Updated and Validated
[betaflight.git] / src / main / sensors / gyro.c
blobabccba6d9b70b269c887965a3b4cefb52a080364
1 /*
2 * This file is part of Cleanflight and Betaflight.
4 * Cleanflight and Betaflight are free software. You can redistribute
5 * this software and/or modify this software under the terms of the
6 * GNU General Public License as published by the Free Software
7 * Foundation, either version 3 of the License, or (at your option)
8 * any later version.
10 * Cleanflight and Betaflight are distributed in the hope that they
11 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
12 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 * See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this software.
18 * If not, see <http://www.gnu.org/licenses/>.
21 #include <stdbool.h>
22 #include <stdint.h>
23 #include <string.h>
24 #include <math.h>
25 #include <stdlib.h>
27 #include "platform.h"
29 #include "build/debug.h"
31 #include "common/axis.h"
32 #include "common/maths.h"
33 #include "common/filter.h"
35 #include "config/feature.h"
36 #include "config/simplified_tuning.h"
38 #include "pg/pg.h"
39 #include "pg/pg_ids.h"
40 #include "pg/gyrodev.h"
42 #include "drivers/bus_spi.h"
43 #include "drivers/io.h"
45 #include "config/config.h"
46 #include "fc/runtime_config.h"
48 #ifdef USE_DYN_NOTCH_FILTER
49 #include "flight/dyn_notch_filter.h"
50 #endif
51 #include "flight/rpm_filter.h"
53 #include "io/beeper.h"
54 #include "io/statusindicator.h"
56 #include "scheduler/scheduler.h"
58 #include "sensors/boardalignment.h"
59 #include "sensors/gyro.h"
60 #include "sensors/gyro_init.h"
62 #if ((TARGET_FLASH_SIZE > 128) && (defined(USE_GYRO_SPI_ICM20601) || defined(USE_GYRO_SPI_ICM20689) || defined(USE_GYRO_SPI_MPU6500)))
63 #define USE_GYRO_SLEW_LIMITER
64 #endif
66 FAST_DATA_ZERO_INIT gyro_t gyro;
68 static FAST_DATA_ZERO_INIT bool overflowDetected;
69 #ifdef USE_GYRO_OVERFLOW_CHECK
70 static FAST_DATA_ZERO_INIT timeUs_t overflowTimeUs;
71 #endif
73 #ifdef USE_YAW_SPIN_RECOVERY
74 static FAST_DATA_ZERO_INIT bool yawSpinRecoveryEnabled;
75 static FAST_DATA_ZERO_INIT int yawSpinRecoveryThreshold;
76 static FAST_DATA_ZERO_INIT bool yawSpinDetected;
77 static FAST_DATA_ZERO_INIT timeUs_t yawSpinTimeUs;
78 #endif
80 static FAST_DATA_ZERO_INIT float accumulatedMeasurements[XYZ_AXIS_COUNT];
81 static FAST_DATA_ZERO_INIT float gyroPrevious[XYZ_AXIS_COUNT];
82 static FAST_DATA_ZERO_INIT int accumulatedMeasurementCount;
84 static FAST_DATA_ZERO_INIT int16_t gyroSensorTemperature;
86 FAST_DATA uint8_t activePidLoopDenom = 1;
88 static bool firstArmingCalibrationWasStarted = false;
90 #ifdef UNIT_TEST
91 STATIC_UNIT_TESTED gyroSensor_t * const gyroSensorPtr = &gyro.gyroSensor1;
92 STATIC_UNIT_TESTED gyroDev_t * const gyroDevPtr = &gyro.gyroSensor1.gyroDev;
93 #endif
96 #define DEBUG_GYRO_CALIBRATION 3
98 #define GYRO_OVERFLOW_TRIGGER_THRESHOLD 31980 // 97.5% full scale (1950dps for 2000dps gyro)
99 #define GYRO_OVERFLOW_RESET_THRESHOLD 30340 // 92.5% full scale (1850dps for 2000dps gyro)
101 PG_REGISTER_WITH_RESET_FN(gyroConfig_t, gyroConfig, PG_GYRO_CONFIG, 9);
103 #ifndef GYRO_CONFIG_USE_GYRO_DEFAULT
104 #define GYRO_CONFIG_USE_GYRO_DEFAULT GYRO_CONFIG_USE_GYRO_1
105 #endif
107 void pgResetFn_gyroConfig(gyroConfig_t *gyroConfig)
109 gyroConfig->gyroCalibrationDuration = 125; // 1.25 seconds
110 gyroConfig->gyroMovementCalibrationThreshold = 48;
111 gyroConfig->gyro_hardware_lpf = GYRO_HARDWARE_LPF_NORMAL;
112 gyroConfig->gyro_lpf1_type = FILTER_PT1;
113 gyroConfig->gyro_lpf1_static_hz = GYRO_LPF1_DYN_MIN_HZ_DEFAULT;
114 // NOTE: dynamic lpf is enabled by default so this setting is actually
115 // overridden and the static lowpass 1 is disabled. We can't set this
116 // value to 0 otherwise Configurator versions 10.4 and earlier will also
117 // reset the lowpass filter type to PT1 overriding the desired BIQUAD setting.
118 gyroConfig->gyro_lpf2_type = FILTER_PT1;
119 gyroConfig->gyro_lpf2_static_hz = GYRO_LPF2_HZ_DEFAULT;
120 gyroConfig->gyro_high_fsr = false;
121 gyroConfig->gyro_to_use = GYRO_CONFIG_USE_GYRO_DEFAULT;
122 gyroConfig->gyro_soft_notch_hz_1 = 0;
123 gyroConfig->gyro_soft_notch_cutoff_1 = 0;
124 gyroConfig->gyro_soft_notch_hz_2 = 0;
125 gyroConfig->gyro_soft_notch_cutoff_2 = 0;
126 gyroConfig->checkOverflow = GYRO_OVERFLOW_CHECK_ALL_AXES;
127 gyroConfig->gyro_offset_yaw = 0;
128 gyroConfig->yaw_spin_recovery = YAW_SPIN_RECOVERY_AUTO;
129 gyroConfig->yaw_spin_threshold = 1950;
130 gyroConfig->gyro_lpf1_dyn_min_hz = GYRO_LPF1_DYN_MIN_HZ_DEFAULT;
131 gyroConfig->gyro_lpf1_dyn_max_hz = GYRO_LPF1_DYN_MAX_HZ_DEFAULT;
132 gyroConfig->gyro_filter_debug_axis = FD_ROLL;
133 gyroConfig->gyro_lpf1_dyn_expo = 5;
134 gyroConfig->simplified_gyro_filter = true;
135 gyroConfig->simplified_gyro_filter_multiplier = SIMPLIFIED_TUNING_DEFAULT;
138 FAST_CODE bool isGyroSensorCalibrationComplete(const gyroSensor_t *gyroSensor)
140 return gyroSensor->calibration.cyclesRemaining == 0;
143 FAST_CODE bool gyroIsCalibrationComplete(void)
145 switch (gyro.gyroToUse) {
146 default:
147 case GYRO_CONFIG_USE_GYRO_1: {
148 return isGyroSensorCalibrationComplete(&gyro.gyroSensor1);
150 #ifdef USE_MULTI_GYRO
151 case GYRO_CONFIG_USE_GYRO_2: {
152 return isGyroSensorCalibrationComplete(&gyro.gyroSensor2);
154 case GYRO_CONFIG_USE_GYRO_BOTH: {
155 return isGyroSensorCalibrationComplete(&gyro.gyroSensor1) && isGyroSensorCalibrationComplete(&gyro.gyroSensor2);
157 #endif
161 static bool isOnFinalGyroCalibrationCycle(const gyroCalibration_t *gyroCalibration)
163 return gyroCalibration->cyclesRemaining == 1;
166 static int32_t gyroCalculateCalibratingCycles(void)
168 return (gyroConfig()->gyroCalibrationDuration * 10000) / gyro.sampleLooptime;
171 static bool isOnFirstGyroCalibrationCycle(const gyroCalibration_t *gyroCalibration)
173 return gyroCalibration->cyclesRemaining == gyroCalculateCalibratingCycles();
176 static void gyroSetCalibrationCycles(gyroSensor_t *gyroSensor)
178 #if defined(USE_FAKE_GYRO) && !defined(UNIT_TEST)
179 if (gyroSensor->gyroDev.gyroHardware == GYRO_FAKE) {
180 gyroSensor->calibration.cyclesRemaining = 0;
181 return;
183 #endif
184 gyroSensor->calibration.cyclesRemaining = gyroCalculateCalibratingCycles();
187 void gyroStartCalibration(bool isFirstArmingCalibration)
189 if (isFirstArmingCalibration && firstArmingCalibrationWasStarted) {
190 return;
193 gyroSetCalibrationCycles(&gyro.gyroSensor1);
194 #ifdef USE_MULTI_GYRO
195 gyroSetCalibrationCycles(&gyro.gyroSensor2);
196 #endif
198 if (isFirstArmingCalibration) {
199 firstArmingCalibrationWasStarted = true;
203 bool isFirstArmingGyroCalibrationRunning(void)
205 return firstArmingCalibrationWasStarted && !gyroIsCalibrationComplete();
208 STATIC_UNIT_TESTED void performGyroCalibration(gyroSensor_t *gyroSensor, uint8_t gyroMovementCalibrationThreshold)
210 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
211 // Reset g[axis] at start of calibration
212 if (isOnFirstGyroCalibrationCycle(&gyroSensor->calibration)) {
213 gyroSensor->calibration.sum[axis] = 0.0f;
214 devClear(&gyroSensor->calibration.var[axis]);
215 // gyroZero is set to zero until calibration complete
216 gyroSensor->gyroDev.gyroZero[axis] = 0.0f;
219 // Sum up CALIBRATING_GYRO_TIME_US readings
220 gyroSensor->calibration.sum[axis] += gyroSensor->gyroDev.gyroADCRaw[axis];
221 devPush(&gyroSensor->calibration.var[axis], gyroSensor->gyroDev.gyroADCRaw[axis]);
223 if (isOnFinalGyroCalibrationCycle(&gyroSensor->calibration)) {
224 const float stddev = devStandardDeviation(&gyroSensor->calibration.var[axis]);
225 // DEBUG_GYRO_CALIBRATION records the standard deviation of roll
226 // into the spare field - debug[3], in DEBUG_GYRO_RAW
227 if (axis == X) {
228 DEBUG_SET(DEBUG_GYRO_RAW, DEBUG_GYRO_CALIBRATION, lrintf(stddev));
231 // check deviation and startover in case the model was moved
232 if (gyroMovementCalibrationThreshold && stddev > gyroMovementCalibrationThreshold) {
233 gyroSetCalibrationCycles(gyroSensor);
234 return;
237 // please take care with exotic boardalignment !!
238 gyroSensor->gyroDev.gyroZero[axis] = gyroSensor->calibration.sum[axis] / gyroCalculateCalibratingCycles();
239 if (axis == Z) {
240 gyroSensor->gyroDev.gyroZero[axis] -= ((float)gyroConfig()->gyro_offset_yaw / 100);
245 if (isOnFinalGyroCalibrationCycle(&gyroSensor->calibration)) {
246 schedulerResetTaskStatistics(TASK_SELF); // so calibration cycles do not pollute tasks statistics
247 if (!firstArmingCalibrationWasStarted || (getArmingDisableFlags() & ~ARMING_DISABLED_CALIBRATING) == 0) {
248 beeper(BEEPER_GYRO_CALIBRATED);
252 --gyroSensor->calibration.cyclesRemaining;
255 #if defined(USE_GYRO_SLEW_LIMITER)
256 FAST_CODE int32_t gyroSlewLimiter(gyroSensor_t *gyroSensor, int axis)
258 int32_t ret = (int32_t)gyroSensor->gyroDev.gyroADCRaw[axis];
259 if (gyroConfig()->checkOverflow || gyro.gyroHasOverflowProtection) {
260 // don't use the slew limiter if overflow checking is on or gyro is not subject to overflow bug
261 return ret;
263 if (abs(ret - gyroSensor->gyroDev.gyroADCRawPrevious[axis]) > (1<<14)) {
264 // there has been a large change in value, so assume overflow has occurred and return the previous value
265 ret = gyroSensor->gyroDev.gyroADCRawPrevious[axis];
266 } else {
267 gyroSensor->gyroDev.gyroADCRawPrevious[axis] = ret;
269 return ret;
271 #endif
273 #ifdef USE_GYRO_OVERFLOW_CHECK
274 static FAST_CODE_NOINLINE void handleOverflow(timeUs_t currentTimeUs)
276 // This will need to be revised if we ever allow different sensor types to be
277 // used simultaneously. In that case the scale might be different between sensors.
278 // It's complicated by the fact that we're using filtered gyro data here which is
279 // after both sensors are scaled and averaged.
280 const float gyroOverflowResetRate = GYRO_OVERFLOW_RESET_THRESHOLD * gyro.scale;
282 if ((fabsf(gyro.gyroADCf[X]) < gyroOverflowResetRate)
283 && (fabsf(gyro.gyroADCf[Y]) < gyroOverflowResetRate)
284 && (fabsf(gyro.gyroADCf[Z]) < gyroOverflowResetRate)) {
285 // if we have 50ms of consecutive OK gyro vales, then assume yaw readings are OK again and reset overflowDetected
286 // reset requires good OK values on all axes
287 if (cmpTimeUs(currentTimeUs, overflowTimeUs) > 50000) {
288 overflowDetected = false;
290 } else {
291 // not a consecutive OK value, so reset the overflow time
292 overflowTimeUs = currentTimeUs;
296 static FAST_CODE void checkForOverflow(timeUs_t currentTimeUs)
298 // check for overflow to handle Yaw Spin To The Moon (YSTTM)
299 // ICM gyros are specified to +/- 2000 deg/sec, in a crash they can go out of spec.
300 // This can cause an overflow and sign reversal in the output.
301 // Overflow and sign reversal seems to result in a gyro value of +1996 or -1996.
302 if (overflowDetected) {
303 handleOverflow(currentTimeUs);
304 } else {
305 #ifndef SIMULATOR_BUILD
306 // check for overflow in the axes set in overflowAxisMask
307 gyroOverflow_e overflowCheck = GYRO_OVERFLOW_NONE;
309 // This will need to be revised if we ever allow different sensor types to be
310 // used simultaneously. In that case the scale might be different between sensors.
311 // It's complicated by the fact that we're using filtered gyro data here which is
312 // after both sensors are scaled and averaged.
313 const float gyroOverflowTriggerRate = GYRO_OVERFLOW_TRIGGER_THRESHOLD * gyro.scale;
315 if (fabsf(gyro.gyroADCf[X]) > gyroOverflowTriggerRate) {
316 overflowCheck |= GYRO_OVERFLOW_X;
318 if (fabsf(gyro.gyroADCf[Y]) > gyroOverflowTriggerRate) {
319 overflowCheck |= GYRO_OVERFLOW_Y;
321 if (fabsf(gyro.gyroADCf[Z]) > gyroOverflowTriggerRate) {
322 overflowCheck |= GYRO_OVERFLOW_Z;
324 if (overflowCheck & gyro.overflowAxisMask) {
325 overflowDetected = true;
326 overflowTimeUs = currentTimeUs;
327 #ifdef USE_YAW_SPIN_RECOVERY
328 yawSpinDetected = false;
329 #endif // USE_YAW_SPIN_RECOVERY
331 #endif // SIMULATOR_BUILD
334 #endif // USE_GYRO_OVERFLOW_CHECK
336 #ifdef USE_YAW_SPIN_RECOVERY
337 static FAST_CODE_NOINLINE void handleYawSpin(timeUs_t currentTimeUs)
339 const float yawSpinResetRate = yawSpinRecoveryThreshold - 100.0f;
340 if (fabsf(gyro.gyroADCf[Z]) < yawSpinResetRate) {
341 // testing whether 20ms of consecutive OK gyro yaw values is enough
342 if (cmpTimeUs(currentTimeUs, yawSpinTimeUs) > 20000) {
343 yawSpinDetected = false;
345 } else {
346 // reset the yaw spin time
347 yawSpinTimeUs = currentTimeUs;
351 static FAST_CODE void checkForYawSpin(timeUs_t currentTimeUs)
353 // if not in overflow mode, handle yaw spins above threshold
354 #ifdef USE_GYRO_OVERFLOW_CHECK
355 if (overflowDetected) {
356 yawSpinDetected = false;
357 return;
359 #endif // USE_GYRO_OVERFLOW_CHECK
361 if (yawSpinDetected) {
362 handleYawSpin(currentTimeUs);
363 } else {
364 #ifndef SIMULATOR_BUILD
365 // check for spin on yaw axis only
366 if (abs((int)gyro.gyroADCf[Z]) > yawSpinRecoveryThreshold) {
367 yawSpinDetected = true;
368 yawSpinTimeUs = currentTimeUs;
370 #endif // SIMULATOR_BUILD
373 #endif // USE_YAW_SPIN_RECOVERY
375 static FAST_CODE void gyroUpdateSensor(gyroSensor_t *gyroSensor)
377 if (!gyroSensor->gyroDev.readFn(&gyroSensor->gyroDev)) {
378 return;
380 gyroSensor->gyroDev.dataReady = false;
382 if (isGyroSensorCalibrationComplete(gyroSensor)) {
383 // move 16-bit gyro data into 32-bit variables to avoid overflows in calculations
385 #if defined(USE_GYRO_SLEW_LIMITER)
386 gyroSensor->gyroDev.gyroADC[X] = gyroSlewLimiter(gyroSensor, X) - gyroSensor->gyroDev.gyroZero[X];
387 gyroSensor->gyroDev.gyroADC[Y] = gyroSlewLimiter(gyroSensor, Y) - gyroSensor->gyroDev.gyroZero[Y];
388 gyroSensor->gyroDev.gyroADC[Z] = gyroSlewLimiter(gyroSensor, Z) - gyroSensor->gyroDev.gyroZero[Z];
389 #else
390 gyroSensor->gyroDev.gyroADC[X] = gyroSensor->gyroDev.gyroADCRaw[X] - gyroSensor->gyroDev.gyroZero[X];
391 gyroSensor->gyroDev.gyroADC[Y] = gyroSensor->gyroDev.gyroADCRaw[Y] - gyroSensor->gyroDev.gyroZero[Y];
392 gyroSensor->gyroDev.gyroADC[Z] = gyroSensor->gyroDev.gyroADCRaw[Z] - gyroSensor->gyroDev.gyroZero[Z];
393 #endif
395 if (gyroSensor->gyroDev.gyroAlign == ALIGN_CUSTOM) {
396 alignSensorViaMatrix(gyroSensor->gyroDev.gyroADC, &gyroSensor->gyroDev.rotationMatrix);
397 } else {
398 alignSensorViaRotation(gyroSensor->gyroDev.gyroADC, gyroSensor->gyroDev.gyroAlign);
400 } else {
401 performGyroCalibration(gyroSensor, gyroConfig()->gyroMovementCalibrationThreshold);
405 FAST_CODE void gyroUpdate(void)
407 switch (gyro.gyroToUse) {
408 case GYRO_CONFIG_USE_GYRO_1:
409 gyroUpdateSensor(&gyro.gyroSensor1);
410 if (isGyroSensorCalibrationComplete(&gyro.gyroSensor1)) {
411 gyro.gyroADC[X] = gyro.gyroSensor1.gyroDev.gyroADC[X] * gyro.gyroSensor1.gyroDev.scale;
412 gyro.gyroADC[Y] = gyro.gyroSensor1.gyroDev.gyroADC[Y] * gyro.gyroSensor1.gyroDev.scale;
413 gyro.gyroADC[Z] = gyro.gyroSensor1.gyroDev.gyroADC[Z] * gyro.gyroSensor1.gyroDev.scale;
415 break;
416 #ifdef USE_MULTI_GYRO
417 case GYRO_CONFIG_USE_GYRO_2:
418 gyroUpdateSensor(&gyro.gyroSensor2);
419 if (isGyroSensorCalibrationComplete(&gyro.gyroSensor2)) {
420 gyro.gyroADC[X] = gyro.gyroSensor2.gyroDev.gyroADC[X] * gyro.gyroSensor2.gyroDev.scale;
421 gyro.gyroADC[Y] = gyro.gyroSensor2.gyroDev.gyroADC[Y] * gyro.gyroSensor2.gyroDev.scale;
422 gyro.gyroADC[Z] = gyro.gyroSensor2.gyroDev.gyroADC[Z] * gyro.gyroSensor2.gyroDev.scale;
424 break;
425 case GYRO_CONFIG_USE_GYRO_BOTH:
426 gyroUpdateSensor(&gyro.gyroSensor1);
427 gyroUpdateSensor(&gyro.gyroSensor2);
428 if (isGyroSensorCalibrationComplete(&gyro.gyroSensor1) && isGyroSensorCalibrationComplete(&gyro.gyroSensor2)) {
429 gyro.gyroADC[X] = ((gyro.gyroSensor1.gyroDev.gyroADC[X] * gyro.gyroSensor1.gyroDev.scale) + (gyro.gyroSensor2.gyroDev.gyroADC[X] * gyro.gyroSensor2.gyroDev.scale)) / 2.0f;
430 gyro.gyroADC[Y] = ((gyro.gyroSensor1.gyroDev.gyroADC[Y] * gyro.gyroSensor1.gyroDev.scale) + (gyro.gyroSensor2.gyroDev.gyroADC[Y] * gyro.gyroSensor2.gyroDev.scale)) / 2.0f;
431 gyro.gyroADC[Z] = ((gyro.gyroSensor1.gyroDev.gyroADC[Z] * gyro.gyroSensor1.gyroDev.scale) + (gyro.gyroSensor2.gyroDev.gyroADC[Z] * gyro.gyroSensor2.gyroDev.scale)) / 2.0f;
433 break;
434 #endif
437 if (gyro.downsampleFilterEnabled) {
438 // using gyro lowpass 2 filter for downsampling
439 gyro.sampleSum[X] = gyro.lowpass2FilterApplyFn((filter_t *)&gyro.lowpass2Filter[X], gyro.gyroADC[X]);
440 gyro.sampleSum[Y] = gyro.lowpass2FilterApplyFn((filter_t *)&gyro.lowpass2Filter[Y], gyro.gyroADC[Y]);
441 gyro.sampleSum[Z] = gyro.lowpass2FilterApplyFn((filter_t *)&gyro.lowpass2Filter[Z], gyro.gyroADC[Z]);
442 } else {
443 // using simple averaging for downsampling
444 gyro.sampleSum[X] += gyro.gyroADC[X];
445 gyro.sampleSum[Y] += gyro.gyroADC[Y];
446 gyro.sampleSum[Z] += gyro.gyroADC[Z];
447 gyro.sampleCount++;
451 #define GYRO_FILTER_FUNCTION_NAME filterGyro
452 #define GYRO_FILTER_DEBUG_SET(mode, index, value) do { UNUSED(mode); UNUSED(index); UNUSED(value); } while (0)
453 #define GYRO_FILTER_AXIS_DEBUG_SET(axis, mode, index, value) do { UNUSED(axis); UNUSED(mode); UNUSED(index); UNUSED(value); } while (0)
454 #include "gyro_filter_impl.c"
455 #undef GYRO_FILTER_FUNCTION_NAME
456 #undef GYRO_FILTER_DEBUG_SET
457 #undef GYRO_FILTER_AXIS_DEBUG_SET
459 #define GYRO_FILTER_FUNCTION_NAME filterGyroDebug
460 #define GYRO_FILTER_DEBUG_SET DEBUG_SET
461 #define GYRO_FILTER_AXIS_DEBUG_SET(axis, mode, index, value) if (axis == (int)gyro.gyroDebugAxis) DEBUG_SET(mode, index, value)
462 #include "gyro_filter_impl.c"
463 #undef GYRO_FILTER_FUNCTION_NAME
464 #undef GYRO_FILTER_DEBUG_SET
465 #undef GYRO_FILTER_AXIS_DEBUG_SET
467 FAST_CODE void gyroFiltering(timeUs_t currentTimeUs)
469 if (gyro.gyroDebugMode == DEBUG_NONE) {
470 filterGyro();
471 } else {
472 filterGyroDebug();
475 #ifdef USE_DYN_NOTCH_FILTER
476 if (isDynNotchActive()) {
477 dynNotchUpdate();
479 #endif
481 if (gyro.useDualGyroDebugging) {
482 switch (gyro.gyroToUse) {
483 case GYRO_CONFIG_USE_GYRO_1:
484 DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 0, gyro.gyroSensor1.gyroDev.gyroADCRaw[X]);
485 DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 1, gyro.gyroSensor1.gyroDev.gyroADCRaw[Y]);
486 DEBUG_SET(DEBUG_DUAL_GYRO_SCALED, 0, lrintf(gyro.gyroSensor1.gyroDev.gyroADC[X] * gyro.gyroSensor1.gyroDev.scale));
487 DEBUG_SET(DEBUG_DUAL_GYRO_SCALED, 1, lrintf(gyro.gyroSensor1.gyroDev.gyroADC[Y] * gyro.gyroSensor1.gyroDev.scale));
488 break;
490 #ifdef USE_MULTI_GYRO
491 case GYRO_CONFIG_USE_GYRO_2:
492 DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 2, gyro.gyroSensor2.gyroDev.gyroADCRaw[X]);
493 DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 3, gyro.gyroSensor2.gyroDev.gyroADCRaw[Y]);
494 DEBUG_SET(DEBUG_DUAL_GYRO_SCALED, 2, lrintf(gyro.gyroSensor2.gyroDev.gyroADC[X] * gyro.gyroSensor2.gyroDev.scale));
495 DEBUG_SET(DEBUG_DUAL_GYRO_SCALED, 3, lrintf(gyro.gyroSensor2.gyroDev.gyroADC[Y] * gyro.gyroSensor2.gyroDev.scale));
496 break;
498 case GYRO_CONFIG_USE_GYRO_BOTH:
499 DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 0, gyro.gyroSensor1.gyroDev.gyroADCRaw[X]);
500 DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 1, gyro.gyroSensor1.gyroDev.gyroADCRaw[Y]);
501 DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 2, gyro.gyroSensor2.gyroDev.gyroADCRaw[X]);
502 DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 3, gyro.gyroSensor2.gyroDev.gyroADCRaw[Y]);
503 DEBUG_SET(DEBUG_DUAL_GYRO_SCALED, 0, lrintf(gyro.gyroSensor1.gyroDev.gyroADC[X] * gyro.gyroSensor1.gyroDev.scale));
504 DEBUG_SET(DEBUG_DUAL_GYRO_SCALED, 1, lrintf(gyro.gyroSensor1.gyroDev.gyroADC[Y] * gyro.gyroSensor1.gyroDev.scale));
505 DEBUG_SET(DEBUG_DUAL_GYRO_SCALED, 2, lrintf(gyro.gyroSensor2.gyroDev.gyroADC[X] * gyro.gyroSensor2.gyroDev.scale));
506 DEBUG_SET(DEBUG_DUAL_GYRO_SCALED, 3, lrintf(gyro.gyroSensor2.gyroDev.gyroADC[Y] * gyro.gyroSensor2.gyroDev.scale));
507 DEBUG_SET(DEBUG_DUAL_GYRO_DIFF, 0, lrintf((gyro.gyroSensor1.gyroDev.gyroADC[X] * gyro.gyroSensor1.gyroDev.scale) - (gyro.gyroSensor2.gyroDev.gyroADC[X] * gyro.gyroSensor2.gyroDev.scale)));
508 DEBUG_SET(DEBUG_DUAL_GYRO_DIFF, 1, lrintf((gyro.gyroSensor1.gyroDev.gyroADC[Y] * gyro.gyroSensor1.gyroDev.scale) - (gyro.gyroSensor2.gyroDev.gyroADC[Y] * gyro.gyroSensor2.gyroDev.scale)));
509 DEBUG_SET(DEBUG_DUAL_GYRO_DIFF, 2, lrintf((gyro.gyroSensor1.gyroDev.gyroADC[Z] * gyro.gyroSensor1.gyroDev.scale) - (gyro.gyroSensor2.gyroDev.gyroADC[Z] * gyro.gyroSensor2.gyroDev.scale)));
510 break;
511 #endif
515 #ifdef USE_GYRO_OVERFLOW_CHECK
516 if (gyroConfig()->checkOverflow && !gyro.gyroHasOverflowProtection) {
517 checkForOverflow(currentTimeUs);
519 #endif
521 #ifdef USE_YAW_SPIN_RECOVERY
522 if (yawSpinRecoveryEnabled) {
523 checkForYawSpin(currentTimeUs);
525 #endif
527 if (!overflowDetected) {
528 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
529 // integrate using trapezium rule to avoid bias
530 accumulatedMeasurements[axis] += 0.5f * (gyroPrevious[axis] + gyro.gyroADCf[axis]) * gyro.targetLooptime;
531 gyroPrevious[axis] = gyro.gyroADCf[axis];
533 accumulatedMeasurementCount++;
536 #if !defined(USE_GYRO_OVERFLOW_CHECK) && !defined(USE_YAW_SPIN_RECOVERY)
537 UNUSED(currentTimeUs);
538 #endif
541 bool gyroGetAccumulationAverage(float *accumulationAverage)
543 if (accumulatedMeasurementCount) {
544 // If we have gyro data accumulated, calculate average rate that will yield the same rotation
545 const timeUs_t accumulatedMeasurementTimeUs = accumulatedMeasurementCount * gyro.targetLooptime;
546 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
547 accumulationAverage[axis] = accumulatedMeasurements[axis] / accumulatedMeasurementTimeUs;
548 accumulatedMeasurements[axis] = 0.0f;
550 accumulatedMeasurementCount = 0;
551 return true;
552 } else {
553 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
554 accumulationAverage[axis] = 0.0f;
556 return false;
560 int16_t gyroReadSensorTemperature(gyroSensor_t gyroSensor)
562 if (gyroSensor.gyroDev.temperatureFn) {
563 gyroSensor.gyroDev.temperatureFn(&gyroSensor.gyroDev, &gyroSensor.gyroDev.temperature);
565 return gyroSensor.gyroDev.temperature;
568 void gyroReadTemperature(void)
570 switch (gyro.gyroToUse) {
571 case GYRO_CONFIG_USE_GYRO_1:
572 gyroSensorTemperature = gyroReadSensorTemperature(gyro.gyroSensor1);
573 break;
575 #ifdef USE_MULTI_GYRO
576 case GYRO_CONFIG_USE_GYRO_2:
577 gyroSensorTemperature = gyroReadSensorTemperature(gyro.gyroSensor2);
578 break;
580 case GYRO_CONFIG_USE_GYRO_BOTH:
581 gyroSensorTemperature = MAX(gyroReadSensorTemperature(gyro.gyroSensor1), gyroReadSensorTemperature(gyro.gyroSensor2));
582 break;
583 #endif // USE_MULTI_GYRO
587 int16_t gyroGetTemperature(void)
589 return gyroSensorTemperature;
592 bool gyroOverflowDetected(void)
594 #ifdef USE_GYRO_OVERFLOW_CHECK
595 return overflowDetected;
596 #else
597 return false;
598 #endif // USE_GYRO_OVERFLOW_CHECK
601 #ifdef USE_YAW_SPIN_RECOVERY
602 bool gyroYawSpinDetected(void)
604 return yawSpinDetected;
606 #endif // USE_YAW_SPIN_RECOVERY
608 uint16_t gyroAbsRateDps(int axis)
610 return fabsf(gyro.gyroADCf[axis]);
613 #ifdef USE_DYN_LPF
615 float dynThrottle(float throttle) {
616 return throttle * (1 - (throttle * throttle) / 3.0f) * 1.5f;
619 void dynLpfGyroUpdate(float throttle)
621 if (gyro.dynLpfFilter != DYN_LPF_NONE) {
622 float cutoffFreq;
623 if (gyro.dynLpfCurveExpo > 0) {
624 cutoffFreq = dynLpfCutoffFreq(throttle, gyro.dynLpfMin, gyro.dynLpfMax, gyro.dynLpfCurveExpo);
625 } else {
626 cutoffFreq = fmaxf(dynThrottle(throttle) * gyro.dynLpfMax, gyro.dynLpfMin);
628 DEBUG_SET(DEBUG_DYN_LPF, 2, lrintf(cutoffFreq));
629 const float gyroDt = gyro.targetLooptime * 1e-6f;
630 switch (gyro.dynLpfFilter) {
631 case DYN_LPF_PT1:
632 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
633 pt1FilterUpdateCutoff(&gyro.lowpassFilter[axis].pt1FilterState, pt1FilterGain(cutoffFreq, gyroDt));
635 break;
636 case DYN_LPF_BIQUAD:
637 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
638 biquadFilterUpdateLPF(&gyro.lowpassFilter[axis].biquadFilterState, cutoffFreq, gyro.targetLooptime);
640 break;
641 case DYN_LPF_PT2:
642 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
643 pt2FilterUpdateCutoff(&gyro.lowpassFilter[axis].pt2FilterState, pt2FilterGain(cutoffFreq, gyroDt));
645 break;
646 case DYN_LPF_PT3:
647 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
648 pt3FilterUpdateCutoff(&gyro.lowpassFilter[axis].pt3FilterState, pt3FilterGain(cutoffFreq, gyroDt));
650 break;
654 #endif
656 #ifdef USE_YAW_SPIN_RECOVERY
657 void initYawSpinRecovery(int maxYawRate)
659 bool enabledFlag;
660 int threshold;
662 switch (gyroConfig()->yaw_spin_recovery) {
663 case YAW_SPIN_RECOVERY_ON:
664 enabledFlag = true;
665 threshold = gyroConfig()->yaw_spin_threshold;
666 break;
667 case YAW_SPIN_RECOVERY_AUTO:
668 enabledFlag = true;
669 const int overshootAllowance = MAX(maxYawRate / 4, 200); // Allow a 25% or minimum 200dps overshoot tolerance
670 threshold = constrain(maxYawRate + overshootAllowance, YAW_SPIN_RECOVERY_THRESHOLD_MIN, YAW_SPIN_RECOVERY_THRESHOLD_MAX);
671 break;
672 case YAW_SPIN_RECOVERY_OFF:
673 default:
674 enabledFlag = false;
675 threshold = YAW_SPIN_RECOVERY_THRESHOLD_MAX;
676 break;
679 yawSpinRecoveryEnabled = enabledFlag;
680 yawSpinRecoveryThreshold = threshold;
682 #endif