Move telemetry displayport init and cms device registering
[betaflight.git] / lib / main / MAVLink / common / mavlink_msg_optical_flow_rad.h
blob427b56ac21666207cc265a2652b65c0956febbf0
1 // MESSAGE OPTICAL_FLOW_RAD PACKING
3 #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD 106
5 typedef struct __mavlink_optical_flow_rad_t
7 uint64_t time_usec; ///< Timestamp (microseconds, synced to UNIX time or since system boot)
8 uint32_t integration_time_us; ///< Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
9 float integrated_x; ///< Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
10 float integrated_y; ///< Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
11 float integrated_xgyro; ///< RH rotation around X axis (rad)
12 float integrated_ygyro; ///< RH rotation around Y axis (rad)
13 float integrated_zgyro; ///< RH rotation around Z axis (rad)
14 uint32_t time_delta_distance_us; ///< Time in microseconds since the distance was sampled.
15 float distance; ///< Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
16 int16_t temperature; ///< Temperature * 100 in centi-degrees Celsius
17 uint8_t sensor_id; ///< Sensor ID
18 uint8_t quality; ///< Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
19 } mavlink_optical_flow_rad_t;
21 #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN 44
22 #define MAVLINK_MSG_ID_106_LEN 44
24 #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC 138
25 #define MAVLINK_MSG_ID_106_CRC 138
29 #define MAVLINK_MESSAGE_INFO_OPTICAL_FLOW_RAD { \
30 "OPTICAL_FLOW_RAD", \
31 12, \
32 { { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_optical_flow_rad_t, time_usec) }, \
33 { "integration_time_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 8, offsetof(mavlink_optical_flow_rad_t, integration_time_us) }, \
34 { "integrated_x", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_optical_flow_rad_t, integrated_x) }, \
35 { "integrated_y", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_optical_flow_rad_t, integrated_y) }, \
36 { "integrated_xgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_optical_flow_rad_t, integrated_xgyro) }, \
37 { "integrated_ygyro", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_optical_flow_rad_t, integrated_ygyro) }, \
38 { "integrated_zgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 28, offsetof(mavlink_optical_flow_rad_t, integrated_zgyro) }, \
39 { "time_delta_distance_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 32, offsetof(mavlink_optical_flow_rad_t, time_delta_distance_us) }, \
40 { "distance", NULL, MAVLINK_TYPE_FLOAT, 0, 36, offsetof(mavlink_optical_flow_rad_t, distance) }, \
41 { "temperature", NULL, MAVLINK_TYPE_INT16_T, 0, 40, offsetof(mavlink_optical_flow_rad_t, temperature) }, \
42 { "sensor_id", NULL, MAVLINK_TYPE_UINT8_T, 0, 42, offsetof(mavlink_optical_flow_rad_t, sensor_id) }, \
43 { "quality", NULL, MAVLINK_TYPE_UINT8_T, 0, 43, offsetof(mavlink_optical_flow_rad_t, quality) }, \
44 } \
48 /**
49 * @brief Pack a optical_flow_rad message
50 * @param system_id ID of this system
51 * @param component_id ID of this component (e.g. 200 for IMU)
52 * @param msg The MAVLink message to compress the data into
54 * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot)
55 * @param sensor_id Sensor ID
56 * @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
57 * @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
58 * @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
59 * @param integrated_xgyro RH rotation around X axis (rad)
60 * @param integrated_ygyro RH rotation around Y axis (rad)
61 * @param integrated_zgyro RH rotation around Z axis (rad)
62 * @param temperature Temperature * 100 in centi-degrees Celsius
63 * @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
64 * @param time_delta_distance_us Time in microseconds since the distance was sampled.
65 * @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
66 * @return length of the message in bytes (excluding serial stream start sign)
68 static inline uint16_t mavlink_msg_optical_flow_rad_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg,
69 uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance)
71 #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
72 char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN];
73 _mav_put_uint64_t(buf, 0, time_usec);
74 _mav_put_uint32_t(buf, 8, integration_time_us);
75 _mav_put_float(buf, 12, integrated_x);
76 _mav_put_float(buf, 16, integrated_y);
77 _mav_put_float(buf, 20, integrated_xgyro);
78 _mav_put_float(buf, 24, integrated_ygyro);
79 _mav_put_float(buf, 28, integrated_zgyro);
80 _mav_put_uint32_t(buf, 32, time_delta_distance_us);
81 _mav_put_float(buf, 36, distance);
82 _mav_put_int16_t(buf, 40, temperature);
83 _mav_put_uint8_t(buf, 42, sensor_id);
84 _mav_put_uint8_t(buf, 43, quality);
86 memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
87 #else
88 mavlink_optical_flow_rad_t packet;
89 packet.time_usec = time_usec;
90 packet.integration_time_us = integration_time_us;
91 packet.integrated_x = integrated_x;
92 packet.integrated_y = integrated_y;
93 packet.integrated_xgyro = integrated_xgyro;
94 packet.integrated_ygyro = integrated_ygyro;
95 packet.integrated_zgyro = integrated_zgyro;
96 packet.time_delta_distance_us = time_delta_distance_us;
97 packet.distance = distance;
98 packet.temperature = temperature;
99 packet.sensor_id = sensor_id;
100 packet.quality = quality;
102 memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
103 #endif
105 msg->msgid = MAVLINK_MSG_ID_OPTICAL_FLOW_RAD;
106 #if MAVLINK_CRC_EXTRA
107 return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
108 #else
109 return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
110 #endif
114 * @brief Pack a optical_flow_rad message on a channel
115 * @param system_id ID of this system
116 * @param component_id ID of this component (e.g. 200 for IMU)
117 * @param chan The MAVLink channel this message will be sent over
118 * @param msg The MAVLink message to compress the data into
119 * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot)
120 * @param sensor_id Sensor ID
121 * @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
122 * @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
123 * @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
124 * @param integrated_xgyro RH rotation around X axis (rad)
125 * @param integrated_ygyro RH rotation around Y axis (rad)
126 * @param integrated_zgyro RH rotation around Z axis (rad)
127 * @param temperature Temperature * 100 in centi-degrees Celsius
128 * @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
129 * @param time_delta_distance_us Time in microseconds since the distance was sampled.
130 * @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
131 * @return length of the message in bytes (excluding serial stream start sign)
133 static inline uint16_t mavlink_msg_optical_flow_rad_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan,
134 mavlink_message_t* msg,
135 uint64_t time_usec,uint8_t sensor_id,uint32_t integration_time_us,float integrated_x,float integrated_y,float integrated_xgyro,float integrated_ygyro,float integrated_zgyro,int16_t temperature,uint8_t quality,uint32_t time_delta_distance_us,float distance)
137 #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
138 char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN];
139 _mav_put_uint64_t(buf, 0, time_usec);
140 _mav_put_uint32_t(buf, 8, integration_time_us);
141 _mav_put_float(buf, 12, integrated_x);
142 _mav_put_float(buf, 16, integrated_y);
143 _mav_put_float(buf, 20, integrated_xgyro);
144 _mav_put_float(buf, 24, integrated_ygyro);
145 _mav_put_float(buf, 28, integrated_zgyro);
146 _mav_put_uint32_t(buf, 32, time_delta_distance_us);
147 _mav_put_float(buf, 36, distance);
148 _mav_put_int16_t(buf, 40, temperature);
149 _mav_put_uint8_t(buf, 42, sensor_id);
150 _mav_put_uint8_t(buf, 43, quality);
152 memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
153 #else
154 mavlink_optical_flow_rad_t packet;
155 packet.time_usec = time_usec;
156 packet.integration_time_us = integration_time_us;
157 packet.integrated_x = integrated_x;
158 packet.integrated_y = integrated_y;
159 packet.integrated_xgyro = integrated_xgyro;
160 packet.integrated_ygyro = integrated_ygyro;
161 packet.integrated_zgyro = integrated_zgyro;
162 packet.time_delta_distance_us = time_delta_distance_us;
163 packet.distance = distance;
164 packet.temperature = temperature;
165 packet.sensor_id = sensor_id;
166 packet.quality = quality;
168 memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
169 #endif
171 msg->msgid = MAVLINK_MSG_ID_OPTICAL_FLOW_RAD;
172 #if MAVLINK_CRC_EXTRA
173 return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
174 #else
175 return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
176 #endif
180 * @brief Encode a optical_flow_rad struct
182 * @param system_id ID of this system
183 * @param component_id ID of this component (e.g. 200 for IMU)
184 * @param msg The MAVLink message to compress the data into
185 * @param optical_flow_rad C-struct to read the message contents from
187 static inline uint16_t mavlink_msg_optical_flow_rad_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_optical_flow_rad_t* optical_flow_rad)
189 return mavlink_msg_optical_flow_rad_pack(system_id, component_id, msg, optical_flow_rad->time_usec, optical_flow_rad->sensor_id, optical_flow_rad->integration_time_us, optical_flow_rad->integrated_x, optical_flow_rad->integrated_y, optical_flow_rad->integrated_xgyro, optical_flow_rad->integrated_ygyro, optical_flow_rad->integrated_zgyro, optical_flow_rad->temperature, optical_flow_rad->quality, optical_flow_rad->time_delta_distance_us, optical_flow_rad->distance);
193 * @brief Encode a optical_flow_rad struct on a channel
195 * @param system_id ID of this system
196 * @param component_id ID of this component (e.g. 200 for IMU)
197 * @param chan The MAVLink channel this message will be sent over
198 * @param msg The MAVLink message to compress the data into
199 * @param optical_flow_rad C-struct to read the message contents from
201 static inline uint16_t mavlink_msg_optical_flow_rad_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_optical_flow_rad_t* optical_flow_rad)
203 return mavlink_msg_optical_flow_rad_pack_chan(system_id, component_id, chan, msg, optical_flow_rad->time_usec, optical_flow_rad->sensor_id, optical_flow_rad->integration_time_us, optical_flow_rad->integrated_x, optical_flow_rad->integrated_y, optical_flow_rad->integrated_xgyro, optical_flow_rad->integrated_ygyro, optical_flow_rad->integrated_zgyro, optical_flow_rad->temperature, optical_flow_rad->quality, optical_flow_rad->time_delta_distance_us, optical_flow_rad->distance);
207 * @brief Send a optical_flow_rad message
208 * @param chan MAVLink channel to send the message
210 * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot)
211 * @param sensor_id Sensor ID
212 * @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
213 * @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
214 * @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
215 * @param integrated_xgyro RH rotation around X axis (rad)
216 * @param integrated_ygyro RH rotation around Y axis (rad)
217 * @param integrated_zgyro RH rotation around Z axis (rad)
218 * @param temperature Temperature * 100 in centi-degrees Celsius
219 * @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
220 * @param time_delta_distance_us Time in microseconds since the distance was sampled.
221 * @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
223 #ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS
225 static inline void mavlink_msg_optical_flow_rad_send(mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance)
227 #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
228 char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN];
229 _mav_put_uint64_t(buf, 0, time_usec);
230 _mav_put_uint32_t(buf, 8, integration_time_us);
231 _mav_put_float(buf, 12, integrated_x);
232 _mav_put_float(buf, 16, integrated_y);
233 _mav_put_float(buf, 20, integrated_xgyro);
234 _mav_put_float(buf, 24, integrated_ygyro);
235 _mav_put_float(buf, 28, integrated_zgyro);
236 _mav_put_uint32_t(buf, 32, time_delta_distance_us);
237 _mav_put_float(buf, 36, distance);
238 _mav_put_int16_t(buf, 40, temperature);
239 _mav_put_uint8_t(buf, 42, sensor_id);
240 _mav_put_uint8_t(buf, 43, quality);
242 #if MAVLINK_CRC_EXTRA
243 _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
244 #else
245 _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
246 #endif
247 #else
248 mavlink_optical_flow_rad_t packet;
249 packet.time_usec = time_usec;
250 packet.integration_time_us = integration_time_us;
251 packet.integrated_x = integrated_x;
252 packet.integrated_y = integrated_y;
253 packet.integrated_xgyro = integrated_xgyro;
254 packet.integrated_ygyro = integrated_ygyro;
255 packet.integrated_zgyro = integrated_zgyro;
256 packet.time_delta_distance_us = time_delta_distance_us;
257 packet.distance = distance;
258 packet.temperature = temperature;
259 packet.sensor_id = sensor_id;
260 packet.quality = quality;
262 #if MAVLINK_CRC_EXTRA
263 _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)&packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
264 #else
265 _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)&packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
266 #endif
267 #endif
270 #if MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN <= MAVLINK_MAX_PAYLOAD_LEN
272 This varient of _send() can be used to save stack space by re-using
273 memory from the receive buffer. The caller provides a
274 mavlink_message_t which is the size of a full mavlink message. This
275 is usually the receive buffer for the channel, and allows a reply to an
276 incoming message with minimum stack space usage.
278 static inline void mavlink_msg_optical_flow_rad_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance)
280 #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
281 char *buf = (char *)msgbuf;
282 _mav_put_uint64_t(buf, 0, time_usec);
283 _mav_put_uint32_t(buf, 8, integration_time_us);
284 _mav_put_float(buf, 12, integrated_x);
285 _mav_put_float(buf, 16, integrated_y);
286 _mav_put_float(buf, 20, integrated_xgyro);
287 _mav_put_float(buf, 24, integrated_ygyro);
288 _mav_put_float(buf, 28, integrated_zgyro);
289 _mav_put_uint32_t(buf, 32, time_delta_distance_us);
290 _mav_put_float(buf, 36, distance);
291 _mav_put_int16_t(buf, 40, temperature);
292 _mav_put_uint8_t(buf, 42, sensor_id);
293 _mav_put_uint8_t(buf, 43, quality);
295 #if MAVLINK_CRC_EXTRA
296 _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
297 #else
298 _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
299 #endif
300 #else
301 mavlink_optical_flow_rad_t *packet = (mavlink_optical_flow_rad_t *)msgbuf;
302 packet->time_usec = time_usec;
303 packet->integration_time_us = integration_time_us;
304 packet->integrated_x = integrated_x;
305 packet->integrated_y = integrated_y;
306 packet->integrated_xgyro = integrated_xgyro;
307 packet->integrated_ygyro = integrated_ygyro;
308 packet->integrated_zgyro = integrated_zgyro;
309 packet->time_delta_distance_us = time_delta_distance_us;
310 packet->distance = distance;
311 packet->temperature = temperature;
312 packet->sensor_id = sensor_id;
313 packet->quality = quality;
315 #if MAVLINK_CRC_EXTRA
316 _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
317 #else
318 _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
319 #endif
320 #endif
322 #endif
324 #endif
326 // MESSAGE OPTICAL_FLOW_RAD UNPACKING
330 * @brief Get field time_usec from optical_flow_rad message
332 * @return Timestamp (microseconds, synced to UNIX time or since system boot)
334 static inline uint64_t mavlink_msg_optical_flow_rad_get_time_usec(const mavlink_message_t* msg)
336 return _MAV_RETURN_uint64_t(msg, 0);
340 * @brief Get field sensor_id from optical_flow_rad message
342 * @return Sensor ID
344 static inline uint8_t mavlink_msg_optical_flow_rad_get_sensor_id(const mavlink_message_t* msg)
346 return _MAV_RETURN_uint8_t(msg, 42);
350 * @brief Get field integration_time_us from optical_flow_rad message
352 * @return Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
354 static inline uint32_t mavlink_msg_optical_flow_rad_get_integration_time_us(const mavlink_message_t* msg)
356 return _MAV_RETURN_uint32_t(msg, 8);
360 * @brief Get field integrated_x from optical_flow_rad message
362 * @return Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
364 static inline float mavlink_msg_optical_flow_rad_get_integrated_x(const mavlink_message_t* msg)
366 return _MAV_RETURN_float(msg, 12);
370 * @brief Get field integrated_y from optical_flow_rad message
372 * @return Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
374 static inline float mavlink_msg_optical_flow_rad_get_integrated_y(const mavlink_message_t* msg)
376 return _MAV_RETURN_float(msg, 16);
380 * @brief Get field integrated_xgyro from optical_flow_rad message
382 * @return RH rotation around X axis (rad)
384 static inline float mavlink_msg_optical_flow_rad_get_integrated_xgyro(const mavlink_message_t* msg)
386 return _MAV_RETURN_float(msg, 20);
390 * @brief Get field integrated_ygyro from optical_flow_rad message
392 * @return RH rotation around Y axis (rad)
394 static inline float mavlink_msg_optical_flow_rad_get_integrated_ygyro(const mavlink_message_t* msg)
396 return _MAV_RETURN_float(msg, 24);
400 * @brief Get field integrated_zgyro from optical_flow_rad message
402 * @return RH rotation around Z axis (rad)
404 static inline float mavlink_msg_optical_flow_rad_get_integrated_zgyro(const mavlink_message_t* msg)
406 return _MAV_RETURN_float(msg, 28);
410 * @brief Get field temperature from optical_flow_rad message
412 * @return Temperature * 100 in centi-degrees Celsius
414 static inline int16_t mavlink_msg_optical_flow_rad_get_temperature(const mavlink_message_t* msg)
416 return _MAV_RETURN_int16_t(msg, 40);
420 * @brief Get field quality from optical_flow_rad message
422 * @return Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
424 static inline uint8_t mavlink_msg_optical_flow_rad_get_quality(const mavlink_message_t* msg)
426 return _MAV_RETURN_uint8_t(msg, 43);
430 * @brief Get field time_delta_distance_us from optical_flow_rad message
432 * @return Time in microseconds since the distance was sampled.
434 static inline uint32_t mavlink_msg_optical_flow_rad_get_time_delta_distance_us(const mavlink_message_t* msg)
436 return _MAV_RETURN_uint32_t(msg, 32);
440 * @brief Get field distance from optical_flow_rad message
442 * @return Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
444 static inline float mavlink_msg_optical_flow_rad_get_distance(const mavlink_message_t* msg)
446 return _MAV_RETURN_float(msg, 36);
450 * @brief Decode a optical_flow_rad message into a struct
452 * @param msg The message to decode
453 * @param optical_flow_rad C-struct to decode the message contents into
455 static inline void mavlink_msg_optical_flow_rad_decode(const mavlink_message_t* msg, mavlink_optical_flow_rad_t* optical_flow_rad)
457 #if MAVLINK_NEED_BYTE_SWAP
458 optical_flow_rad->time_usec = mavlink_msg_optical_flow_rad_get_time_usec(msg);
459 optical_flow_rad->integration_time_us = mavlink_msg_optical_flow_rad_get_integration_time_us(msg);
460 optical_flow_rad->integrated_x = mavlink_msg_optical_flow_rad_get_integrated_x(msg);
461 optical_flow_rad->integrated_y = mavlink_msg_optical_flow_rad_get_integrated_y(msg);
462 optical_flow_rad->integrated_xgyro = mavlink_msg_optical_flow_rad_get_integrated_xgyro(msg);
463 optical_flow_rad->integrated_ygyro = mavlink_msg_optical_flow_rad_get_integrated_ygyro(msg);
464 optical_flow_rad->integrated_zgyro = mavlink_msg_optical_flow_rad_get_integrated_zgyro(msg);
465 optical_flow_rad->time_delta_distance_us = mavlink_msg_optical_flow_rad_get_time_delta_distance_us(msg);
466 optical_flow_rad->distance = mavlink_msg_optical_flow_rad_get_distance(msg);
467 optical_flow_rad->temperature = mavlink_msg_optical_flow_rad_get_temperature(msg);
468 optical_flow_rad->sensor_id = mavlink_msg_optical_flow_rad_get_sensor_id(msg);
469 optical_flow_rad->quality = mavlink_msg_optical_flow_rad_get_quality(msg);
470 #else
471 memcpy(optical_flow_rad, _MAV_PAYLOAD(msg), MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
472 #endif