data to the peripheral (in case of memory-to-peripheral transfer).
279 // Enable stream
280 DMA_Cmd(streamRegsTx, ENABLE);
282 /* Enable the SPI DMA Tx request */
283 SPI_I2S_DMACmd(dev->bus->busType_u.spi.instance, SPI_I2S_DMAReq_Tx, ENABLE);
288 void spiInternalStopDMA (const extDevice_t *dev)
290 dmaChannelDescriptor_t *dmaTx = dev->bus->dmaTx;
291 dmaChannelDescriptor_t *dmaRx = dev->bus->dmaRx;
292 SPI_TypeDef *instance = dev->bus->busType_u.spi.instance;
293 DMA_Stream_TypeDef *streamRegsTx = (DMA_Stream_TypeDef *)dmaTx->ref;
295 if (dmaRx) {
296 DMA_Stream_TypeDef *streamRegsRx = (DMA_Stream_TypeDef *)dmaRx->ref;
298 // Disable streams
299 streamRegsTx->CR = 0U;
300 streamRegsRx->CR = 0U;
302 SPI_I2S_DMACmd(instance, SPI_I2S_DMAReq_Tx | SPI_I2S_DMAReq_Rx, DISABLE);
303 } else {
304 // Ensure the current transmission is complete
305 while (SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_BSY));
307 // Drain the RX buffer
308 while (SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_RXNE)) {
309 instance->DR;
312 // Disable stream
313 streamRegsTx->CR = 0U;
315 SPI_I2S_DMACmd(instance, SPI_I2S_DMAReq_Tx, DISABLE);
319 // DMA transfer setup and start
320 void spiSequenceStart(const extDevice_t *dev)
322 busDevice_t *bus = dev->bus;
323 SPI_TypeDef *instance = bus->busType_u.spi.instance;
324 bool dmaSafe = dev->useDMA;
325 uint32_t xferLen = 0;
326 uint32_t segmentCount = 0;
328 dev->bus->initSegment = true;
330 SPI_Cmd(instance, DISABLE);
332 // Switch bus speed
333 if (dev->busType_u.spi.speed != bus->busType_u.spi.speed) {
334 spiSetDivisorBRreg(bus->busType_u.spi.instance, dev->busType_u.spi.speed);
335 bus->busType_u.spi.speed = dev->busType_u.spi.speed;
338 if (dev->busType_u.spi.leadingEdge != bus->busType_u.spi.leadingEdge) {
339 // Switch SPI clock polarity/phase
340 instance->CR1 &= ~(SPI_CPOL_High | SPI_CPHA_2Edge);
342 // Apply setting
343 if (dev->busType_u.spi.leadingEdge) {
344 instance->CR1 |= SPI_CPOL_Low | SPI_CPHA_1Edge;
345 } else
347 instance->CR1 |= SPI_CPOL_High | SPI_CPHA_2Edge;
349 bus->busType_u.spi.leadingEdge = dev->busType_u.spi.leadingEdge;
352 SPI_Cmd(instance, ENABLE);
354 // Check that any there are no attempts to DMA to/from CCD SRAM
355 for (busSegment_t *checkSegment = (busSegment_t *)bus->curSegment; checkSegment->len; checkSegment++) {
356 // Check there is no receive data as only transmit DMA is available
357 if (((checkSegment->u.buffers.rxData) && (IS_CCM(checkSegment->u.buffers.rxData) || (bus->dmaRx == (dmaChannelDescriptor_t *)NULL))) ||
358 ((checkSegment->u.buffers.txData) && IS_CCM(checkSegment->u.buffers.txData))) {
359 dmaSafe = false;
360 break;
362 // Note that these counts are only valid if dmaSafe is true
363 segmentCount++;
364 xferLen += checkSegment->len;
366 // Use DMA if possible
367 // If there are more than one segments, or a single segment with negateCS negated then force DMA irrespective of length
368 if (bus->useDMA && dmaSafe && ((segmentCount > 1) || (xferLen >= 8) || !bus->curSegment->negateCS)) {
369 // Intialise the init structures for the first transfer
370 spiInternalInitStream(dev, false);
372 // Assert Chip Select
373 IOLo(dev->busType_u.spi.csnPin);
375 // Start the transfers
376 spiInternalStartDMA(dev);
377 } else {
378 busSegment_t *lastSegment = NULL;
380 // Manually work through the segment list performing a transfer for each
381 while (bus->curSegment->len) {
382 if (!lastSegment || lastSegment->negateCS) {
383 // Assert Chip Select if necessary - it's costly so only do so if necessary
384 IOLo(dev->busType_u.spi.csnPin);
387 spiInternalReadWriteBufPolled(
388 bus->busType_u.spi.instance,
389 bus->curSegment->u.buffers.txData,
390 bus->curSegment->u.buffers.rxData,
391 bus->curSegment->len);
393 if (bus->curSegment->negateCS) {
394 // Negate Chip Select
395 IOHi(dev->busType_u.spi.csnPin);
398 if (bus->curSegment->callback) {
399 switch(bus->curSegment->callback(dev->callbackArg)) {
400 case BUS_BUSY:
401 // Repeat the last DMA segment
402 bus->curSegment--;
403 break;
405 case BUS_ABORT:
406 bus->curSegment = (busSegment_t *)BUS_SPI_FREE;
407 return;
409 case BUS_READY:
410 default:
411 // Advance to the next DMA segment
412 break;
415 lastSegment = (busSegment_t *)bus->curSegment;
416 bus->curSegment++;
419 if (lastSegment && !lastSegment->negateCS) {
420 // Negate Chip Select if not done so already
421 IOHi(dev->busType_u.spi.csnPin);
424 // If a following transaction has been linked, start it
425 if (bus->curSegment->u.link.dev) {
426 const extDevice_t *nextDev = bus->curSegment->u.link.dev;
427 busSegment_t *nextSegments = (busSegment_t *)bus->curSegment->u.link.segments;
428 busSegment_t *endSegment = (busSegment_t *)bus->curSegment;
429 bus->curSegment = nextSegments;
430 endSegment->u.link.dev = NULL;
431 spiSequenceStart(nextDev);
432 } else {
433 // The end of the segment list has been reached, so mark transactions as complete
434 bus->curSegment = (busSegment_t *)BUS_SPI_FREE;
438 #endif