Updated and Validated
[betaflight.git] / src / main / rx / nrf24_h8_3d.c
blob31c1ff0c5567940f25842e8806f4898e5e4ce1ab
1 /*
2 * This file is part of Cleanflight and Betaflight.
4 * Cleanflight and Betaflight are free software. You can redistribute
5 * this software and/or modify this software under the terms of the
6 * GNU General Public License as published by the Free Software
7 * Foundation, either version 3 of the License, or (at your option)
8 * any later version.
10 * Cleanflight and Betaflight are distributed in the hope that they
11 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
12 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 * See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this software.
18 * If not, see <http://www.gnu.org/licenses/>.
21 // This file borrows heavily from project Deviation,
22 // see http://deviationtx.com
24 #include <stdbool.h>
25 #include <stdint.h>
26 #include <string.h>
28 #include "platform.h"
30 #ifdef USE_RX_H8_3D
32 #include "build/build_config.h"
34 #include "common/utils.h"
36 #include "pg/rx.h"
38 #include "drivers/io.h"
39 #include "drivers/rx/rx_nrf24l01.h"
40 #include "drivers/rx/rx_xn297.h"
41 #include "drivers/time.h"
43 #include "rx/rx.h"
44 #include "rx/rx_spi.h"
45 #include "rx/nrf24_h8_3d.h"
49 * Deviation transmitter sends 345 bind packets, then starts sending data packets.
50 * Packets are send at rate of at least one every 4 milliseconds, ie at least 250Hz.
51 * This means binding phase lasts 1.4 seconds, the transmitter then enters the data phase.
52 * Other transmitters may vary but should have similar characteristics.
57 * H8_3D Protocol
58 * No auto acknowledgment
59 * Payload size is 20, static
60 * Data rate is 1Mbps
61 * Bind Phase
62 * uses address {0xab,0xac,0xad,0xae,0xaf}, converted by XN297 to {0x41, 0xbd, 0x42, 0xd4, 0xc2}
63 * hops between 4 channels
64 * Data Phase
65 * uses same address as bind phase
66 * hops between 4 channels generated from txId received in bind packets
69 #define RC_CHANNEL_COUNT 14
71 #define FLAG_FLIP 0x01
72 #define FLAG_RATE_MID 0x02
73 #define FLAG_RATE_HIGH 0x04
74 #define FLAG_HEADLESS 0x10 // RTH + headless on H8, headless on JJRC H20
75 #define FLAG_RTH 0x20 // 360° flip mode on H8 3D, RTH on JJRC H20
76 #define FLAG_PICTURE 0x40 // on payload[18]
77 #define FLAG_VIDEO 0x80 // on payload[18]
78 #define FLAG_CAMERA_UP 0x04 // on payload[18]
79 #define FLAG_CAMERA_DOWN 0x08 // on payload[18]
81 typedef enum {
82 STATE_BIND = 0,
83 STATE_DATA
84 } protocol_state_t;
86 STATIC_UNIT_TESTED protocol_state_t protocolState;
88 #define H8_3D_PROTOCOL_PAYLOAD_SIZE 20
89 STATIC_UNIT_TESTED uint8_t payloadSize;
91 #define CRC_LEN 2
92 #define RX_TX_ADDR_LEN 5
93 STATIC_UNIT_TESTED uint8_t rxTxAddrXN297[RX_TX_ADDR_LEN] = {0x41, 0xbd, 0x42, 0xd4, 0xc2}; // converted XN297 address
94 #define TX_ID_LEN 4
95 STATIC_UNIT_TESTED uint8_t txId[TX_ID_LEN];
96 static uint32_t *rxSpiIdPtr;
98 // radio channels for frequency hopping
99 #define H8_3D_RF_CHANNEL_COUNT 4
100 STATIC_UNIT_TESTED uint8_t h8_3dRfChannelCount = H8_3D_RF_CHANNEL_COUNT;
101 STATIC_UNIT_TESTED uint8_t h8_3dRfChannelIndex;
102 STATIC_UNIT_TESTED uint8_t h8_3dRfChannels[H8_3D_RF_CHANNEL_COUNT];
103 // hop between these channels in the bind phase
104 #define H8_3D_RF_BIND_CHANNEL_START 0x06
105 #define H8_3D_RF_BIND_CHANNEL_END 0x26
107 #define DATA_HOP_TIMEOUT 5000 // 5ms
108 #define BIND_HOP_TIMEOUT 1000 // 1ms, to find the bind channel as quickly as possible
109 static uint32_t hopTimeout = BIND_HOP_TIMEOUT;
110 static uint32_t timeOfLastHop;
112 STATIC_UNIT_TESTED bool h8_3dCheckBindPacket(const uint8_t *payload)
114 bool bindPacket = false;
115 if ((payload[5] == 0x00) && (payload[6] == 0x00) && (payload[7] == 0x01)) {
116 const uint32_t checkSumTxId = (payload[1] + payload[2] + payload[3] + payload[4]) & 0xff;
117 if (checkSumTxId == payload[8]) {
118 bindPacket = true;
119 txId[0] = payload[1];
120 txId[1] = payload[2];
121 txId[2] = payload[3];
122 txId[3] = payload[4];
123 if (rxSpiIdPtr != NULL && *rxSpiIdPtr == 0) {
124 // copy the txId so it can be saved
125 memcpy(rxSpiIdPtr, txId, sizeof(uint32_t));
129 return bindPacket;
132 STATIC_UNIT_TESTED uint16_t h8_3dConvertToPwm(uint8_t val, int16_t _min, int16_t _max)
134 #define PWM_RANGE (PWM_RANGE_MAX - PWM_RANGE_MIN)
136 int32_t ret = val;
137 const int32_t range = _max - _min;
138 ret = PWM_RANGE_MIN + ((ret - _min) * PWM_RANGE)/range;
139 return (uint16_t)ret;
142 void h8_3dNrf24SetRcDataFromPayload(uint16_t *rcData, const uint8_t *payload)
144 rcData[RC_SPI_ROLL] = h8_3dConvertToPwm(payload[12], 0xbb, 0x43); // aileron
145 rcData[RC_SPI_PITCH] = h8_3dConvertToPwm(payload[11], 0x43, 0xbb); // elevator
146 rcData[RC_SPI_THROTTLE] = h8_3dConvertToPwm(payload[9], 0, 0xff); // throttle
147 const int8_t yawByte = payload[10]; // rudder
148 rcData[RC_SPI_YAW] = yawByte >= 0 ? h8_3dConvertToPwm(yawByte, -0x3c, 0x3c) : h8_3dConvertToPwm(yawByte, 0xbc, 0x44);
150 const uint8_t flags = payload[17];
151 const uint8_t flags2 = payload[18];
152 if (flags & FLAG_RATE_HIGH) {
153 rcData[RC_CHANNEL_RATE] = PWM_RANGE_MAX;
154 } else if (flags & FLAG_RATE_MID) {
155 rcData[RC_CHANNEL_RATE] = PWM_RANGE_MIDDLE;
156 } else {
157 rcData[RC_CHANNEL_RATE] = PWM_RANGE_MIN;
160 rcData[RC_CHANNEL_FLIP] = flags & FLAG_FLIP ? PWM_RANGE_MAX : PWM_RANGE_MIN;
161 rcData[RC_CHANNEL_PICTURE] = flags2 & FLAG_PICTURE ? PWM_RANGE_MAX : PWM_RANGE_MIN;
162 rcData[RC_CHANNEL_VIDEO] = flags2 & FLAG_VIDEO ? PWM_RANGE_MAX : PWM_RANGE_MIN;
163 rcData[RC_CHANNEL_HEADLESS] = flags & FLAG_HEADLESS ? PWM_RANGE_MAX : PWM_RANGE_MIN;
164 rcData[RC_CHANNEL_RTH] = flags & FLAG_RTH ? PWM_RANGE_MAX : PWM_RANGE_MIN;
166 if (flags2 & FLAG_CAMERA_UP) {
167 rcData[RC_SPI_AUX7] = PWM_RANGE_MAX;
168 } else if (flags2 & FLAG_CAMERA_DOWN) {
169 rcData[RC_SPI_AUX7] = PWM_RANGE_MIN;
170 } else {
171 rcData[RC_SPI_AUX7] = PWM_RANGE_MIDDLE;
173 rcData[RC_SPI_AUX8] = h8_3dConvertToPwm(payload[14], 0x10, 0x30);
174 rcData[RC_SPI_AUX9] = h8_3dConvertToPwm(payload[15], 0x30, 0x10);
175 rcData[RC_SPI_AUX10] = h8_3dConvertToPwm(payload[16], 0x10, 0x30);
178 static void h8_3dHopToNextChannel(void)
180 ++h8_3dRfChannelIndex;
181 if (protocolState == STATE_BIND) {
182 if (h8_3dRfChannelIndex > H8_3D_RF_BIND_CHANNEL_END) {
183 h8_3dRfChannelIndex = H8_3D_RF_BIND_CHANNEL_START;
185 NRF24L01_SetChannel(h8_3dRfChannelIndex);
186 } else {
187 if (h8_3dRfChannelIndex >= h8_3dRfChannelCount) {
188 h8_3dRfChannelIndex = 0;
190 NRF24L01_SetChannel(h8_3dRfChannels[h8_3dRfChannelIndex]);
194 // The hopping channels are determined by the txId
195 static void h8_3dSetHoppingChannels(const uint8_t *txId)
197 for (int ii = 0; ii < H8_3D_RF_CHANNEL_COUNT; ++ii) {
198 h8_3dRfChannels[ii] = 0x06 + (0x0f * ii) + ((txId[ii] >> 4) + (txId[ii] & 0x0f)) % 0x0f;
202 static void h8_3dSetBound(const uint8_t *txId)
204 protocolState = STATE_DATA;
205 h8_3dSetHoppingChannels(txId);
206 hopTimeout = DATA_HOP_TIMEOUT;
207 timeOfLastHop = micros();
208 h8_3dRfChannelIndex = 0;
209 NRF24L01_SetChannel(h8_3dRfChannels[0]);
212 static bool h8_3dCrcOK(uint16_t crc, const uint8_t *payload)
214 if (payload[payloadSize] != (crc >> 8)) {
215 return false;
217 if (payload[payloadSize + 1] != (crc & 0xff)) {
218 return false;
220 return true;
224 * This is called periodically by the scheduler.
225 * Returns NRF24L01_RECEIVED_DATA if a data packet was received.
227 rx_spi_received_e h8_3dNrf24DataReceived(uint8_t *payload)
229 rx_spi_received_e ret = RX_SPI_RECEIVED_NONE;
230 bool payloadReceived = false;
231 if (NRF24L01_ReadPayloadIfAvailable(payload, payloadSize + CRC_LEN)) {
232 const uint16_t crc = XN297_UnscramblePayload(payload, payloadSize, rxTxAddrXN297);
233 if (h8_3dCrcOK(crc, payload)) {
234 payloadReceived = true;
237 switch (protocolState) {
238 case STATE_BIND:
239 if (payloadReceived) {
240 const bool bindPacket = h8_3dCheckBindPacket(payload);
241 if (bindPacket) {
242 ret = RX_SPI_RECEIVED_BIND;
243 h8_3dSetBound(txId);
246 break;
247 case STATE_DATA:
248 if (payloadReceived) {
249 ret = RX_SPI_RECEIVED_DATA;
251 break;
253 const uint32_t timeNowUs = micros();
254 if ((ret == RX_SPI_RECEIVED_DATA) || (timeNowUs > timeOfLastHop + hopTimeout)) {
255 h8_3dHopToNextChannel();
256 timeOfLastHop = timeNowUs;
258 return ret;
261 static void h8_3dNrf24Setup(rx_spi_protocol_e protocol, const uint32_t *rxSpiId)
263 UNUSED(protocol);
264 protocolState = STATE_BIND;
266 NRF24L01_Initialize(0); // sets PWR_UP, no CRC - hardware CRC not used for XN297
267 NRF24L01_SetupBasic();
269 NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, NRF24L01_06_RF_SETUP_RF_DR_1Mbps | NRF24L01_06_RF_SETUP_RF_PWR_n12dbm);
270 // RX_ADDR for pipes P1-P5 are left at default values
271 NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rxTxAddrXN297, RX_TX_ADDR_LEN);
272 rxSpiIdPtr = (uint32_t*)rxSpiId;
273 if (rxSpiId == NULL || *rxSpiId == 0) {
274 h8_3dRfChannelIndex = H8_3D_RF_BIND_CHANNEL_START;
275 NRF24L01_SetChannel(H8_3D_RF_BIND_CHANNEL_START);
276 } else {
277 h8_3dSetBound((uint8_t*)rxSpiId);
280 payloadSize = H8_3D_PROTOCOL_PAYLOAD_SIZE;
281 NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, payloadSize + CRC_LEN); // payload + 2 bytes CRC
283 NRF24L01_SetRxMode(); // enter receive mode to start listening for packets
286 bool h8_3dNrf24Init(const rxSpiConfig_t *rxSpiConfig, rxRuntimeState_t *rxRuntimeState, rxSpiExtiConfig_t *extiConfig)
288 UNUSED(extiConfig);
290 rxRuntimeState->channelCount = RC_CHANNEL_COUNT;
291 h8_3dNrf24Setup((rx_spi_protocol_e)rxSpiConfig->rx_spi_protocol, &rxSpiConfig->rx_spi_id);
293 return true;
295 #endif