Updated and Validated
[betaflight.git] / src / main / sensors / gyro_init.c
blob0d434a9a89328031896d68b5fa1d6f7b35d58696
1 /*
2 * This file is part of Cleanflight and Betaflight.
4 * Cleanflight and Betaflight are free software. You can redistribute
5 * this software and/or modify this software under the terms of the
6 * GNU General Public License as published by the Free Software
7 * Foundation, either version 3 of the License, or (at your option)
8 * any later version.
10 * Cleanflight and Betaflight are distributed in the hope that they
11 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
12 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 * See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this software.
18 * If not, see <http://www.gnu.org/licenses/>.
21 #include <stdbool.h>
22 #include <stdint.h>
23 #include <string.h>
24 #include <math.h>
25 #include <stdlib.h>
27 #include "platform.h"
29 #include "build/debug.h"
31 #include "common/axis.h"
32 #include "common/maths.h"
33 #include "common/filter.h"
35 #include "config/config.h"
37 #include "drivers/accgyro/accgyro.h"
38 #include "drivers/accgyro/accgyro_fake.h"
39 #include "drivers/accgyro/accgyro_mpu.h"
40 #include "drivers/accgyro/accgyro_mpu3050.h"
41 #include "drivers/accgyro/accgyro_mpu6050.h"
42 #include "drivers/accgyro/accgyro_mpu6500.h"
43 #include "drivers/accgyro/accgyro_spi_bmi160.h"
44 #include "drivers/accgyro/accgyro_spi_bmi270.h"
45 #include "drivers/accgyro/accgyro_spi_icm20649.h"
46 #include "drivers/accgyro/accgyro_spi_icm20689.h"
47 #include "drivers/accgyro/accgyro_spi_icm20689.h"
48 #include "drivers/accgyro/accgyro_spi_icm426xx.h"
49 #include "drivers/accgyro/accgyro_spi_lsm6dso.h"
50 #include "drivers/accgyro/accgyro_spi_mpu6000.h"
51 #include "drivers/accgyro/accgyro_spi_mpu6500.h"
52 #include "drivers/accgyro/accgyro_spi_mpu9250.h"
54 #ifdef USE_GYRO_L3GD20
55 #include "drivers/accgyro/accgyro_spi_l3gd20.h"
56 #endif
58 #ifdef USE_GYRO_L3G4200D
59 #include "drivers/accgyro_legacy/accgyro_l3g4200d.h"
60 #endif
62 #include "drivers/accgyro/gyro_sync.h"
64 #include "fc/runtime_config.h"
66 #ifdef USE_DYN_NOTCH_FILTER
67 #include "flight/dyn_notch_filter.h"
68 #endif
70 #include "pg/gyrodev.h"
72 #include "sensors/gyro.h"
73 #include "sensors/sensors.h"
75 #ifdef USE_MULTI_GYRO
76 #define ACTIVE_GYRO ((gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_2) ? &gyro.gyroSensor2 : &gyro.gyroSensor1)
77 #else
78 #define ACTIVE_GYRO (&gyro.gyroSensor1)
79 #endif
81 // The gyro buffer is split 50/50, the first half for the transmit buffer, the second half for the receive buffer
82 // This buffer is large enough for the gyros currently supported in accgyro_mpu.c but should be reviewed id other
83 // gyro types are supported with SPI DMA.
84 #define GYRO_BUF_SIZE 32
86 static gyroDetectionFlags_t gyroDetectionFlags = GYRO_NONE_MASK;
88 static uint16_t calculateNyquistAdjustedNotchHz(uint16_t notchHz, uint16_t notchCutoffHz)
90 const uint32_t gyroFrequencyNyquist = 1000000 / 2 / gyro.targetLooptime;
91 if (notchHz > gyroFrequencyNyquist) {
92 if (notchCutoffHz < gyroFrequencyNyquist) {
93 notchHz = gyroFrequencyNyquist;
94 } else {
95 notchHz = 0;
99 return notchHz;
102 static void gyroInitFilterNotch1(uint16_t notchHz, uint16_t notchCutoffHz)
104 gyro.notchFilter1ApplyFn = nullFilterApply;
106 notchHz = calculateNyquistAdjustedNotchHz(notchHz, notchCutoffHz);
108 if (notchHz != 0 && notchCutoffHz != 0) {
109 gyro.notchFilter1ApplyFn = (filterApplyFnPtr)biquadFilterApply;
110 const float notchQ = filterGetNotchQ(notchHz, notchCutoffHz);
111 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
112 biquadFilterInit(&gyro.notchFilter1[axis], notchHz, gyro.targetLooptime, notchQ, FILTER_NOTCH, 1.0f);
117 static void gyroInitFilterNotch2(uint16_t notchHz, uint16_t notchCutoffHz)
119 gyro.notchFilter2ApplyFn = nullFilterApply;
121 notchHz = calculateNyquistAdjustedNotchHz(notchHz, notchCutoffHz);
123 if (notchHz != 0 && notchCutoffHz != 0) {
124 gyro.notchFilter2ApplyFn = (filterApplyFnPtr)biquadFilterApply;
125 const float notchQ = filterGetNotchQ(notchHz, notchCutoffHz);
126 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
127 biquadFilterInit(&gyro.notchFilter2[axis], notchHz, gyro.targetLooptime, notchQ, FILTER_NOTCH, 1.0f);
132 static bool gyroInitLowpassFilterLpf(int slot, int type, uint16_t lpfHz, uint32_t looptime)
134 filterApplyFnPtr *lowpassFilterApplyFn;
135 gyroLowpassFilter_t *lowpassFilter = NULL;
137 switch (slot) {
138 case FILTER_LPF1:
139 lowpassFilterApplyFn = &gyro.lowpassFilterApplyFn;
140 lowpassFilter = gyro.lowpassFilter;
141 break;
143 case FILTER_LPF2:
144 lowpassFilterApplyFn = &gyro.lowpass2FilterApplyFn;
145 lowpassFilter = gyro.lowpass2Filter;
146 break;
148 default:
149 return false;
152 bool ret = false;
154 // Establish some common constants
155 const uint32_t gyroFrequencyNyquist = 1000000 / 2 / looptime;
156 const float gyroDt = looptime * 1e-6f;
158 // Gain could be calculated a little later as it is specific to the pt1/bqrcf2/fkf branches
159 const float gain = pt1FilterGain(lpfHz, gyroDt);
161 // Dereference the pointer to null before checking valid cutoff and filter
162 // type. It will be overridden for positive cases.
163 *lowpassFilterApplyFn = nullFilterApply;
165 // If lowpass cutoff has been specified
166 if (lpfHz) {
167 switch (type) {
168 case FILTER_PT1:
169 *lowpassFilterApplyFn = (filterApplyFnPtr) pt1FilterApply;
170 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
171 pt1FilterInit(&lowpassFilter[axis].pt1FilterState, gain);
173 ret = true;
174 break;
175 case FILTER_BIQUAD:
176 if (lpfHz <= gyroFrequencyNyquist) {
177 #ifdef USE_DYN_LPF
178 *lowpassFilterApplyFn = (filterApplyFnPtr) biquadFilterApplyDF1;
179 #else
180 *lowpassFilterApplyFn = (filterApplyFnPtr) biquadFilterApply;
181 #endif
182 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
183 biquadFilterInitLPF(&lowpassFilter[axis].biquadFilterState, lpfHz, looptime);
185 ret = true;
187 break;
188 case FILTER_PT2:
189 *lowpassFilterApplyFn = (filterApplyFnPtr) pt2FilterApply;
190 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
191 pt2FilterInit(&lowpassFilter[axis].pt2FilterState, gain);
193 ret = true;
194 break;
195 case FILTER_PT3:
196 *lowpassFilterApplyFn = (filterApplyFnPtr) pt3FilterApply;
197 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
198 pt3FilterInit(&lowpassFilter[axis].pt3FilterState, gain);
200 ret = true;
201 break;
204 return ret;
207 #ifdef USE_DYN_LPF
208 static void dynLpfFilterInit()
210 if (gyroConfig()->gyro_lpf1_dyn_min_hz > 0) {
211 switch (gyroConfig()->gyro_lpf1_type) {
212 case FILTER_PT1:
213 gyro.dynLpfFilter = DYN_LPF_PT1;
214 break;
215 case FILTER_BIQUAD:
216 gyro.dynLpfFilter = DYN_LPF_BIQUAD;
217 break;
218 case FILTER_PT2:
219 gyro.dynLpfFilter = DYN_LPF_PT2;
220 break;
221 case FILTER_PT3:
222 gyro.dynLpfFilter = DYN_LPF_PT3;
223 break;
224 default:
225 gyro.dynLpfFilter = DYN_LPF_NONE;
226 break;
228 } else {
229 gyro.dynLpfFilter = DYN_LPF_NONE;
231 gyro.dynLpfMin = gyroConfig()->gyro_lpf1_dyn_min_hz;
232 gyro.dynLpfMax = gyroConfig()->gyro_lpf1_dyn_max_hz;
233 gyro.dynLpfCurveExpo = gyroConfig()->gyro_lpf1_dyn_expo;
235 #endif
237 void gyroInitFilters(void)
239 uint16_t gyro_lpf1_init_hz = gyroConfig()->gyro_lpf1_static_hz;
241 #ifdef USE_DYN_LPF
242 if (gyroConfig()->gyro_lpf1_dyn_min_hz > 0) {
243 gyro_lpf1_init_hz = gyroConfig()->gyro_lpf1_dyn_min_hz;
245 #endif
247 gyroInitLowpassFilterLpf(
248 FILTER_LPF1,
249 gyroConfig()->gyro_lpf1_type,
250 gyro_lpf1_init_hz,
251 gyro.targetLooptime
254 gyro.downsampleFilterEnabled = gyroInitLowpassFilterLpf(
255 FILTER_LPF2,
256 gyroConfig()->gyro_lpf2_type,
257 gyroConfig()->gyro_lpf2_static_hz,
258 gyro.sampleLooptime
261 gyroInitFilterNotch1(gyroConfig()->gyro_soft_notch_hz_1, gyroConfig()->gyro_soft_notch_cutoff_1);
262 gyroInitFilterNotch2(gyroConfig()->gyro_soft_notch_hz_2, gyroConfig()->gyro_soft_notch_cutoff_2);
263 #ifdef USE_DYN_LPF
264 dynLpfFilterInit();
265 #endif
266 #ifdef USE_DYN_NOTCH_FILTER
267 dynNotchInit(dynNotchConfig(), gyro.targetLooptime);
268 #endif
271 #if defined(USE_GYRO_SLEW_LIMITER)
272 void gyroInitSlewLimiter(gyroSensor_t *gyroSensor) {
274 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
275 gyroSensor->gyroDev.gyroADCRawPrevious[axis] = 0;
278 #endif
280 static void gyroInitSensorFilters(gyroSensor_t *gyroSensor)
282 #if defined(USE_GYRO_SLEW_LIMITER)
283 gyroInitSlewLimiter(gyroSensor);
284 #else
285 UNUSED(gyroSensor);
286 #endif
289 void gyroInitSensor(gyroSensor_t *gyroSensor, const gyroDeviceConfig_t *config)
291 gyroSensor->gyroDev.gyro_high_fsr = gyroConfig()->gyro_high_fsr;
292 gyroSensor->gyroDev.gyroAlign = config->alignment;
293 buildRotationMatrixFromAlignment(&config->customAlignment, &gyroSensor->gyroDev.rotationMatrix);
294 gyroSensor->gyroDev.mpuIntExtiTag = config->extiTag;
295 gyroSensor->gyroDev.hardware_lpf = gyroConfig()->gyro_hardware_lpf;
297 // The targetLooptime gets set later based on the active sensor's gyroSampleRateHz and pid_process_denom
298 gyroSensor->gyroDev.gyroSampleRateHz = gyroSetSampleRate(&gyroSensor->gyroDev);
299 gyroSensor->gyroDev.initFn(&gyroSensor->gyroDev);
301 // As new gyros are supported, be sure to add them below based on whether they are subject to the overflow/inversion bug
302 // Any gyro not explicitly defined will default to not having built-in overflow protection as a safe alternative.
303 switch (gyroSensor->gyroDev.gyroHardware) {
304 case GYRO_NONE: // Won't ever actually get here, but included to account for all gyro types
305 case GYRO_DEFAULT:
306 case GYRO_FAKE:
307 case GYRO_MPU6050:
308 case GYRO_L3G4200D:
309 case GYRO_MPU3050:
310 case GYRO_L3GD20:
311 case GYRO_BMI160:
312 case GYRO_BMI270:
313 case GYRO_MPU6000:
314 case GYRO_MPU6500:
315 case GYRO_MPU9250:
316 case GYRO_LSM6DSO:
317 gyroSensor->gyroDev.gyroHasOverflowProtection = true;
318 break;
320 case GYRO_ICM20601:
321 case GYRO_ICM20602:
322 case GYRO_ICM20608G:
323 case GYRO_ICM20649: // we don't actually know if this is affected, but as there are currently no flight controllers using it we err on the side of caution
324 case GYRO_ICM20689:
325 gyroSensor->gyroDev.gyroHasOverflowProtection = false;
326 break;
328 default:
329 gyroSensor->gyroDev.gyroHasOverflowProtection = false; // default catch for newly added gyros until proven to be unaffected
330 break;
333 gyroInitSensorFilters(gyroSensor);
336 STATIC_UNIT_TESTED gyroHardware_e gyroDetect(gyroDev_t *dev)
338 gyroHardware_e gyroHardware = GYRO_DEFAULT;
340 switch (gyroHardware) {
341 case GYRO_DEFAULT:
342 FALLTHROUGH;
344 #ifdef USE_GYRO_MPU6050
345 case GYRO_MPU6050:
346 if (mpu6050GyroDetect(dev)) {
347 gyroHardware = GYRO_MPU6050;
348 break;
350 FALLTHROUGH;
351 #endif
353 #ifdef USE_GYRO_L3G4200D
354 case GYRO_L3G4200D:
355 if (l3g4200dDetect(dev)) {
356 gyroHardware = GYRO_L3G4200D;
357 break;
359 FALLTHROUGH;
360 #endif
362 #ifdef USE_GYRO_MPU3050
363 case GYRO_MPU3050:
364 if (mpu3050Detect(dev)) {
365 gyroHardware = GYRO_MPU3050;
366 break;
368 FALLTHROUGH;
369 #endif
371 #ifdef USE_GYRO_L3GD20
372 case GYRO_L3GD20:
373 if (l3gd20GyroDetect(dev)) {
374 gyroHardware = GYRO_L3GD20;
375 break;
377 FALLTHROUGH;
378 #endif
380 #ifdef USE_GYRO_SPI_MPU6000
381 case GYRO_MPU6000:
382 if (mpu6000SpiGyroDetect(dev)) {
383 gyroHardware = GYRO_MPU6000;
384 break;
386 FALLTHROUGH;
387 #endif
389 #if defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500)
390 case GYRO_MPU6500:
391 case GYRO_ICM20601:
392 case GYRO_ICM20602:
393 case GYRO_ICM20608G:
394 #ifdef USE_GYRO_SPI_MPU6500
395 if (mpu6500GyroDetect(dev) || mpu6500SpiGyroDetect(dev)) {
396 #else
397 if (mpu6500GyroDetect(dev)) {
398 #endif
399 switch (dev->mpuDetectionResult.sensor) {
400 case MPU_9250_SPI:
401 gyroHardware = GYRO_MPU9250;
402 break;
403 case ICM_20601_SPI:
404 gyroHardware = GYRO_ICM20601;
405 break;
406 case ICM_20602_SPI:
407 gyroHardware = GYRO_ICM20602;
408 break;
409 case ICM_20608_SPI:
410 gyroHardware = GYRO_ICM20608G;
411 break;
412 default:
413 gyroHardware = GYRO_MPU6500;
415 break;
417 FALLTHROUGH;
418 #endif
420 #ifdef USE_GYRO_SPI_MPU9250
421 case GYRO_MPU9250:
422 if (mpu9250SpiGyroDetect(dev)) {
423 gyroHardware = GYRO_MPU9250;
424 break;
426 FALLTHROUGH;
427 #endif
429 #ifdef USE_GYRO_SPI_ICM20649
430 case GYRO_ICM20649:
431 if (icm20649SpiGyroDetect(dev)) {
432 gyroHardware = GYRO_ICM20649;
433 break;
435 FALLTHROUGH;
436 #endif
438 #ifdef USE_GYRO_SPI_ICM20689
439 case GYRO_ICM20689:
440 if (icm20689SpiGyroDetect(dev)) {
441 gyroHardware = GYRO_ICM20689;
442 break;
444 FALLTHROUGH;
445 #endif
447 #if defined(USE_GYRO_SPI_ICM42605) || defined(USE_GYRO_SPI_ICM42688P)
448 case GYRO_ICM42605:
449 case GYRO_ICM42688P:
450 if (icm426xxSpiGyroDetect(dev)) {
451 switch (dev->mpuDetectionResult.sensor) {
452 case ICM_42605_SPI:
453 gyroHardware = GYRO_ICM42605;
454 break;
455 case ICM_42688P_SPI:
456 gyroHardware = GYRO_ICM42688P;
457 break;
458 default:
459 gyroHardware = GYRO_NONE;
460 break;
462 break;
464 FALLTHROUGH;
465 #endif
467 #ifdef USE_ACCGYRO_BMI160
468 case GYRO_BMI160:
469 if (bmi160SpiGyroDetect(dev)) {
470 gyroHardware = GYRO_BMI160;
471 break;
473 FALLTHROUGH;
474 #endif
476 #ifdef USE_ACCGYRO_BMI270
477 case GYRO_BMI270:
478 if (bmi270SpiGyroDetect(dev)) {
479 gyroHardware = GYRO_BMI270;
480 break;
482 FALLTHROUGH;
483 #endif
485 #ifdef USE_ACCGYRO_LSM6DSO
486 case GYRO_LSM6DSO:
487 if (lsm6dsoSpiGyroDetect(dev)) {
488 gyroHardware = GYRO_LSM6DSO;
489 break;
491 FALLTHROUGH;
492 #endif
494 #ifdef USE_FAKE_GYRO
495 case GYRO_FAKE:
496 if (fakeGyroDetect(dev)) {
497 gyroHardware = GYRO_FAKE;
498 break;
500 FALLTHROUGH;
501 #endif
503 default:
504 gyroHardware = GYRO_NONE;
507 if (gyroHardware != GYRO_NONE) {
508 sensorsSet(SENSOR_GYRO);
512 return gyroHardware;
515 static bool gyroDetectSensor(gyroSensor_t *gyroSensor, const gyroDeviceConfig_t *config)
517 #if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) \
518 || defined(USE_ACC_MPU6050) || defined(USE_GYRO_SPI_MPU9250) || defined(USE_GYRO_SPI_ICM20601) || defined(USE_GYRO_SPI_ICM20649) \
519 || defined(USE_GYRO_SPI_ICM20689) || defined(USE_GYRO_L3GD20) || defined(USE_ACCGYRO_BMI160) || defined(USE_ACCGYRO_BMI270) || defined(USE_ACCGYRO_LSM6DSO) || defined(USE_GYRO_SPI_ICM42605) || defined(USE_GYRO_SPI_ICM42688P)
521 bool gyroFound = mpuDetect(&gyroSensor->gyroDev, config);
523 #if !defined(USE_FAKE_GYRO) // Allow resorting to fake accgyro if defined
524 if (!gyroFound) {
525 return false;
527 #else
528 UNUSED(gyroFound);
529 #endif
530 #else
531 UNUSED(config);
532 #endif
534 const gyroHardware_e gyroHardware = gyroDetect(&gyroSensor->gyroDev);
535 gyroSensor->gyroDev.gyroHardware = gyroHardware;
537 return gyroHardware != GYRO_NONE;
540 static void gyroPreInitSensor(const gyroDeviceConfig_t *config)
542 #if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) \
543 || defined(USE_ACC_MPU6050) || defined(USE_GYRO_SPI_MPU9250) || defined(USE_GYRO_SPI_ICM20601) || defined(USE_GYRO_SPI_ICM20649) \
544 || defined(USE_GYRO_SPI_ICM20689) || defined(USE_ACCGYRO_BMI160) || defined(USE_ACCGYRO_BMI270) || defined(USE_ACCGRYO_LSM6DSO)
545 mpuPreInit(config);
546 #else
547 UNUSED(config);
548 #endif
551 void gyroPreInit(void)
553 gyroPreInitSensor(gyroDeviceConfig(0));
554 #ifdef USE_MULTI_GYRO
555 gyroPreInitSensor(gyroDeviceConfig(1));
556 #endif
559 bool gyroInit(void)
561 #ifdef USE_GYRO_OVERFLOW_CHECK
562 if (gyroConfig()->checkOverflow == GYRO_OVERFLOW_CHECK_YAW) {
563 gyro.overflowAxisMask = GYRO_OVERFLOW_Z;
564 } else if (gyroConfig()->checkOverflow == GYRO_OVERFLOW_CHECK_ALL_AXES) {
565 gyro.overflowAxisMask = GYRO_OVERFLOW_X | GYRO_OVERFLOW_Y | GYRO_OVERFLOW_Z;
566 } else {
567 gyro.overflowAxisMask = 0;
569 #endif
571 gyro.gyroDebugMode = DEBUG_NONE;
572 gyro.useDualGyroDebugging = false;
573 gyro.gyroHasOverflowProtection = true;
575 switch (debugMode) {
576 case DEBUG_FFT:
577 case DEBUG_FFT_FREQ:
578 case DEBUG_GYRO_RAW:
579 case DEBUG_GYRO_SCALED:
580 case DEBUG_GYRO_FILTERED:
581 case DEBUG_DYN_LPF:
582 case DEBUG_GYRO_SAMPLE:
583 gyro.gyroDebugMode = debugMode;
584 break;
585 case DEBUG_DUAL_GYRO_DIFF:
586 case DEBUG_DUAL_GYRO_RAW:
587 case DEBUG_DUAL_GYRO_SCALED:
588 gyro.useDualGyroDebugging = true;
589 break;
592 gyroDetectionFlags = GYRO_NONE_MASK;
593 uint8_t gyrosToScan = gyroConfig()->gyrosDetected;
595 gyro.gyroToUse = gyroConfig()->gyro_to_use;
596 gyro.gyroDebugAxis = gyroConfig()->gyro_filter_debug_axis;
598 if ((!gyrosToScan || (gyrosToScan & GYRO_1_MASK)) && gyroDetectSensor(&gyro.gyroSensor1, gyroDeviceConfig(0))) {
599 gyroDetectionFlags |= GYRO_1_MASK;
602 #if defined(USE_MULTI_GYRO)
603 if ((!gyrosToScan || (gyrosToScan & GYRO_2_MASK)) && gyroDetectSensor(&gyro.gyroSensor2, gyroDeviceConfig(1))) {
604 gyroDetectionFlags |= GYRO_2_MASK;
606 #endif
608 if (gyroDetectionFlags == GYRO_NONE_MASK) {
609 return false;
612 bool eepromWriteRequired = false;
613 if (!gyrosToScan) {
614 gyroConfigMutable()->gyrosDetected = gyroDetectionFlags;
615 eepromWriteRequired = true;
618 #if defined(USE_MULTI_GYRO)
619 if ((gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH && !((gyroDetectionFlags & GYRO_ALL_MASK) == GYRO_ALL_MASK))
620 || (gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_1 && !(gyroDetectionFlags & GYRO_1_MASK))
621 || (gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_2 && !(gyroDetectionFlags & GYRO_2_MASK))) {
622 if (gyroDetectionFlags & GYRO_1_MASK) {
623 gyro.gyroToUse = GYRO_CONFIG_USE_GYRO_1;
624 } else {
625 gyro.gyroToUse = GYRO_CONFIG_USE_GYRO_2;
628 gyroConfigMutable()->gyro_to_use = gyro.gyroToUse;
629 eepromWriteRequired = true;
632 // Only allow using both gyros simultaneously if they are the same hardware type.
633 if (((gyroDetectionFlags & GYRO_ALL_MASK) == GYRO_ALL_MASK) && gyro.gyroSensor1.gyroDev.gyroHardware == gyro.gyroSensor2.gyroDev.gyroHardware) {
634 gyroDetectionFlags |= GYRO_IDENTICAL_MASK;
635 } else if (gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH) {
636 // If the user selected "BOTH" and they are not the same type, then reset to using only the first gyro.
637 gyro.gyroToUse = GYRO_CONFIG_USE_GYRO_1;
638 gyroConfigMutable()->gyro_to_use = gyro.gyroToUse;
639 eepromWriteRequired = true;
642 if (gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_2 || gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH) {
643 static DMA_DATA uint8_t gyroBuf2[GYRO_BUF_SIZE];
644 // SPI DMA buffer required per device
645 gyro.gyroSensor2.gyroDev.dev.txBuf = gyroBuf2;
646 gyro.gyroSensor2.gyroDev.dev.rxBuf = &gyroBuf2[GYRO_BUF_SIZE / 2];
648 gyroInitSensor(&gyro.gyroSensor2, gyroDeviceConfig(1));
649 gyro.gyroHasOverflowProtection = gyro.gyroHasOverflowProtection && gyro.gyroSensor2.gyroDev.gyroHasOverflowProtection;
650 detectedSensors[SENSOR_INDEX_GYRO] = gyro.gyroSensor2.gyroDev.gyroHardware;
652 #endif
654 if (eepromWriteRequired) {
655 writeEEPROM();
658 if (gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_1 || gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH) {
659 static DMA_DATA uint8_t gyroBuf1[GYRO_BUF_SIZE];
660 // SPI DMA buffer required per device
661 gyro.gyroSensor1.gyroDev.dev.txBuf = gyroBuf1;
662 gyro.gyroSensor1.gyroDev.dev.rxBuf = &gyroBuf1[GYRO_BUF_SIZE / 2];
663 gyroInitSensor(&gyro.gyroSensor1, gyroDeviceConfig(0));
664 gyro.gyroHasOverflowProtection = gyro.gyroHasOverflowProtection && gyro.gyroSensor1.gyroDev.gyroHasOverflowProtection;
665 detectedSensors[SENSOR_INDEX_GYRO] = gyro.gyroSensor1.gyroDev.gyroHardware;
668 // Copy the sensor's scale to the high-level gyro object. If running in "BOTH" mode
669 // then logic above requires both sensors to be the same so we'll use sensor1's scale.
670 // This will need to be revised if we ever allow different sensor types to be used simultaneously.
671 // Likewise determine the appropriate raw data for use in DEBUG_GYRO_RAW
672 gyro.scale = gyro.gyroSensor1.gyroDev.scale;
673 gyro.rawSensorDev = &gyro.gyroSensor1.gyroDev;
674 #if defined(USE_MULTI_GYRO)
675 if (gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_2) {
676 gyro.scale = gyro.gyroSensor2.gyroDev.scale;
677 gyro.rawSensorDev = &gyro.gyroSensor2.gyroDev;
679 #endif
681 if (gyro.rawSensorDev) {
682 gyro.sampleRateHz = gyro.rawSensorDev->gyroSampleRateHz;
683 gyro.accSampleRateHz = gyro.rawSensorDev->accSampleRateHz;
684 } else {
685 gyro.sampleRateHz = 0;
686 gyro.accSampleRateHz = 0;
689 return true;
692 gyroDetectionFlags_t getGyroDetectionFlags(void)
694 return gyroDetectionFlags;
697 void gyroSetTargetLooptime(uint8_t pidDenom)
699 activePidLoopDenom = pidDenom;
700 if (gyro.sampleRateHz) {
701 gyro.sampleLooptime = 1e6 / gyro.sampleRateHz;
702 gyro.targetLooptime = activePidLoopDenom * 1e6 / gyro.sampleRateHz;
703 } else {
704 gyro.sampleLooptime = 0;
705 gyro.targetLooptime = 0;
710 gyroDev_t *gyroActiveDev(void)
712 return &ACTIVE_GYRO->gyroDev;
715 const mpuDetectionResult_t *gyroMpuDetectionResult(void)
717 return &ACTIVE_GYRO->gyroDev.mpuDetectionResult;
720 int16_t gyroRateDps(int axis)
722 return lrintf(gyro.gyroADCf[axis] / ACTIVE_GYRO->gyroDev.scale);
725 #ifdef USE_GYRO_REGISTER_DUMP
726 static extDevice_t *gyroSensorDevByInstance(uint8_t whichSensor)
728 #ifdef USE_MULTI_GYRO
729 if (whichSensor == GYRO_CONFIG_USE_GYRO_2) {
730 return &gyro.gyroSensor2.gyroDev.dev;
732 #else
733 UNUSED(whichSensor);
734 #endif
735 return &gyro.gyroSensor1.gyroDev.dev;
738 uint8_t gyroReadRegister(uint8_t whichSensor, uint8_t reg)
740 return mpuGyroReadRegister(gyroSensorDevByInstance(whichSensor), reg);
742 #endif // USE_GYRO_REGISTER_DUMP