1 /* GDB-specific functions for operating on agent expressions
2 Copyright 1998 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 #include "expression.h"
34 /* Probably the best way to read this file is to start with the types
35 and enums in ax-gdb.h, and then look at gen_expr, towards the
36 bottom; that's the main function that looks at the GDB expressions
37 and calls everything else to generate code.
39 I'm beginning to wonder whether it wouldn't be nicer to internally
40 generate trees, with types, and then spit out the bytecode in
41 linear form afterwards; we could generate fewer `swap', `ext', and
42 `zero_ext' bytecodes that way; it would make good constant folding
43 easier, too. But at the moment, I think we should be willing to
44 pay for the simplicity of this code with less-than-optimal bytecode
47 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
51 /* Prototypes for local functions. */
53 /* There's a standard order to the arguments of these functions:
54 union exp_element ** --- pointer into expression
55 struct agent_expr * --- agent expression buffer to generate code into
56 struct axs_value * --- describes value left on top of stack */
58 static struct value
*const_var_ref
PARAMS ((struct symbol
*var
));
59 static struct value
*const_expr
PARAMS ((union exp_element
**pc
));
60 static struct value
*maybe_const_expr
PARAMS ((union exp_element
**pc
));
62 static void gen_traced_pop
PARAMS ((struct agent_expr
*, struct axs_value
*));
64 static void gen_sign_extend
PARAMS ((struct agent_expr
*, struct type
*));
65 static void gen_extend
PARAMS ((struct agent_expr
*, struct type
*));
66 static void gen_fetch
PARAMS ((struct agent_expr
*, struct type
*));
67 static void gen_left_shift
PARAMS ((struct agent_expr
*, int));
70 static void gen_frame_args_address
PARAMS ((struct agent_expr
*));
71 static void gen_frame_locals_address
PARAMS ((struct agent_expr
*));
72 static void gen_offset
PARAMS ((struct agent_expr
*ax
, int offset
));
73 static void gen_sym_offset
PARAMS ((struct agent_expr
*, struct symbol
*));
74 static void gen_var_ref
PARAMS ((struct agent_expr
*ax
,
75 struct axs_value
*value
,
79 static void gen_int_literal
PARAMS ((struct agent_expr
*ax
,
80 struct axs_value
*value
,
81 LONGEST k
, struct type
*type
));
84 static void require_rvalue
PARAMS ((struct agent_expr
*ax
,
85 struct axs_value
*value
));
86 static void gen_usual_unary
PARAMS ((struct agent_expr
*ax
,
87 struct axs_value
*value
));
88 static int type_wider_than
PARAMS ((struct type
*type1
,
90 static struct type
*max_type
PARAMS ((struct type
*type1
,
92 static void gen_conversion
PARAMS ((struct agent_expr
*ax
,
95 static int is_nontrivial_conversion
PARAMS ((struct type
*from
,
97 static void gen_usual_arithmetic
PARAMS ((struct agent_expr
*ax
,
98 struct axs_value
*value1
,
99 struct axs_value
*value2
));
100 static void gen_integral_promotions
PARAMS ((struct agent_expr
*ax
,
101 struct axs_value
*value
));
102 static void gen_cast
PARAMS ((struct agent_expr
*ax
,
103 struct axs_value
*value
,
105 static void gen_scale
PARAMS ((struct agent_expr
*ax
,
108 static void gen_add
PARAMS ((struct agent_expr
*ax
,
109 struct axs_value
*value
,
110 struct axs_value
*value1
,
111 struct axs_value
*value2
,
113 static void gen_sub
PARAMS ((struct agent_expr
*ax
,
114 struct axs_value
*value
,
115 struct axs_value
*value1
,
116 struct axs_value
*value2
));
117 static void gen_binop
PARAMS ((struct agent_expr
*ax
,
118 struct axs_value
*value
,
119 struct axs_value
*value1
,
120 struct axs_value
*value2
,
122 enum agent_op op_unsigned
,
125 static void gen_logical_not
PARAMS ((struct agent_expr
*ax
,
126 struct axs_value
*value
));
127 static void gen_complement
PARAMS ((struct agent_expr
*ax
,
128 struct axs_value
*value
));
129 static void gen_deref
PARAMS ((struct agent_expr
*, struct axs_value
*));
130 static void gen_address_of
PARAMS ((struct agent_expr
*, struct axs_value
*));
131 static int find_field
PARAMS ((struct type
*type
, char *name
));
132 static void gen_bitfield_ref
PARAMS ((struct agent_expr
*ax
,
133 struct axs_value
*value
,
135 int start
, int end
));
136 static void gen_struct_ref
PARAMS ((struct agent_expr
*ax
,
137 struct axs_value
*value
,
140 char *operand_name
));
141 static void gen_repeat
PARAMS ((union exp_element
**pc
,
142 struct agent_expr
*ax
,
143 struct axs_value
*value
));
144 static void gen_sizeof
PARAMS ((union exp_element
**pc
,
145 struct agent_expr
*ax
,
146 struct axs_value
*value
));
147 static void gen_expr
PARAMS ((union exp_element
**pc
,
148 struct agent_expr
*ax
,
149 struct axs_value
*value
));
151 static void print_axs_value
PARAMS ((GDB_FILE
*f
, struct axs_value
*value
));
152 static void agent_command
PARAMS ((char *exp
, int from_tty
));
155 /* Detecting constant expressions. */
157 /* If the variable reference at *PC is a constant, return its value.
158 Otherwise, return zero.
160 Hey, Wally! How can a variable reference be a constant?
162 Well, Beav, this function really handles the OP_VAR_VALUE operator,
163 not specifically variable references. GDB uses OP_VAR_VALUE to
164 refer to any kind of symbolic reference: function names, enum
165 elements, and goto labels are all handled through the OP_VAR_VALUE
166 operator, even though they're constants. It makes sense given the
169 Gee, Wally, don'cha wonder sometimes if data representations that
170 subvert commonly accepted definitions of terms in favor of heavily
171 context-specific interpretations are really just a tool of the
172 programming hegemony to preserve their power and exclude the
175 static struct value
*
179 struct type
*type
= SYMBOL_TYPE (var
);
181 switch (SYMBOL_CLASS (var
))
184 return value_from_longest (type
, (LONGEST
) SYMBOL_VALUE (var
));
187 return value_from_longest (type
, (LONGEST
) SYMBOL_VALUE_ADDRESS (var
));
195 /* If the expression starting at *PC has a constant value, return it.
196 Otherwise, return zero. If we return a value, then *PC will be
197 advanced to the end of it. If we return zero, *PC could be
199 static struct value
*
201 union exp_element
**pc
;
203 enum exp_opcode op
= (*pc
)->opcode
;
210 struct type
*type
= (*pc
)[1].type
;
211 LONGEST k
= (*pc
)[2].longconst
;
213 return value_from_longest (type
, k
);
218 struct value
*v
= const_var_ref ((*pc
)[2].symbol
);
223 /* We could add more operators in here. */
227 v1
= const_expr (pc
);
229 return value_neg (v1
);
239 /* Like const_expr, but guarantee also that *PC is undisturbed if the
240 expression is not constant. */
241 static struct value
*
242 maybe_const_expr (pc
)
243 union exp_element
**pc
;
245 union exp_element
*tentative_pc
= *pc
;
246 struct value
*v
= const_expr (&tentative_pc
);
248 /* If we got a value, then update the real PC. */
256 /* Generating bytecode from GDB expressions: general assumptions */
258 /* Here are a few general assumptions made throughout the code; if you
259 want to make a change that contradicts one of these, then you'd
260 better scan things pretty thoroughly.
262 - We assume that all values occupy one stack element. For example,
263 sometimes we'll swap to get at the left argument to a binary
264 operator. If we decide that void values should occupy no stack
265 elements, or that synthetic arrays (whose size is determined at
266 run time, created by the `@' operator) should occupy two stack
267 elements (address and length), then this will cause trouble.
269 - We assume the stack elements are infinitely wide, and that we
270 don't have to worry what happens if the user requests an
271 operation that is wider than the actual interpreter's stack.
272 That is, it's up to the interpreter to handle directly all the
273 integer widths the user has access to. (Woe betide the language
276 - We don't support side effects. Thus, we don't have to worry about
277 GCC's generalized lvalues, function calls, etc.
279 - We don't support floating point. Many places where we switch on
280 some type don't bother to include cases for floating point; there
281 may be even more subtle ways this assumption exists. For
282 example, the arguments to % must be integers.
284 - We assume all subexpressions have a static, unchanging type. If
285 we tried to support convenience variables, this would be a
288 - All values on the stack should always be fully zero- or
291 (I wasn't sure whether to choose this or its opposite --- that
292 only addresses are assumed extended --- but it turns out that
293 neither convention completely eliminates spurious extend
294 operations (if everything is always extended, then you have to
295 extend after add, because it could overflow; if nothing is
296 extended, then you end up producing extends whenever you change
297 sizes), and this is simpler.) */
300 /* Generating bytecode from GDB expressions: the `trace' kludge */
302 /* The compiler in this file is a general-purpose mechanism for
303 translating GDB expressions into bytecode. One ought to be able to
304 find a million and one uses for it.
306 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
307 of expediency. Let he who is without sin cast the first stone.
309 For the data tracing facility, we need to insert `trace' bytecodes
310 before each data fetch; this records all the memory that the
311 expression touches in the course of evaluation, so that memory will
312 be available when the user later tries to evaluate the expression
315 This should be done (I think) in a post-processing pass, that walks
316 an arbitrary agent expression and inserts `trace' operations at the
317 appropriate points. But it's much faster to just hack them
318 directly into the code. And since we're in a crunch, that's what
321 Setting the flag trace_kludge to non-zero enables the code that
322 emits the trace bytecodes at the appropriate points. */
323 static int trace_kludge
;
325 /* Trace the lvalue on the stack, if it needs it. In either case, pop
326 the value. Useful on the left side of a comma, and at the end of
327 an expression being used for tracing. */
329 gen_traced_pop (ax
, value
)
330 struct agent_expr
*ax
;
331 struct axs_value
*value
;
337 /* We don't trace rvalues, just the lvalues necessary to
338 produce them. So just dispose of this value. */
339 ax_simple (ax
, aop_pop
);
342 case axs_lvalue_memory
:
344 int length
= TYPE_LENGTH (value
->type
);
346 /* There's no point in trying to use a trace_quick bytecode
347 here, since "trace_quick SIZE pop" is three bytes, whereas
348 "const8 SIZE trace" is also three bytes, does the same
349 thing, and the simplest code which generates that will also
350 work correctly for objects with large sizes. */
351 ax_const_l (ax
, length
);
352 ax_simple (ax
, aop_trace
);
356 case axs_lvalue_register
:
357 /* We need to mention the register somewhere in the bytecode,
358 so ax_reqs will pick it up and add it to the mask of
360 ax_reg (ax
, value
->u
.reg
);
361 ax_simple (ax
, aop_pop
);
365 /* If we're not tracing, just pop the value. */
366 ax_simple (ax
, aop_pop
);
371 /* Generating bytecode from GDB expressions: helper functions */
373 /* Assume that the lower bits of the top of the stack is a value of
374 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
376 gen_sign_extend (ax
, type
)
377 struct agent_expr
*ax
;
380 /* Do we need to sign-extend this? */
381 if (! TYPE_UNSIGNED (type
))
382 ax_ext (ax
, type
->length
* TARGET_CHAR_BIT
);
386 /* Assume the lower bits of the top of the stack hold a value of type
387 TYPE, and the upper bits are garbage. Sign-extend or truncate as
390 gen_extend (ax
, type
)
391 struct agent_expr
*ax
;
394 int bits
= type
->length
* TARGET_CHAR_BIT
;
396 ((TYPE_UNSIGNED (type
) ? ax_zero_ext
: ax_ext
) (ax
, bits
));
400 /* Assume that the top of the stack contains a value of type "pointer
401 to TYPE"; generate code to fetch its value. Note that TYPE is the
402 target type, not the pointer type. */
405 struct agent_expr
*ax
;
410 /* Record the area of memory we're about to fetch. */
411 ax_trace_quick (ax
, TYPE_LENGTH (type
));
420 /* It's a scalar value, so we know how to dereference it. How
421 many bytes long is it? */
422 switch (type
->length
)
424 case 8 / TARGET_CHAR_BIT
: ax_simple (ax
, aop_ref8
); break;
425 case 16 / TARGET_CHAR_BIT
: ax_simple (ax
, aop_ref16
); break;
426 case 32 / TARGET_CHAR_BIT
: ax_simple (ax
, aop_ref32
); break;
427 case 64 / TARGET_CHAR_BIT
: ax_simple (ax
, aop_ref64
); break;
429 /* Either our caller shouldn't have asked us to dereference
430 that pointer (other code's fault), or we're not
431 implementing something we should be (this code's fault).
432 In any case, it's a bug the user shouldn't see. */
434 error ("GDB bug: ax-gdb.c (gen_fetch): strange size");
437 gen_sign_extend (ax
, type
);
441 /* Either our caller shouldn't have asked us to dereference that
442 pointer (other code's fault), or we're not implementing
443 something we should be (this code's fault). In any case,
444 it's a bug the user shouldn't see. */
445 error ("GDB bug: ax-gdb.c (gen_fetch): bad type code");
450 /* Generate code to left shift the top of the stack by DISTANCE bits, or
451 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
452 unsigned (logical) right shifts. */
454 gen_left_shift (ax
, distance
)
455 struct agent_expr
*ax
;
460 ax_const_l (ax
, distance
);
461 ax_simple (ax
, aop_lsh
);
463 else if (distance
< 0)
465 ax_const_l (ax
, -distance
);
466 ax_simple (ax
, aop_rsh_unsigned
);
472 /* Generating bytecode from GDB expressions: symbol references */
474 /* Generate code to push the base address of the argument portion of
475 the top stack frame. */
477 gen_frame_args_address (ax
)
478 struct agent_expr
*ax
;
480 long frame_reg
, frame_offset
;
482 TARGET_VIRTUAL_FRAME_POINTER (ax
->scope
, &frame_reg
, &frame_offset
);
483 ax_reg (ax
, frame_reg
);
484 gen_offset (ax
, frame_offset
);
488 /* Generate code to push the base address of the locals portion of the
491 gen_frame_locals_address (ax
)
492 struct agent_expr
*ax
;
494 long frame_reg
, frame_offset
;
496 TARGET_VIRTUAL_FRAME_POINTER (ax
->scope
, &frame_reg
, &frame_offset
);
497 ax_reg (ax
, frame_reg
);
498 gen_offset (ax
, frame_offset
);
502 /* Generate code to add OFFSET to the top of the stack. Try to
503 generate short and readable code. We use this for getting to
504 variables on the stack, and structure members. If we were
505 programming in ML, it would be clearer why these are the same
508 gen_offset (ax
, offset
)
509 struct agent_expr
*ax
;
512 /* It would suffice to simply push the offset and add it, but this
513 makes it easier to read positive and negative offsets in the
517 ax_const_l (ax
, offset
);
518 ax_simple (ax
, aop_add
);
522 ax_const_l (ax
, -offset
);
523 ax_simple (ax
, aop_sub
);
528 /* In many cases, a symbol's value is the offset from some other
529 address (stack frame, base register, etc.) Generate code to add
530 VAR's value to the top of the stack. */
532 gen_sym_offset (ax
, var
)
533 struct agent_expr
*ax
;
536 gen_offset (ax
, SYMBOL_VALUE (var
));
540 /* Generate code for a variable reference to AX. The variable is the
541 symbol VAR. Set VALUE to describe the result. */
544 gen_var_ref (ax
, value
, var
)
545 struct agent_expr
*ax
;
546 struct axs_value
*value
;
549 /* Dereference any typedefs. */
550 value
->type
= check_typedef (SYMBOL_TYPE (var
));
552 /* I'm imitating the code in read_var_value. */
553 switch (SYMBOL_CLASS (var
))
555 case LOC_CONST
: /* A constant, like an enum value. */
556 ax_const_l (ax
, (LONGEST
) SYMBOL_VALUE (var
));
557 value
->kind
= axs_rvalue
;
560 case LOC_LABEL
: /* A goto label, being used as a value. */
561 ax_const_l (ax
, (LONGEST
) SYMBOL_VALUE_ADDRESS (var
));
562 value
->kind
= axs_rvalue
;
565 case LOC_CONST_BYTES
:
566 error ("GDB bug: ax-gdb.c (gen_var_ref): LOC_CONST_BYTES symbols are not supported");
568 /* Variable at a fixed location in memory. Easy. */
570 /* Push the address of the variable. */
571 ax_const_l (ax
, SYMBOL_VALUE_ADDRESS (var
));
572 value
->kind
= axs_lvalue_memory
;
575 case LOC_ARG
: /* var lives in argument area of frame */
576 gen_frame_args_address (ax
);
577 gen_sym_offset (ax
, var
);
578 value
->kind
= axs_lvalue_memory
;
581 case LOC_REF_ARG
: /* As above, but the frame slot really
582 holds the address of the variable. */
583 gen_frame_args_address (ax
);
584 gen_sym_offset (ax
, var
);
585 /* Don't assume any particular pointer size. */
586 gen_fetch (ax
, lookup_pointer_type (builtin_type_void
));
587 value
->kind
= axs_lvalue_memory
;
590 case LOC_LOCAL
: /* var lives in locals area of frame */
592 gen_frame_locals_address (ax
);
593 gen_sym_offset (ax
, var
);
594 value
->kind
= axs_lvalue_memory
;
597 case LOC_BASEREG
: /* relative to some base register */
598 case LOC_BASEREG_ARG
:
599 ax_reg (ax
, SYMBOL_BASEREG (var
));
600 gen_sym_offset (ax
, var
);
601 value
->kind
= axs_lvalue_memory
;
605 error ("Cannot compute value of typedef `%s'.",
606 SYMBOL_SOURCE_NAME (var
));
610 ax_const_l (ax
, BLOCK_START (SYMBOL_BLOCK_VALUE (var
)));
611 value
->kind
= axs_rvalue
;
616 /* Don't generate any code at all; in the process of treating
617 this as an lvalue or rvalue, the caller will generate the
619 value
->kind
= axs_lvalue_register
;
620 value
->u
.reg
= SYMBOL_VALUE (var
);
623 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
624 register, not on the stack. Simpler than LOC_REGISTER and
625 LOC_REGPARM, because it's just like any other case where the
626 thing has a real address. */
627 case LOC_REGPARM_ADDR
:
628 ax_reg (ax
, SYMBOL_VALUE (var
));
629 value
->kind
= axs_lvalue_memory
;
634 struct minimal_symbol
*msym
635 = lookup_minimal_symbol (SYMBOL_NAME (var
), NULL
, NULL
);
637 error ("Couldn't resolve symbol `%s'.", SYMBOL_SOURCE_NAME (var
));
639 /* Push the address of the variable. */
640 ax_const_l (ax
, SYMBOL_VALUE_ADDRESS (msym
));
641 value
->kind
= axs_lvalue_memory
;
645 case LOC_OPTIMIZED_OUT
:
646 error ("The variable `%s' has been optimized out.",
647 SYMBOL_SOURCE_NAME (var
));
651 error ("Cannot find value of botched symbol `%s'.",
652 SYMBOL_SOURCE_NAME (var
));
659 /* Generating bytecode from GDB expressions: literals */
662 gen_int_literal (ax
, value
, k
, type
)
663 struct agent_expr
*ax
;
664 struct axs_value
*value
;
669 value
->kind
= axs_rvalue
;
675 /* Generating bytecode from GDB expressions: unary conversions, casts */
677 /* Take what's on the top of the stack (as described by VALUE), and
678 try to make an rvalue out of it. Signal an error if we can't do
681 require_rvalue (ax
, value
)
682 struct agent_expr
*ax
;
683 struct axs_value
*value
;
688 /* It's already an rvalue. */
691 case axs_lvalue_memory
:
692 /* The top of stack is the address of the object. Dereference. */
693 gen_fetch (ax
, value
->type
);
696 case axs_lvalue_register
:
697 /* There's nothing on the stack, but value->u.reg is the
698 register number containing the value.
700 When we add floating-point support, this is going to have to
701 change. What about SPARC register pairs, for example? */
702 ax_reg (ax
, value
->u
.reg
);
703 gen_extend (ax
, value
->type
);
707 value
->kind
= axs_rvalue
;
711 /* Assume the top of the stack is described by VALUE, and perform the
712 usual unary conversions. This is motivated by ANSI 6.2.2, but of
713 course GDB expressions are not ANSI; they're the mishmash union of
714 a bunch of languages. Rah.
716 NOTE! This function promises to produce an rvalue only when the
717 incoming value is of an appropriate type. In other words, the
718 consumer of the value this function produces may assume the value
719 is an rvalue only after checking its type.
721 The immediate issue is that if the user tries to use a structure or
722 union as an operand of, say, the `+' operator, we don't want to try
723 to convert that structure to an rvalue; require_rvalue will bomb on
724 structs and unions. Rather, we want to simply pass the struct
725 lvalue through unchanged, and let `+' raise an error. */
728 gen_usual_unary (ax
, value
)
729 struct agent_expr
*ax
;
730 struct axs_value
*value
;
732 /* We don't have to generate any code for the usual integral
733 conversions, since values are always represented as full-width on
734 the stack. Should we tweak the type? */
736 /* Some types require special handling. */
737 switch (value
->type
->code
)
739 /* Functions get converted to a pointer to the function. */
741 value
->type
= lookup_pointer_type (value
->type
);
742 value
->kind
= axs_rvalue
; /* Should always be true, but just in case. */
745 /* Arrays get converted to a pointer to their first element, and
746 are no longer an lvalue. */
747 case TYPE_CODE_ARRAY
:
749 struct type
*elements
= TYPE_TARGET_TYPE (value
->type
);
750 value
->type
= lookup_pointer_type (elements
);
751 value
->kind
= axs_rvalue
;
752 /* We don't need to generate any code; the address of the array
753 is also the address of its first element. */
757 /* Don't try to convert structures and unions to rvalues. Let the
758 consumer signal an error. */
759 case TYPE_CODE_STRUCT
:
760 case TYPE_CODE_UNION
:
763 /* If the value is an enum, call it an integer. */
765 value
->type
= builtin_type_int
;
769 /* If the value is an lvalue, dereference it. */
770 require_rvalue (ax
, value
);
774 /* Return non-zero iff the type TYPE1 is considered "wider" than the
775 type TYPE2, according to the rules described in gen_usual_arithmetic. */
777 type_wider_than (type1
, type2
)
778 struct type
*type1
, *type2
;
780 return (TYPE_LENGTH (type1
) > TYPE_LENGTH (type2
)
781 || (TYPE_LENGTH (type1
) == TYPE_LENGTH (type2
)
782 && TYPE_UNSIGNED (type1
)
783 && ! TYPE_UNSIGNED (type2
)));
787 /* Return the "wider" of the two types TYPE1 and TYPE2. */
789 max_type (type1
, type2
)
790 struct type
*type1
, *type2
;
792 return type_wider_than (type1
, type2
) ? type1
: type2
;
796 /* Generate code to convert a scalar value of type FROM to type TO. */
798 gen_conversion (ax
, from
, to
)
799 struct agent_expr
*ax
;
800 struct type
*from
, *to
;
802 /* Perhaps there is a more graceful way to state these rules. */
804 /* If we're converting to a narrower type, then we need to clear out
806 if (TYPE_LENGTH (to
) < TYPE_LENGTH (from
))
807 gen_extend (ax
, from
);
809 /* If the two values have equal width, but different signednesses,
810 then we need to extend. */
811 else if (TYPE_LENGTH (to
) == TYPE_LENGTH (from
))
813 if (TYPE_UNSIGNED (from
) != TYPE_UNSIGNED (to
))
817 /* If we're converting to a wider type, and becoming unsigned, then
818 we need to zero out any possible sign bits. */
819 else if (TYPE_LENGTH (to
) > TYPE_LENGTH (from
))
821 if (TYPE_UNSIGNED (to
))
827 /* Return non-zero iff the type FROM will require any bytecodes to be
828 emitted to be converted to the type TO. */
830 is_nontrivial_conversion (from
, to
)
831 struct type
*from
, *to
;
833 struct agent_expr
*ax
= new_agent_expr (0);
836 /* Actually generate the code, and see if anything came out. At the
837 moment, it would be trivial to replicate the code in
838 gen_conversion here, but in the future, when we're supporting
839 floating point and the like, it may not be. Doing things this
840 way allows this function to be independent of the logic in
842 gen_conversion (ax
, from
, to
);
843 nontrivial
= ax
->len
> 0;
844 free_agent_expr (ax
);
849 /* Generate code to perform the "usual arithmetic conversions" (ANSI C
850 6.2.1.5) for the two operands of an arithmetic operator. This
851 effectively finds a "least upper bound" type for the two arguments,
852 and promotes each argument to that type. *VALUE1 and *VALUE2
853 describe the values as they are passed in, and as they are left. */
855 gen_usual_arithmetic (ax
, value1
, value2
)
856 struct agent_expr
*ax
;
857 struct axs_value
*value1
, *value2
;
859 /* Do the usual binary conversions. */
860 if (TYPE_CODE (value1
->type
) == TYPE_CODE_INT
861 && TYPE_CODE (value2
->type
) == TYPE_CODE_INT
)
863 /* The ANSI integral promotions seem to work this way: Order the
864 integer types by size, and then by signedness: an n-bit
865 unsigned type is considered "wider" than an n-bit signed
866 type. Promote to the "wider" of the two types, and always
867 promote at least to int. */
868 struct type
*target
= max_type (builtin_type_int
,
869 max_type (value1
->type
, value2
->type
));
871 /* Deal with value2, on the top of the stack. */
872 gen_conversion (ax
, value2
->type
, target
);
874 /* Deal with value1, not on the top of the stack. Don't
875 generate the `swap' instructions if we're not actually going
877 if (is_nontrivial_conversion (value1
->type
, target
))
879 ax_simple (ax
, aop_swap
);
880 gen_conversion (ax
, value1
->type
, target
);
881 ax_simple (ax
, aop_swap
);
884 value1
->type
= value2
->type
= target
;
889 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
890 the value on the top of the stack, as described by VALUE. Assume
891 the value has integral type. */
893 gen_integral_promotions (ax
, value
)
894 struct agent_expr
*ax
;
895 struct axs_value
*value
;
897 if (! type_wider_than (value
->type
, builtin_type_int
))
899 gen_conversion (ax
, value
->type
, builtin_type_int
);
900 value
->type
= builtin_type_int
;
902 else if (! type_wider_than (value
->type
, builtin_type_unsigned_int
))
904 gen_conversion (ax
, value
->type
, builtin_type_unsigned_int
);
905 value
->type
= builtin_type_unsigned_int
;
910 /* Generate code for a cast to TYPE. */
912 gen_cast (ax
, value
, type
)
913 struct agent_expr
*ax
;
914 struct axs_value
*value
;
917 /* GCC does allow casts to yield lvalues, so this should be fixed
918 before merging these changes into the trunk. */
919 require_rvalue (ax
, value
);
920 /* Dereference typedefs. */
921 type
= check_typedef (type
);
926 /* It's implementation-defined, and I'll bet this is what GCC
930 case TYPE_CODE_ARRAY
:
931 case TYPE_CODE_STRUCT
:
932 case TYPE_CODE_UNION
:
934 error ("Illegal type cast: intended type must be scalar.");
937 /* We don't have to worry about the size of the value, because
938 all our integral values are fully sign-extended, and when
939 casting pointers we can do anything we like. Is there any
940 way for us to actually know what GCC actually does with a
946 gen_conversion (ax
, value
->type
, type
);
950 /* We could pop the value, and rely on everyone else to check
951 the type and notice that this value doesn't occupy a stack
952 slot. But for now, leave the value on the stack, and
953 preserve the "value == stack element" assumption. */
957 error ("Casts to requested type are not yet implemented.");
965 /* Generating bytecode from GDB expressions: arithmetic */
967 /* Scale the integer on the top of the stack by the size of the target
968 of the pointer type TYPE. */
970 gen_scale (ax
, op
, type
)
971 struct agent_expr
*ax
;
975 struct type
*element
= TYPE_TARGET_TYPE (type
);
977 if (element
->length
!= 1)
979 ax_const_l (ax
, element
->length
);
985 /* Generate code for an addition; non-trivial because we deal with
986 pointer arithmetic. We set VALUE to describe the result value; we
987 assume VALUE1 and VALUE2 describe the two operands, and that
988 they've undergone the usual binary conversions. Used by both
989 BINOP_ADD and BINOP_SUBSCRIPT. NAME is used in error messages. */
991 gen_add (ax
, value
, value1
, value2
, name
)
992 struct agent_expr
*ax
;
993 struct axs_value
*value
, *value1
, *value2
;
997 if (value1
->type
->code
== TYPE_CODE_INT
998 && value2
->type
->code
== TYPE_CODE_PTR
)
1000 /* Swap the values and proceed normally. */
1001 ax_simple (ax
, aop_swap
);
1002 gen_scale (ax
, aop_mul
, value2
->type
);
1003 ax_simple (ax
, aop_add
);
1004 gen_extend (ax
, value2
->type
); /* Catch overflow. */
1005 value
->type
= value2
->type
;
1008 /* Is it PTR+INT? */
1009 else if (value1
->type
->code
== TYPE_CODE_PTR
1010 && value2
->type
->code
== TYPE_CODE_INT
)
1012 gen_scale (ax
, aop_mul
, value1
->type
);
1013 ax_simple (ax
, aop_add
);
1014 gen_extend (ax
, value1
->type
); /* Catch overflow. */
1015 value
->type
= value1
->type
;
1018 /* Must be number + number; the usual binary conversions will have
1019 brought them both to the same width. */
1020 else if (value1
->type
->code
== TYPE_CODE_INT
1021 && value2
->type
->code
== TYPE_CODE_INT
)
1023 ax_simple (ax
, aop_add
);
1024 gen_extend (ax
, value1
->type
); /* Catch overflow. */
1025 value
->type
= value1
->type
;
1029 error ("Illegal combination of types in %s.", name
);
1031 value
->kind
= axs_rvalue
;
1035 /* Generate code for an addition; non-trivial because we have to deal
1036 with pointer arithmetic. We set VALUE to describe the result
1037 value; we assume VALUE1 and VALUE2 describe the two operands, and
1038 that they've undergone the usual binary conversions. */
1040 gen_sub (ax
, value
, value1
, value2
)
1041 struct agent_expr
*ax
;
1042 struct axs_value
*value
, *value1
, *value2
;
1044 struct type
*element
;
1046 if (value1
->type
->code
== TYPE_CODE_PTR
)
1048 /* Is it PTR - INT? */
1049 if (value2
->type
->code
== TYPE_CODE_INT
)
1051 gen_scale (ax
, aop_mul
, value1
->type
);
1052 ax_simple (ax
, aop_sub
);
1053 gen_extend (ax
, value1
->type
); /* Catch overflow. */
1054 value
->type
= value1
->type
;
1057 /* Is it PTR - PTR? Strictly speaking, the types ought to
1058 match, but this is what the normal GDB expression evaluator
1060 else if (value2
->type
->code
== TYPE_CODE_PTR
1061 && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1
->type
))
1062 == TYPE_LENGTH (TYPE_TARGET_TYPE (value2
->type
))))
1064 ax_simple (ax
, aop_sub
);
1065 gen_scale (ax
, aop_div_unsigned
, value1
->type
);
1066 value
->type
= builtin_type_long
; /* FIXME --- should be ptrdiff_t */
1070 First argument of `-' is a pointer, but second argument is neither\n\
1071 an integer nor a pointer of the same type.");
1074 /* Must be number + number. */
1075 else if (value1
->type
->code
== TYPE_CODE_INT
1076 && value2
->type
->code
== TYPE_CODE_INT
)
1078 ax_simple (ax
, aop_sub
);
1079 gen_extend (ax
, value1
->type
); /* Catch overflow. */
1080 value
->type
= value1
->type
;
1084 error ("Illegal combination of types in subtraction.");
1086 value
->kind
= axs_rvalue
;
1089 /* Generate code for a binary operator that doesn't do pointer magic.
1090 We set VALUE to describe the result value; we assume VALUE1 and
1091 VALUE2 describe the two operands, and that they've undergone the
1092 usual binary conversions. MAY_CARRY should be non-zero iff the
1093 result needs to be extended. NAME is the English name of the
1094 operator, used in error messages */
1096 gen_binop (ax
, value
, value1
, value2
, op
, op_unsigned
, may_carry
, name
)
1097 struct agent_expr
*ax
;
1098 struct axs_value
*value
, *value1
, *value2
;
1099 enum agent_op op
, op_unsigned
;
1103 /* We only handle INT op INT. */
1104 if ((value1
->type
->code
!= TYPE_CODE_INT
)
1105 || (value2
->type
->code
!= TYPE_CODE_INT
))
1106 error ("Illegal combination of types in %s.", name
);
1109 TYPE_UNSIGNED (value1
->type
) ? op_unsigned
: op
);
1111 gen_extend (ax
, value1
->type
); /* catch overflow */
1112 value
->type
= value1
->type
;
1113 value
->kind
= axs_rvalue
;
1118 gen_logical_not (ax
, value
)
1119 struct agent_expr
*ax
;
1120 struct axs_value
*value
;
1122 if (TYPE_CODE (value
->type
) != TYPE_CODE_INT
1123 && TYPE_CODE (value
->type
) != TYPE_CODE_PTR
)
1124 error ("Illegal type of operand to `!'.");
1126 gen_usual_unary (ax
, value
);
1127 ax_simple (ax
, aop_log_not
);
1128 value
->type
= builtin_type_int
;
1133 gen_complement (ax
, value
)
1134 struct agent_expr
*ax
;
1135 struct axs_value
*value
;
1137 if (TYPE_CODE (value
->type
) != TYPE_CODE_INT
)
1138 error ("Illegal type of operand to `~'.");
1140 gen_usual_unary (ax
, value
);
1141 gen_integral_promotions (ax
, value
);
1142 ax_simple (ax
, aop_bit_not
);
1143 gen_extend (ax
, value
->type
);
1148 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1150 /* Dereference the value on the top of the stack. */
1152 gen_deref (ax
, value
)
1153 struct agent_expr
*ax
;
1154 struct axs_value
*value
;
1156 /* The caller should check the type, because several operators use
1157 this, and we don't know what error message to generate. */
1158 if (value
->type
->code
!= TYPE_CODE_PTR
)
1159 error ("GDB bug: ax-gdb.c (gen_deref): expected a pointer");
1161 /* We've got an rvalue now, which is a pointer. We want to yield an
1162 lvalue, whose address is exactly that pointer. So we don't
1163 actually emit any code; we just change the type from "Pointer to
1164 T" to "T", and mark the value as an lvalue in memory. Leave it
1165 to the consumer to actually dereference it. */
1166 value
->type
= check_typedef (TYPE_TARGET_TYPE (value
->type
));
1167 value
->kind
= ((value
->type
->code
== TYPE_CODE_FUNC
)
1168 ? axs_rvalue
: axs_lvalue_memory
);
1172 /* Produce the address of the lvalue on the top of the stack. */
1174 gen_address_of (ax
, value
)
1175 struct agent_expr
*ax
;
1176 struct axs_value
*value
;
1178 /* Special case for taking the address of a function. The ANSI
1179 standard describes this as a special case, too, so this
1180 arrangement is not without motivation. */
1181 if (value
->type
->code
== TYPE_CODE_FUNC
)
1182 /* The value's already an rvalue on the stack, so we just need to
1184 value
->type
= lookup_pointer_type (value
->type
);
1186 switch (value
->kind
)
1189 error ("Operand of `&' is an rvalue, which has no address.");
1191 case axs_lvalue_register
:
1192 error ("Operand of `&' is in a register, and has no address.");
1194 case axs_lvalue_memory
:
1195 value
->kind
= axs_rvalue
;
1196 value
->type
= lookup_pointer_type (value
->type
);
1202 /* A lot of this stuff will have to change to support C++. But we're
1203 not going to deal with that at the moment. */
1205 /* Find the field in the structure type TYPE named NAME, and return
1206 its index in TYPE's field array. */
1208 find_field (type
, name
)
1214 CHECK_TYPEDEF (type
);
1216 /* Make sure this isn't C++. */
1217 if (TYPE_N_BASECLASSES (type
) != 0)
1218 error ("GDB bug: ax-gdb.c (find_field): derived classes supported");
1220 for (i
= 0; i
< TYPE_NFIELDS (type
); i
++)
1222 char *this_name
= TYPE_FIELD_NAME (type
, i
);
1224 if (this_name
&& STREQ (name
, this_name
))
1227 if (this_name
[0] == '\0')
1228 error ("GDB bug: ax-gdb.c (find_field): anonymous unions not supported");
1231 error ("Couldn't find member named `%s' in struct/union `%s'",
1232 name
, type
->tag_name
);
1238 /* Generate code to push the value of a bitfield of a structure whose
1239 address is on the top of the stack. START and END give the
1240 starting and one-past-ending *bit* numbers of the field within the
1243 gen_bitfield_ref (ax
, value
, type
, start
, end
)
1244 struct agent_expr
*ax
;
1245 struct axs_value
*value
;
1249 /* Note that ops[i] fetches 8 << i bits. */
1250 static enum agent_op ops
[]
1251 = { aop_ref8
, aop_ref16
, aop_ref32
, aop_ref64
};
1252 static int num_ops
= (sizeof (ops
) / sizeof (ops
[0]));
1254 /* We don't want to touch any byte that the bitfield doesn't
1255 actually occupy; we shouldn't make any accesses we're not
1256 explicitly permitted to. We rely here on the fact that the
1257 bytecode `ref' operators work on unaligned addresses.
1259 It takes some fancy footwork to get the stack to work the way
1260 we'd like. Say we're retrieving a bitfield that requires three
1261 fetches. Initially, the stack just contains the address:
1263 For the first fetch, we duplicate the address
1265 then add the byte offset, do the fetch, and shift and mask as
1266 needed, yielding a fragment of the value, properly aligned for
1267 the final bitwise or:
1269 then we swap, and repeat the process:
1270 frag1 addr --- address on top
1271 frag1 addr addr --- duplicate it
1272 frag1 addr frag2 --- get second fragment
1273 frag1 frag2 addr --- swap again
1274 frag1 frag2 frag3 --- get third fragment
1275 Notice that, since the third fragment is the last one, we don't
1276 bother duplicating the address this time. Now we have all the
1277 fragments on the stack, and we can simply `or' them together,
1278 yielding the final value of the bitfield. */
1280 /* The first and one-after-last bits in the field, but rounded down
1281 and up to byte boundaries. */
1282 int bound_start
= (start
/ TARGET_CHAR_BIT
) * TARGET_CHAR_BIT
;
1283 int bound_end
= (((end
+ TARGET_CHAR_BIT
- 1)
1287 /* current bit offset within the structure */
1290 /* The index in ops of the opcode we're considering. */
1293 /* The number of fragments we generated in the process. Probably
1294 equal to the number of `one' bits in bytesize, but who cares? */
1297 /* Dereference any typedefs. */
1298 type
= check_typedef (type
);
1300 /* Can we fetch the number of bits requested at all? */
1301 if ((end
- start
) > ((1 << num_ops
) * 8))
1302 error ("GDB bug: ax-gdb.c (gen_bitfield_ref): bitfield too wide");
1304 /* Note that we know here that we only need to try each opcode once.
1305 That may not be true on machines with weird byte sizes. */
1306 offset
= bound_start
;
1308 for (op
= num_ops
- 1; op
>= 0; op
--)
1310 /* number of bits that ops[op] would fetch */
1311 int op_size
= 8 << op
;
1313 /* The stack at this point, from bottom to top, contains zero or
1314 more fragments, then the address. */
1316 /* Does this fetch fit within the bitfield? */
1317 if (offset
+ op_size
<= bound_end
)
1319 /* Is this the last fragment? */
1320 int last_frag
= (offset
+ op_size
== bound_end
);
1323 ax_simple (ax
, aop_dup
); /* keep a copy of the address */
1325 /* Add the offset. */
1326 gen_offset (ax
, offset
/ TARGET_CHAR_BIT
);
1330 /* Record the area of memory we're about to fetch. */
1331 ax_trace_quick (ax
, op_size
/ TARGET_CHAR_BIT
);
1334 /* Perform the fetch. */
1335 ax_simple (ax
, ops
[op
]);
1337 /* Shift the bits we have to their proper position.
1338 gen_left_shift will generate right shifts when the operand
1341 A big-endian field diagram to ponder:
1342 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1343 +------++------++------++------++------++------++------++------+
1344 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1346 bit number 16 32 48 53
1347 These are bit numbers as supplied by GDB. Note that the
1348 bit numbers run from right to left once you've fetched the
1351 A little-endian field diagram to ponder:
1352 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1353 +------++------++------++------++------++------++------++------+
1354 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1356 bit number 48 32 16 4 0
1358 In both cases, the most significant end is on the left
1359 (i.e. normal numeric writing order), which means that you
1360 don't go crazy thinking about `left' and `right' shifts.
1362 We don't have to worry about masking yet:
1363 - If they contain garbage off the least significant end, then we
1364 must be looking at the low end of the field, and the right
1365 shift will wipe them out.
1366 - If they contain garbage off the most significant end, then we
1367 must be looking at the most significant end of the word, and
1368 the sign/zero extension will wipe them out.
1369 - If we're in the interior of the word, then there is no garbage
1370 on either end, because the ref operators zero-extend. */
1371 if (TARGET_BYTE_ORDER
== BIG_ENDIAN
)
1372 gen_left_shift (ax
, end
- (offset
+ op_size
));
1374 gen_left_shift (ax
, offset
- start
);
1377 /* Bring the copy of the address up to the top. */
1378 ax_simple (ax
, aop_swap
);
1385 /* Generate enough bitwise `or' operations to combine all the
1386 fragments we left on the stack. */
1387 while (fragment_count
-- > 1)
1388 ax_simple (ax
, aop_bit_or
);
1390 /* Sign- or zero-extend the value as appropriate. */
1391 ((TYPE_UNSIGNED (type
) ? ax_zero_ext
: ax_ext
) (ax
, end
- start
));
1393 /* This is *not* an lvalue. Ugh. */
1394 value
->kind
= axs_rvalue
;
1399 /* Generate code to reference the member named FIELD of a structure or
1400 union. The top of the stack, as described by VALUE, should have
1401 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1402 the operator being compiled, and OPERAND_NAME is the kind of thing
1403 it operates on; we use them in error messages. */
1405 gen_struct_ref (ax
, value
, field
, operator_name
, operand_name
)
1406 struct agent_expr
*ax
;
1407 struct axs_value
*value
;
1409 char *operator_name
;
1415 /* Follow pointers until we reach a non-pointer. These aren't the C
1416 semantics, but they're what the normal GDB evaluator does, so we
1417 should at least be consistent. */
1418 while (value
->type
->code
== TYPE_CODE_PTR
)
1420 gen_usual_unary (ax
, value
);
1421 gen_deref (ax
, value
);
1425 /* This must yield a structure or a union. */
1426 if (TYPE_CODE (type
) != TYPE_CODE_STRUCT
1427 && TYPE_CODE (type
) != TYPE_CODE_UNION
)
1428 error ("The left operand of `%s' is not a %s.",
1429 operator_name
, operand_name
);
1431 /* And it must be in memory; we don't deal with structure rvalues,
1432 or structures living in registers. */
1433 if (value
->kind
!= axs_lvalue_memory
)
1434 error ("Structure does not live in memory.");
1436 i
= find_field (type
, field
);
1438 /* Is this a bitfield? */
1439 if (TYPE_FIELD_PACKED (type
, i
))
1440 gen_bitfield_ref (ax
, value
, TYPE_FIELD_TYPE (type
, i
),
1441 TYPE_FIELD_BITPOS (type
, i
),
1442 (TYPE_FIELD_BITPOS (type
, i
)
1443 + TYPE_FIELD_BITSIZE (type
, i
)));
1446 gen_offset (ax
, TYPE_FIELD_BITPOS (type
, i
) / TARGET_CHAR_BIT
);
1447 value
->kind
= axs_lvalue_memory
;
1448 value
->type
= TYPE_FIELD_TYPE (type
, i
);
1453 /* Generate code for GDB's magical `repeat' operator.
1454 LVALUE @ INT creates an array INT elements long, and whose elements
1455 have the same type as LVALUE, located in memory so that LVALUE is
1456 its first element. For example, argv[0]@argc gives you the array
1457 of command-line arguments.
1459 Unfortunately, because we have to know the types before we actually
1460 have a value for the expression, we can't implement this perfectly
1461 without changing the type system, having values that occupy two
1462 stack slots, doing weird things with sizeof, etc. So we require
1463 the right operand to be a constant expression. */
1465 gen_repeat (pc
, ax
, value
)
1466 union exp_element
**pc
;
1467 struct agent_expr
*ax
;
1468 struct axs_value
*value
;
1470 struct axs_value value1
;
1471 /* We don't want to turn this into an rvalue, so no conversions
1473 gen_expr (pc
, ax
, &value1
);
1474 if (value1
.kind
!= axs_lvalue_memory
)
1475 error ("Left operand of `@' must be an object in memory.");
1477 /* Evaluate the length; it had better be a constant. */
1479 struct value
*v
= const_expr (pc
);
1483 error ("Right operand of `@' must be a constant, in agent expressions.");
1484 if (v
->type
->code
!= TYPE_CODE_INT
)
1485 error ("Right operand of `@' must be an integer.");
1486 length
= value_as_long (v
);
1488 error ("Right operand of `@' must be positive.");
1490 /* The top of the stack is already the address of the object, so
1491 all we need to do is frob the type of the lvalue. */
1493 /* FIXME-type-allocation: need a way to free this type when we are
1496 = create_range_type (0, builtin_type_int
, 0, length
- 1);
1497 struct type
*array
= create_array_type (0, value1
.type
, range
);
1499 value
->kind
= axs_lvalue_memory
;
1500 value
->type
= array
;
1506 /* Emit code for the `sizeof' operator.
1507 *PC should point at the start of the operand expression; we advance it
1508 to the first instruction after the operand. */
1510 gen_sizeof (pc
, ax
, value
)
1511 union exp_element
**pc
;
1512 struct agent_expr
*ax
;
1513 struct axs_value
*value
;
1515 /* We don't care about the value of the operand expression; we only
1516 care about its type. However, in the current arrangement, the
1517 only way to find an expression's type is to generate code for it.
1518 So we generate code for the operand, and then throw it away,
1519 replacing it with code that simply pushes its size. */
1520 int start
= ax
->len
;
1521 gen_expr (pc
, ax
, value
);
1523 /* Throw away the code we just generated. */
1526 ax_const_l (ax
, TYPE_LENGTH (value
->type
));
1527 value
->kind
= axs_rvalue
;
1528 value
->type
= builtin_type_int
;
1532 /* Generating bytecode from GDB expressions: general recursive thingy */
1534 /* A gen_expr function written by a Gen-X'er guy.
1535 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1537 gen_expr (pc
, ax
, value
)
1538 union exp_element
**pc
;
1539 struct agent_expr
*ax
;
1540 struct axs_value
*value
;
1542 /* Used to hold the descriptions of operand expressions. */
1543 struct axs_value value1
, value2
;
1544 enum exp_opcode op
= (*pc
)[0].opcode
;
1546 /* If we're looking at a constant expression, just push its value. */
1548 struct value
*v
= maybe_const_expr (pc
);
1552 ax_const_l (ax
, value_as_long (v
));
1553 value
->kind
= axs_rvalue
;
1554 value
->type
= check_typedef (VALUE_TYPE (v
));
1559 /* Otherwise, go ahead and generate code for it. */
1562 /* Binary arithmetic operators. */
1568 case BINOP_SUBSCRIPT
:
1569 case BINOP_BITWISE_AND
:
1570 case BINOP_BITWISE_IOR
:
1571 case BINOP_BITWISE_XOR
:
1573 gen_expr (pc
, ax
, &value1
);
1574 gen_usual_unary (ax
, &value1
);
1575 gen_expr (pc
, ax
, &value2
);
1576 gen_usual_unary (ax
, &value2
);
1577 gen_usual_arithmetic (ax
, &value1
, &value2
);
1581 gen_add (ax
, value
, &value1
, &value2
, "addition");
1584 gen_sub (ax
, value
, &value1
, &value2
);
1587 gen_binop (ax
, value
, &value1
, &value2
,
1588 aop_mul
, aop_mul
, 1, "multiplication");
1591 gen_binop (ax
, value
, &value1
, &value2
,
1592 aop_div_signed
, aop_div_unsigned
, 1, "division");
1595 gen_binop (ax
, value
, &value1
, &value2
,
1596 aop_rem_signed
, aop_rem_unsigned
, 1, "remainder");
1598 case BINOP_SUBSCRIPT
:
1599 gen_add (ax
, value
, &value1
, &value2
, "array subscripting");
1600 if (TYPE_CODE (value
->type
) != TYPE_CODE_PTR
)
1601 error ("Illegal combination of types in array subscripting.");
1602 gen_deref (ax
, value
);
1604 case BINOP_BITWISE_AND
:
1605 gen_binop (ax
, value
, &value1
, &value2
,
1606 aop_bit_and
, aop_bit_and
, 0, "bitwise and");
1609 case BINOP_BITWISE_IOR
:
1610 gen_binop (ax
, value
, &value1
, &value2
,
1611 aop_bit_or
, aop_bit_or
, 0, "bitwise or");
1614 case BINOP_BITWISE_XOR
:
1615 gen_binop (ax
, value
, &value1
, &value2
,
1616 aop_bit_xor
, aop_bit_xor
, 0, "bitwise exclusive-or");
1620 /* We should only list operators in the outer case statement
1621 that we actually handle in the inner case statement. */
1622 error ("GDB bug: ax-gdb.c (gen_expr): op case sets don't match");
1626 /* Note that we need to be a little subtle about generating code
1627 for comma. In C, we can do some optimizations here because
1628 we know the left operand is only being evaluated for effect.
1629 However, if the tracing kludge is in effect, then we always
1630 need to evaluate the left hand side fully, so that all the
1631 variables it mentions get traced. */
1634 gen_expr (pc
, ax
, &value1
);
1635 /* Don't just dispose of the left operand. We might be tracing,
1636 in which case we want to emit code to trace it if it's an
1638 gen_traced_pop (ax
, &value1
);
1639 gen_expr (pc
, ax
, value
);
1640 /* It's the consumer's responsibility to trace the right operand. */
1643 case OP_LONG
: /* some integer constant */
1645 struct type
*type
= (*pc
)[1].type
;
1646 LONGEST k
= (*pc
)[2].longconst
;
1648 gen_int_literal (ax
, value
, k
, type
);
1653 gen_var_ref (ax
, value
, (*pc
)[2].symbol
);
1659 int reg
= (int) (*pc
)[1].longconst
;
1661 value
->kind
= axs_lvalue_register
;
1663 value
->type
= REGISTER_VIRTUAL_TYPE (reg
);
1667 case OP_INTERNALVAR
:
1668 error ("GDB agent expressions cannot use convenience variables.");
1670 /* Weirdo operator: see comments for gen_repeat for details. */
1672 /* Note that gen_repeat handles its own argument evaluation. */
1674 gen_repeat (pc
, ax
, value
);
1679 struct type
*type
= (*pc
)[1].type
;
1681 gen_expr (pc
, ax
, value
);
1682 gen_cast (ax
, value
, type
);
1688 struct type
*type
= check_typedef ((*pc
)[1].type
);
1690 gen_expr (pc
, ax
, value
);
1691 /* I'm not sure I understand UNOP_MEMVAL entirely. I think
1692 it's just a hack for dealing with minsyms; you take some
1693 integer constant, pretend it's the address of an lvalue of
1694 the given type, and dereference it. */
1695 if (value
->kind
!= axs_rvalue
)
1696 /* This would be weird. */
1697 error ("GDB bug: ax-gdb.c (gen_expr): OP_MEMVAL operand isn't an rvalue???");
1699 value
->kind
= axs_lvalue_memory
;
1705 /* -FOO is equivalent to 0 - FOO. */
1706 gen_int_literal (ax
, &value1
, (LONGEST
) 0, builtin_type_int
);
1707 gen_usual_unary (ax
, &value1
); /* shouldn't do much */
1708 gen_expr (pc
, ax
, &value2
);
1709 gen_usual_unary (ax
, &value2
);
1710 gen_usual_arithmetic (ax
, &value1
, &value2
);
1711 gen_sub (ax
, value
, &value1
, &value2
);
1714 case UNOP_LOGICAL_NOT
:
1716 gen_expr (pc
, ax
, value
);
1717 gen_logical_not (ax
, value
);
1720 case UNOP_COMPLEMENT
:
1722 gen_expr (pc
, ax
, value
);
1723 gen_complement (ax
, value
);
1728 gen_expr (pc
, ax
, value
);
1729 gen_usual_unary (ax
, value
);
1730 if (TYPE_CODE (value
->type
) != TYPE_CODE_PTR
)
1731 error ("Argument of unary `*' is not a pointer.");
1732 gen_deref (ax
, value
);
1737 gen_expr (pc
, ax
, value
);
1738 gen_address_of (ax
, value
);
1743 /* Notice that gen_sizeof handles its own operand, unlike most
1744 of the other unary operator functions. This is because we
1745 have to throw away the code we generate. */
1746 gen_sizeof (pc
, ax
, value
);
1749 case STRUCTOP_STRUCT
:
1752 int length
= (*pc
)[1].longconst
;
1753 char *name
= &(*pc
)[2].string
;
1755 (*pc
) += 4 + BYTES_TO_EXP_ELEM (length
+ 1);
1756 gen_expr (pc
, ax
, value
);
1757 if (op
== STRUCTOP_STRUCT
)
1758 gen_struct_ref (ax
, value
, name
, ".", "structure or union");
1759 else if (op
== STRUCTOP_PTR
)
1760 gen_struct_ref (ax
, value
, name
, "->",
1761 "pointer to a structure or union");
1763 /* If this `if' chain doesn't handle it, then the case list
1764 shouldn't mention it, and we shouldn't be here. */
1765 error ("GDB bug: ax-gdb.c (gen_expr): unhandled struct case");
1770 error ("Attempt to use a type name as an expression.");
1773 error ("Unsupported operator in expression.");
1779 #if 0 /* not used */
1780 /* Generating bytecode from GDB expressions: driver */
1782 /* Given a GDB expression EXPR, produce a string of agent bytecode
1783 which computes its value. Return the agent expression, and set
1784 *VALUE to describe its type, and whether it's an lvalue or rvalue. */
1786 expr_to_agent (expr
, value
)
1787 struct expression
*expr
;
1788 struct axs_value
*value
;
1790 struct cleanup
*old_chain
= 0;
1791 struct agent_expr
*ax
= new_agent_expr ();
1792 union exp_element
*pc
;
1794 old_chain
= make_cleanup ((make_cleanup_func
) free_agent_expr
, ax
);
1798 gen_expr (&pc
, ax
, value
);
1800 /* We have successfully built the agent expr, so cancel the cleanup
1801 request. If we add more cleanups that we always want done, this
1802 will have to get more complicated. */
1803 discard_cleanups (old_chain
);
1808 /* Given a GDB expression EXPR denoting an lvalue in memory, produce a
1809 string of agent bytecode which will leave its address and size on
1810 the top of stack. Return the agent expression.
1812 Not sure this function is useful at all. */
1814 expr_to_address_and_size (expr
)
1815 struct expression
*expr
;
1817 struct axs_value value
;
1818 struct agent_expr
*ax
= expr_to_agent (expr
, &value
);
1820 /* Complain if the result is not a memory lvalue. */
1821 if (value
.kind
!= axs_lvalue_memory
)
1823 free_agent_expr (ax
);
1824 error ("Expression does not denote an object in memory.");
1827 /* Push the object's size on the stack. */
1828 ax_const_l (ax
, TYPE_LENGTH (value
.type
));
1834 /* Given a GDB expression EXPR, return bytecode to trace its value.
1835 The result will use the `trace' and `trace_quick' bytecodes to
1836 record the value of all memory touched by the expression. The
1837 caller can then use the ax_reqs function to discover which
1838 registers it relies upon. */
1840 gen_trace_for_expr (scope
, expr
)
1842 struct expression
*expr
;
1844 struct cleanup
*old_chain
= 0;
1845 struct agent_expr
*ax
= new_agent_expr (scope
);
1846 union exp_element
*pc
;
1847 struct axs_value value
;
1849 old_chain
= make_cleanup ((make_cleanup_func
) free_agent_expr
, ax
);
1853 gen_expr (&pc
, ax
, &value
);
1855 /* Make sure we record the final object, and get rid of it. */
1856 gen_traced_pop (ax
, &value
);
1858 /* Oh, and terminate. */
1859 ax_simple (ax
, aop_end
);
1861 /* We have successfully built the agent expr, so cancel the cleanup
1862 request. If we add more cleanups that we always want done, this
1863 will have to get more complicated. */
1864 discard_cleanups (old_chain
);
1870 /* The "agent" command, for testing: compile and disassemble an expression. */
1873 print_axs_value (f
, value
)
1875 struct axs_value
*value
;
1877 switch (value
->kind
)
1880 fputs_filtered ("rvalue", f
);
1883 case axs_lvalue_memory
:
1884 fputs_filtered ("memory lvalue", f
);
1887 case axs_lvalue_register
:
1888 fprintf_filtered (f
, "register %d lvalue", value
->u
.reg
);
1892 fputs_filtered (" : ", f
);
1893 type_print (value
->type
, "", f
, -1);
1898 agent_command (exp
, from_tty
)
1902 struct cleanup
*old_chain
= 0;
1903 struct expression
*expr
;
1904 struct agent_expr
*agent
;
1905 struct agent_reqs reqs
;
1906 struct frame_info
*fi
= get_current_frame (); /* need current scope */
1908 /* We don't deal with overlay debugging at the moment. We need to
1909 think more carefully about this. If you copy this code into
1910 another command, change the error message; the user shouldn't
1911 have to know anything about agent expressions. */
1912 if (overlay_debugging
)
1913 error ("GDB can't do agent expression translation with overlays.");
1916 error_no_arg ("expression to translate");
1918 expr
= parse_expression (exp
);
1919 old_chain
= make_cleanup ((make_cleanup_func
) free_current_contents
, &expr
);
1920 agent
= gen_trace_for_expr (fi
->pc
, expr
);
1921 make_cleanup ((make_cleanup_func
) free_agent_expr
, agent
);
1922 ax_print (gdb_stdout
, agent
);
1923 ax_reqs (agent
, &reqs
);
1925 do_cleanups (old_chain
);
1930 /* Initialization code. */
1932 _initialize_ax_gdb ()
1934 struct cmd_list_element
*c
;
1936 add_cmd ("agent", class_maintenance
, agent_command
,
1937 "Translate an expression into remote agent bytecode.",