Updated and Validated
[betaflight.git] / src / main / flight / mixer.c
blob8d73134fa21ce12b479b99d21ea5dba69432c282
1 /*
2 * This file is part of Cleanflight and Betaflight.
4 * Cleanflight and Betaflight are free software. You can redistribute
5 * this software and/or modify this software under the terms of the
6 * GNU General Public License as published by the Free Software
7 * Foundation, either version 3 of the License, or (at your option)
8 * any later version.
10 * Cleanflight and Betaflight are distributed in the hope that they
11 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
12 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 * See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this software.
18 * If not, see <http://www.gnu.org/licenses/>.
21 #include <stdbool.h>
22 #include <stdint.h>
23 #include <math.h>
25 #include "platform.h"
27 #include "build/debug.h"
29 #include "common/axis.h"
30 #include "common/filter.h"
31 #include "common/maths.h"
33 #include "config/config.h"
34 #include "config/feature.h"
36 #include "drivers/dshot.h"
37 #include "drivers/io.h"
38 #include "drivers/motor.h"
39 #include "drivers/time.h"
41 #include "fc/controlrate_profile.h"
42 #include "fc/core.h"
43 #include "fc/rc.h"
44 #include "fc/rc_controls.h"
45 #include "fc/rc_modes.h"
46 #include "fc/runtime_config.h"
48 #include "flight/failsafe.h"
49 #include "flight/gps_rescue.h"
50 #include "flight/imu.h"
51 #include "flight/mixer_init.h"
52 #include "flight/mixer_tricopter.h"
53 #include "flight/pid.h"
54 #include "flight/rpm_filter.h"
56 #include "pg/rx.h"
58 #include "rx/rx.h"
60 #include "sensors/battery.h"
61 #include "sensors/gyro.h"
63 #include "mixer.h"
65 #define DYN_LPF_THROTTLE_STEPS 100
66 #define DYN_LPF_THROTTLE_UPDATE_DELAY_US 5000 // minimum of 5ms between updates
68 static FAST_DATA_ZERO_INIT float motorMixRange;
70 float FAST_DATA_ZERO_INIT motor[MAX_SUPPORTED_MOTORS];
71 float motor_disarmed[MAX_SUPPORTED_MOTORS];
73 static FAST_DATA_ZERO_INIT int throttleAngleCorrection;
75 float getMotorMixRange(void)
77 return motorMixRange;
80 void writeMotors(void)
82 motorWriteAll(motor);
85 static void writeAllMotors(int16_t mc)
87 // Sends commands to all motors
88 for (int i = 0; i < mixerRuntime.motorCount; i++) {
89 motor[i] = mc;
91 writeMotors();
94 void stopMotors(void)
96 writeAllMotors(mixerRuntime.disarmMotorOutput);
97 delay(50); // give the timers and ESCs a chance to react.
100 static FAST_DATA_ZERO_INIT float throttle = 0;
101 static FAST_DATA_ZERO_INIT float mixerThrottle = 0;
102 static FAST_DATA_ZERO_INIT float motorOutputMin;
103 static FAST_DATA_ZERO_INIT float motorRangeMin;
104 static FAST_DATA_ZERO_INIT float motorRangeMax;
105 static FAST_DATA_ZERO_INIT float motorOutputRange;
106 static FAST_DATA_ZERO_INIT int8_t motorOutputMixSign;
108 static void calculateThrottleAndCurrentMotorEndpoints(timeUs_t currentTimeUs)
110 static uint16_t rcThrottlePrevious = 0; // Store the last throttle direction for deadband transitions
111 static timeUs_t reversalTimeUs = 0; // time when motors last reversed in 3D mode
112 static float motorRangeMinIncrease = 0;
114 float currentThrottleInputRange = 0;
115 if (mixerRuntime.feature3dEnabled) {
116 uint16_t rcCommand3dDeadBandLow;
117 uint16_t rcCommand3dDeadBandHigh;
119 if (!ARMING_FLAG(ARMED)) {
120 rcThrottlePrevious = rxConfig()->midrc; // When disarmed set to mid_rc. It always results in positive direction after arming.
123 if (IS_RC_MODE_ACTIVE(BOX3D) || flight3DConfig()->switched_mode3d) {
124 // The min_check range is halved because the output throttle is scaled to 500us.
125 // So by using half of min_check we maintain the same low-throttle deadband
126 // stick travel as normal non-3D mode.
127 const int mincheckOffset = (rxConfig()->mincheck - PWM_RANGE_MIN) / 2;
128 rcCommand3dDeadBandLow = rxConfig()->midrc - mincheckOffset;
129 rcCommand3dDeadBandHigh = rxConfig()->midrc + mincheckOffset;
130 } else {
131 rcCommand3dDeadBandLow = rxConfig()->midrc - flight3DConfig()->deadband3d_throttle;
132 rcCommand3dDeadBandHigh = rxConfig()->midrc + flight3DConfig()->deadband3d_throttle;
135 const float rcCommandThrottleRange3dLow = rcCommand3dDeadBandLow - PWM_RANGE_MIN;
136 const float rcCommandThrottleRange3dHigh = PWM_RANGE_MAX - rcCommand3dDeadBandHigh;
138 if (rcCommand[THROTTLE] <= rcCommand3dDeadBandLow || isFlipOverAfterCrashActive()) {
139 // INVERTED
140 motorRangeMin = mixerRuntime.motorOutputLow;
141 motorRangeMax = mixerRuntime.deadbandMotor3dLow;
142 #ifdef USE_DSHOT
143 if (isMotorProtocolDshot()) {
144 motorOutputMin = mixerRuntime.motorOutputLow;
145 motorOutputRange = mixerRuntime.deadbandMotor3dLow - mixerRuntime.motorOutputLow;
146 } else
147 #endif
149 motorOutputMin = mixerRuntime.deadbandMotor3dLow;
150 motorOutputRange = mixerRuntime.motorOutputLow - mixerRuntime.deadbandMotor3dLow;
153 if (motorOutputMixSign != -1) {
154 reversalTimeUs = currentTimeUs;
156 motorOutputMixSign = -1;
158 rcThrottlePrevious = rcCommand[THROTTLE];
159 throttle = rcCommand3dDeadBandLow - rcCommand[THROTTLE];
160 currentThrottleInputRange = rcCommandThrottleRange3dLow;
161 } else if (rcCommand[THROTTLE] >= rcCommand3dDeadBandHigh) {
162 // NORMAL
163 motorRangeMin = mixerRuntime.deadbandMotor3dHigh;
164 motorRangeMax = mixerRuntime.motorOutputHigh;
165 motorOutputMin = mixerRuntime.deadbandMotor3dHigh;
166 motorOutputRange = mixerRuntime.motorOutputHigh - mixerRuntime.deadbandMotor3dHigh;
167 if (motorOutputMixSign != 1) {
168 reversalTimeUs = currentTimeUs;
170 motorOutputMixSign = 1;
171 rcThrottlePrevious = rcCommand[THROTTLE];
172 throttle = rcCommand[THROTTLE] - rcCommand3dDeadBandHigh;
173 currentThrottleInputRange = rcCommandThrottleRange3dHigh;
174 } else if ((rcThrottlePrevious <= rcCommand3dDeadBandLow &&
175 !flight3DConfigMutable()->switched_mode3d) ||
176 isMotorsReversed()) {
177 // INVERTED_TO_DEADBAND
178 motorRangeMin = mixerRuntime.motorOutputLow;
179 motorRangeMax = mixerRuntime.deadbandMotor3dLow;
181 #ifdef USE_DSHOT
182 if (isMotorProtocolDshot()) {
183 motorOutputMin = mixerRuntime.motorOutputLow;
184 motorOutputRange = mixerRuntime.deadbandMotor3dLow - mixerRuntime.motorOutputLow;
185 } else
186 #endif
188 motorOutputMin = mixerRuntime.deadbandMotor3dLow;
189 motorOutputRange = mixerRuntime.motorOutputLow - mixerRuntime.deadbandMotor3dLow;
192 if (motorOutputMixSign != -1) {
193 reversalTimeUs = currentTimeUs;
195 motorOutputMixSign = -1;
197 throttle = 0;
198 currentThrottleInputRange = rcCommandThrottleRange3dLow;
199 } else {
200 // NORMAL_TO_DEADBAND
201 motorRangeMin = mixerRuntime.deadbandMotor3dHigh;
202 motorRangeMax = mixerRuntime.motorOutputHigh;
203 motorOutputMin = mixerRuntime.deadbandMotor3dHigh;
204 motorOutputRange = mixerRuntime.motorOutputHigh - mixerRuntime.deadbandMotor3dHigh;
205 if (motorOutputMixSign != 1) {
206 reversalTimeUs = currentTimeUs;
208 motorOutputMixSign = 1;
209 throttle = 0;
210 currentThrottleInputRange = rcCommandThrottleRange3dHigh;
212 if (currentTimeUs - reversalTimeUs < 250000) {
213 // keep iterm zero for 250ms after motor reversal
214 pidResetIterm();
216 } else {
217 throttle = rcCommand[THROTTLE] - PWM_RANGE_MIN + throttleAngleCorrection;
218 currentThrottleInputRange = PWM_RANGE;
220 #ifdef USE_DYN_IDLE
221 if (mixerRuntime.dynIdleMinRps > 0.0f) {
222 const float maxIncrease = isAirmodeActivated() ? mixerRuntime.dynIdleMaxIncrease : 0.05f;
223 float minRps = rpmMinMotorFrequency();
224 DEBUG_SET(DEBUG_DYN_IDLE, 3, (minRps * 10));
225 float rpsError = mixerRuntime.dynIdleMinRps - minRps;
226 // PT1 type lowpass delay and smoothing for D
227 minRps = mixerRuntime.prevMinRps + mixerRuntime.minRpsDelayK * (minRps - mixerRuntime.prevMinRps);
228 float dynIdleD = (mixerRuntime.prevMinRps - minRps) * mixerRuntime.dynIdleDGain;
229 mixerRuntime.prevMinRps = minRps;
230 float dynIdleP = rpsError * mixerRuntime.dynIdlePGain;
231 rpsError = MAX(-0.1f, rpsError); //I rises fast, falls slowly
232 mixerRuntime.dynIdleI += rpsError * mixerRuntime.dynIdleIGain;
233 mixerRuntime.dynIdleI = constrainf(mixerRuntime.dynIdleI, 0.0f, maxIncrease);
234 motorRangeMinIncrease = constrainf((dynIdleP + mixerRuntime.dynIdleI + dynIdleD), 0.0f, maxIncrease);
235 DEBUG_SET(DEBUG_DYN_IDLE, 0, (MAX(-1000.0f, dynIdleP * 10000)));
236 DEBUG_SET(DEBUG_DYN_IDLE, 1, (mixerRuntime.dynIdleI * 10000));
237 DEBUG_SET(DEBUG_DYN_IDLE, 2, (dynIdleD * 10000));
238 } else {
239 motorRangeMinIncrease = 0;
241 #endif
243 #if defined(USE_BATTERY_VOLTAGE_SAG_COMPENSATION)
244 float motorRangeAttenuationFactor = 0;
245 // reduce motorRangeMax when battery is full
246 if (mixerRuntime.vbatSagCompensationFactor > 0.0f) {
247 const uint16_t currentCellVoltage = getBatterySagCellVoltage();
248 // batteryGoodness = 1 when voltage is above vbatFull, and 0 when voltage is below vbatLow
249 float batteryGoodness = 1.0f - constrainf((mixerRuntime.vbatFull - currentCellVoltage) / mixerRuntime.vbatRangeToCompensate, 0.0f, 1.0f);
250 motorRangeAttenuationFactor = (mixerRuntime.vbatRangeToCompensate / mixerRuntime.vbatFull) * batteryGoodness * mixerRuntime.vbatSagCompensationFactor;
251 DEBUG_SET(DEBUG_BATTERY, 2, batteryGoodness * 100);
252 DEBUG_SET(DEBUG_BATTERY, 3, motorRangeAttenuationFactor * 1000);
254 motorRangeMax = isFlipOverAfterCrashActive() ? mixerRuntime.motorOutputHigh : mixerRuntime.motorOutputHigh - motorRangeAttenuationFactor * (mixerRuntime.motorOutputHigh - mixerRuntime.motorOutputLow);
255 #else
256 motorRangeMax = mixerRuntime.motorOutputHigh;
257 #endif
259 motorRangeMin = mixerRuntime.motorOutputLow + motorRangeMinIncrease * (mixerRuntime.motorOutputHigh - mixerRuntime.motorOutputLow);
260 motorOutputMin = motorRangeMin;
261 motorOutputRange = motorRangeMax - motorRangeMin;
262 motorOutputMixSign = 1;
265 throttle = constrainf(throttle / currentThrottleInputRange, 0.0f, 1.0f);
268 #define CRASH_FLIP_DEADBAND 20
269 #define CRASH_FLIP_STICK_MINF 0.15f
271 static void applyFlipOverAfterCrashModeToMotors(void)
273 if (ARMING_FLAG(ARMED)) {
274 const float flipPowerFactor = 1.0f - mixerConfig()->crashflip_expo / 100.0f;
275 const float stickDeflectionPitchAbs = getRcDeflectionAbs(FD_PITCH);
276 const float stickDeflectionRollAbs = getRcDeflectionAbs(FD_ROLL);
277 const float stickDeflectionYawAbs = getRcDeflectionAbs(FD_YAW);
279 const float stickDeflectionPitchExpo = flipPowerFactor * stickDeflectionPitchAbs + power3(stickDeflectionPitchAbs) * (1 - flipPowerFactor);
280 const float stickDeflectionRollExpo = flipPowerFactor * stickDeflectionRollAbs + power3(stickDeflectionRollAbs) * (1 - flipPowerFactor);
281 const float stickDeflectionYawExpo = flipPowerFactor * stickDeflectionYawAbs + power3(stickDeflectionYawAbs) * (1 - flipPowerFactor);
283 float signPitch = getRcDeflection(FD_PITCH) < 0 ? 1 : -1;
284 float signRoll = getRcDeflection(FD_ROLL) < 0 ? 1 : -1;
285 float signYaw = (getRcDeflection(FD_YAW) < 0 ? 1 : -1) * (mixerConfig()->yaw_motors_reversed ? 1 : -1);
287 float stickDeflectionLength = sqrtf(sq(stickDeflectionPitchAbs) + sq(stickDeflectionRollAbs));
288 float stickDeflectionExpoLength = sqrtf(sq(stickDeflectionPitchExpo) + sq(stickDeflectionRollExpo));
290 if (stickDeflectionYawAbs > MAX(stickDeflectionPitchAbs, stickDeflectionRollAbs)) {
291 // If yaw is the dominant, disable pitch and roll
292 stickDeflectionLength = stickDeflectionYawAbs;
293 stickDeflectionExpoLength = stickDeflectionYawExpo;
294 signRoll = 0;
295 signPitch = 0;
296 } else {
297 // If pitch/roll dominant, disable yaw
298 signYaw = 0;
301 const float cosPhi = (stickDeflectionLength > 0) ? (stickDeflectionPitchAbs + stickDeflectionRollAbs) / (sqrtf(2.0f) * stickDeflectionLength) : 0;
302 const float cosThreshold = sqrtf(3.0f)/2.0f; // cos(PI/6.0f)
304 if (cosPhi < cosThreshold) {
305 // Enforce either roll or pitch exclusively, if not on diagonal
306 if (stickDeflectionRollAbs > stickDeflectionPitchAbs) {
307 signPitch = 0;
308 } else {
309 signRoll = 0;
313 // Apply a reasonable amount of stick deadband
314 const float crashFlipStickMinExpo = flipPowerFactor * CRASH_FLIP_STICK_MINF + power3(CRASH_FLIP_STICK_MINF) * (1 - flipPowerFactor);
315 const float flipStickRange = 1.0f - crashFlipStickMinExpo;
316 const float flipPower = MAX(0.0f, stickDeflectionExpoLength - crashFlipStickMinExpo) / flipStickRange;
318 for (int i = 0; i < mixerRuntime.motorCount; ++i) {
319 float motorOutputNormalised =
320 signPitch * mixerRuntime.currentMixer[i].pitch +
321 signRoll * mixerRuntime.currentMixer[i].roll +
322 signYaw * mixerRuntime.currentMixer[i].yaw;
324 if (motorOutputNormalised < 0) {
325 if (mixerConfig()->crashflip_motor_percent > 0) {
326 motorOutputNormalised = -motorOutputNormalised * (float)mixerConfig()->crashflip_motor_percent / 100.0f;
327 } else {
328 motorOutputNormalised = 0;
331 motorOutputNormalised = MIN(1.0f, flipPower * motorOutputNormalised);
332 float motorOutput = motorOutputMin + motorOutputNormalised * motorOutputRange;
334 // Add a little bit to the motorOutputMin so props aren't spinning when sticks are centered
335 motorOutput = (motorOutput < motorOutputMin + CRASH_FLIP_DEADBAND) ? mixerRuntime.disarmMotorOutput : (motorOutput - CRASH_FLIP_DEADBAND);
337 motor[i] = motorOutput;
339 } else {
340 // Disarmed mode
341 for (int i = 0; i < mixerRuntime.motorCount; i++) {
342 motor[i] = motor_disarmed[i];
347 static void applyMixToMotors(float motorMix[MAX_SUPPORTED_MOTORS], motorMixer_t *activeMixer)
349 // Now add in the desired throttle, but keep in a range that doesn't clip adjusted
350 // roll/pitch/yaw. This could move throttle down, but also up for those low throttle flips.
351 for (int i = 0; i < mixerRuntime.motorCount; i++) {
352 float motorOutput = motorOutputMixSign * motorMix[i] + throttle * activeMixer[i].throttle;
353 #ifdef USE_THRUST_LINEARIZATION
354 motorOutput = pidApplyThrustLinearization(motorOutput);
355 #endif
356 motorOutput = motorOutputMin + motorOutputRange * motorOutput;
358 #ifdef USE_SERVOS
359 if (mixerIsTricopter()) {
360 motorOutput += mixerTricopterMotorCorrection(i);
362 #endif
363 if (failsafeIsActive()) {
364 #ifdef USE_DSHOT
365 if (isMotorProtocolDshot()) {
366 motorOutput = (motorOutput < motorRangeMin) ? mixerRuntime.disarmMotorOutput : motorOutput; // Prevent getting into special reserved range
368 #endif
369 motorOutput = constrainf(motorOutput, mixerRuntime.disarmMotorOutput, motorRangeMax);
370 } else {
371 motorOutput = constrainf(motorOutput, motorRangeMin, motorRangeMax);
373 motor[i] = motorOutput;
376 // Disarmed mode
377 if (!ARMING_FLAG(ARMED)) {
378 for (int i = 0; i < mixerRuntime.motorCount; i++) {
379 motor[i] = motor_disarmed[i];
384 static float applyThrottleLimit(float throttle)
386 if (currentControlRateProfile->throttle_limit_percent < 100) {
387 const float throttleLimitFactor = currentControlRateProfile->throttle_limit_percent / 100.0f;
388 switch (currentControlRateProfile->throttle_limit_type) {
389 case THROTTLE_LIMIT_TYPE_SCALE:
390 return throttle * throttleLimitFactor;
391 case THROTTLE_LIMIT_TYPE_CLIP:
392 return MIN(throttle, throttleLimitFactor);
396 return throttle;
399 static void applyMotorStop(void)
401 for (int i = 0; i < mixerRuntime.motorCount; i++) {
402 motor[i] = mixerRuntime.disarmMotorOutput;
406 #ifdef USE_DYN_LPF
407 static void updateDynLpfCutoffs(timeUs_t currentTimeUs, float throttle)
409 static timeUs_t lastDynLpfUpdateUs = 0;
410 static int dynLpfPreviousQuantizedThrottle = -1; // to allow an initial zero throttle to set the filter cutoff
412 if (cmpTimeUs(currentTimeUs, lastDynLpfUpdateUs) >= DYN_LPF_THROTTLE_UPDATE_DELAY_US) {
413 const int quantizedThrottle = lrintf(throttle * DYN_LPF_THROTTLE_STEPS); // quantize the throttle reduce the number of filter updates
414 if (quantizedThrottle != dynLpfPreviousQuantizedThrottle) {
415 // scale the quantized value back to the throttle range so the filter cutoff steps are repeatable
416 const float dynLpfThrottle = (float)quantizedThrottle / DYN_LPF_THROTTLE_STEPS;
417 dynLpfGyroUpdate(dynLpfThrottle);
418 dynLpfDTermUpdate(dynLpfThrottle);
419 dynLpfPreviousQuantizedThrottle = quantizedThrottle;
420 lastDynLpfUpdateUs = currentTimeUs;
424 #endif
426 static void applyMixerAdjustmentLinear(float *motorMix, const bool airmodeEnabled) {
427 const float motorMixNormalizationFactor = motorMixRange > 1.0f ? motorMixRange : 1.0f;
428 const float motorMixDelta = 0.5f * motorMixRange;
430 for (int i = 0; i < mixerRuntime.motorCount; ++i) {
431 if (airmodeEnabled || throttle > 0.5f) {
432 if (mixerConfig()->mixer_type == MIXER_LINEAR) {
433 motorMix[i] = scaleRangef(throttle, 0.0f, 1.0f, motorMix[i] + motorMixDelta, motorMix[i] - motorMixDelta);
434 } else {
435 motorMix[i] = scaleRangef(throttle, 0.0f, 1.0f, motorMix[i] + ABS(motorMix[i]), motorMix[i] - ABS(motorMix[i]));
438 motorMix[i] /= motorMixNormalizationFactor;
442 static void applyMixerAdjustment(float *motorMix, const float motorMixMin, const float motorMixMax, const bool airmodeEnabled) {
443 #ifdef USE_AIRMODE_LPF
444 const float unadjustedThrottle = throttle;
445 throttle += pidGetAirmodeThrottleOffset();
446 float airmodeThrottleChange = 0;
447 #endif
449 if (motorMixRange > 1.0f) {
450 for (int i = 0; i < mixerRuntime.motorCount; i++) {
451 motorMix[i] /= motorMixRange;
453 // Get the maximum correction by setting offset to center when airmode enabled
454 if (airmodeEnabled) {
455 throttle = 0.5f;
457 } else {
458 if (airmodeEnabled || throttle > 0.5f) {
459 throttle = constrainf(throttle, -motorMixMin, 1.0f - motorMixMax);
460 #ifdef USE_AIRMODE_LPF
461 airmodeThrottleChange = constrainf(unadjustedThrottle, -motorMixMin, 1.0f - motorMixMax) - unadjustedThrottle;
462 #endif
466 #ifdef USE_AIRMODE_LPF
467 pidUpdateAirmodeLpf(airmodeThrottleChange);
468 #endif
471 FAST_CODE_NOINLINE void mixTable(timeUs_t currentTimeUs)
473 // Find min and max throttle based on conditions. Throttle has to be known before mixing
474 calculateThrottleAndCurrentMotorEndpoints(currentTimeUs);
476 if (isFlipOverAfterCrashActive()) {
477 applyFlipOverAfterCrashModeToMotors();
479 return;
482 const bool launchControlActive = isLaunchControlActive();
484 motorMixer_t * activeMixer = &mixerRuntime.currentMixer[0];
485 #ifdef USE_LAUNCH_CONTROL
486 if (launchControlActive && (currentPidProfile->launchControlMode == LAUNCH_CONTROL_MODE_PITCHONLY)) {
487 activeMixer = &mixerRuntime.launchControlMixer[0];
489 #endif
491 // Calculate and Limit the PID sum
492 const float scaledAxisPidRoll =
493 constrainf(pidData[FD_ROLL].Sum, -currentPidProfile->pidSumLimit, currentPidProfile->pidSumLimit) / PID_MIXER_SCALING;
494 const float scaledAxisPidPitch =
495 constrainf(pidData[FD_PITCH].Sum, -currentPidProfile->pidSumLimit, currentPidProfile->pidSumLimit) / PID_MIXER_SCALING;
497 uint16_t yawPidSumLimit = currentPidProfile->pidSumLimitYaw;
499 #ifdef USE_YAW_SPIN_RECOVERY
500 const bool yawSpinDetected = gyroYawSpinDetected();
501 if (yawSpinDetected) {
502 yawPidSumLimit = PIDSUM_LIMIT_MAX; // Set to the maximum limit during yaw spin recovery to prevent limiting motor authority
504 #endif // USE_YAW_SPIN_RECOVERY
506 float scaledAxisPidYaw =
507 constrainf(pidData[FD_YAW].Sum, -yawPidSumLimit, yawPidSumLimit) / PID_MIXER_SCALING;
509 if (!mixerConfig()->yaw_motors_reversed) {
510 scaledAxisPidYaw = -scaledAxisPidYaw;
513 // Apply the throttle_limit_percent to scale or limit the throttle based on throttle_limit_type
514 if (currentControlRateProfile->throttle_limit_type != THROTTLE_LIMIT_TYPE_OFF) {
515 throttle = applyThrottleLimit(throttle);
518 // use scaled throttle, without dynamic idle throttle offset, as the input to antigravity
519 pidUpdateAntiGravityThrottleFilter(throttle);
521 // and for TPA
522 pidUpdateTpaFactor(throttle);
524 #ifdef USE_DYN_LPF
525 // keep the changes to dynamic lowpass clean, without unnecessary dynamic changes
526 updateDynLpfCutoffs(currentTimeUs, throttle);
527 #endif
529 // apply throttle boost when throttle moves quickly
530 #if defined(USE_THROTTLE_BOOST)
531 if (throttleBoost > 0.0f) {
532 const float throttleHpf = throttle - pt1FilterApply(&throttleLpf, throttle);
533 throttle = constrainf(throttle + throttleBoost * throttleHpf, 0.0f, 1.0f);
535 #endif
537 // send throttle value to blackbox, including scaling and throttle boost, but not TL compensation, dyn idle or airmode
538 mixerThrottle = throttle;
540 #ifdef USE_DYN_IDLE
541 // Set min throttle offset of 1% when stick is at zero and dynamic idle is active
542 if (mixerRuntime.dynIdleMinRps > 0.0f) {
543 throttle = MAX(throttle, 0.01f);
545 #endif
547 #ifdef USE_THRUST_LINEARIZATION
548 // reduce throttle to offset additional motor output
549 throttle = pidCompensateThrustLinearization(throttle);
550 #endif
552 // Find roll/pitch/yaw desired output
553 // ??? Where is the optimal location for this code?
554 float motorMix[MAX_SUPPORTED_MOTORS];
555 float motorMixMax = 0, motorMixMin = 0;
556 for (int i = 0; i < mixerRuntime.motorCount; i++) {
558 float mix =
559 scaledAxisPidRoll * activeMixer[i].roll +
560 scaledAxisPidPitch * activeMixer[i].pitch +
561 scaledAxisPidYaw * activeMixer[i].yaw;
563 if (mix > motorMixMax) {
564 motorMixMax = mix;
565 } else if (mix < motorMixMin) {
566 motorMixMin = mix;
568 motorMix[i] = mix;
571 // The following fixed throttle values will not be shown in the blackbox log
572 // ?? Should they be influenced by airmode? If not, should go after the apply airmode code.
573 const bool airmodeEnabled = airmodeIsEnabled() || launchControlActive;
574 #ifdef USE_YAW_SPIN_RECOVERY
575 // 50% throttle provides the maximum authority for yaw recovery when airmode is not active.
576 // When airmode is active the throttle setting doesn't impact recovery authority.
577 if (yawSpinDetected && !airmodeEnabled) {
578 throttle = 0.5f;
580 #endif // USE_YAW_SPIN_RECOVERY
582 #ifdef USE_LAUNCH_CONTROL
583 // While launch control is active keep the throttle at minimum.
584 // Once the pilot triggers the launch throttle control will be reactivated.
585 if (launchControlActive) {
586 throttle = 0.0f;
588 #endif
590 #ifdef USE_GPS_RESCUE
591 // If gps rescue is active then override the throttle. This prevents things
592 // like throttle boost or throttle limit from negatively affecting the throttle.
593 if (FLIGHT_MODE(GPS_RESCUE_MODE)) {
594 throttle = gpsRescueGetThrottle();
596 #endif
598 motorMixRange = motorMixMax - motorMixMin;
599 if (mixerConfig()->mixer_type > MIXER_LEGACY) {
600 applyMixerAdjustmentLinear(motorMix, airmodeEnabled);
601 } else {
602 applyMixerAdjustment(motorMix, motorMixMin, motorMixMax, airmodeEnabled);
605 if (featureIsEnabled(FEATURE_MOTOR_STOP)
606 && ARMING_FLAG(ARMED)
607 && !mixerRuntime.feature3dEnabled
608 && !airmodeEnabled
609 && !FLIGHT_MODE(GPS_RESCUE_MODE) // disable motor_stop while GPS Rescue is active
610 && (rcData[THROTTLE] < rxConfig()->mincheck)) {
611 // motor_stop handling
612 applyMotorStop();
613 } else {
614 // Apply the mix to motor endpoints
615 applyMixToMotors(motorMix, activeMixer);
619 void mixerSetThrottleAngleCorrection(int correctionValue)
621 throttleAngleCorrection = correctionValue;
624 float mixerGetThrottle(void)
626 return mixerThrottle;