* Sanitization fixes to retain new files.
[binutils-gdb.git] / gdb / irix5-nat.c
blob88bbf96e102e6154f6af6e7040560b413f853ca7
1 /* Native support for the SGI Iris running IRIX version 5, for GDB.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
5 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
6 Implemented for Irix 4.x by Garrett A. Wollman.
7 Modified for Irix 5.x by Ian Lance Taylor.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 #include "defs.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
30 #include "gdb_string.h"
31 #include <sys/time.h>
32 #include <sys/procfs.h>
33 #include <setjmp.h> /* For JB_XXX. */
35 static void
36 fetch_core_registers PARAMS ((char *, unsigned int, int, CORE_ADDR));
38 /* Size of elements in jmpbuf */
40 #define JB_ELEMENT_SIZE 4
43 * See the comment in m68k-tdep.c regarding the utility of these functions.
45 * These definitions are from the MIPS SVR4 ABI, so they may work for
46 * any MIPS SVR4 target.
49 void
50 supply_gregset (gregsetp)
51 gregset_t *gregsetp;
53 register int regi;
54 register greg_t *regp = &(*gregsetp)[0];
55 int gregoff = sizeof (greg_t) - MIPS_REGSIZE;
56 static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
58 for(regi = 0; regi <= CTX_RA; regi++)
59 supply_register (regi, (char *)(regp + regi) + gregoff);
61 supply_register (PC_REGNUM, (char *)(regp + CTX_EPC) + gregoff);
62 supply_register (HI_REGNUM, (char *)(regp + CTX_MDHI) + gregoff);
63 supply_register (LO_REGNUM, (char *)(regp + CTX_MDLO) + gregoff);
64 supply_register (CAUSE_REGNUM, (char *)(regp + CTX_CAUSE) + gregoff);
66 /* Fill inaccessible registers with zero. */
67 supply_register (BADVADDR_REGNUM, zerobuf);
70 void
71 fill_gregset (gregsetp, regno)
72 gregset_t *gregsetp;
73 int regno;
75 int regi;
76 register greg_t *regp = &(*gregsetp)[0];
78 /* Under Irix6, if GDB is built with N32 ABI and is debugging an O32
79 executable, we have to sign extend the registers to 64 bits before
80 filling in the gregset structure. */
82 for (regi = 0; regi <= CTX_RA; regi++)
83 if ((regno == -1) || (regno == regi))
84 *(regp + regi) =
85 extract_signed_integer (&registers[REGISTER_BYTE (regi)],
86 REGISTER_RAW_SIZE (regi));
88 if ((regno == -1) || (regno == PC_REGNUM))
89 *(regp + CTX_EPC) =
90 extract_signed_integer (&registers[REGISTER_BYTE (PC_REGNUM)],
91 REGISTER_RAW_SIZE (PC_REGNUM));
93 if ((regno == -1) || (regno == CAUSE_REGNUM))
94 *(regp + CTX_CAUSE) =
95 extract_signed_integer (&registers[REGISTER_BYTE (CAUSE_REGNUM)],
96 REGISTER_RAW_SIZE (CAUSE_REGNUM));
98 if ((regno == -1) || (regno == HI_REGNUM))
99 *(regp + CTX_MDHI) =
100 extract_signed_integer (&registers[REGISTER_BYTE (HI_REGNUM)],
101 REGISTER_RAW_SIZE (HI_REGNUM));
103 if ((regno == -1) || (regno == LO_REGNUM))
104 *(regp + CTX_MDLO) =
105 extract_signed_integer (&registers[REGISTER_BYTE (LO_REGNUM)],
106 REGISTER_RAW_SIZE (LO_REGNUM));
110 * Now we do the same thing for floating-point registers.
111 * We don't bother to condition on FP0_REGNUM since any
112 * reasonable MIPS configuration has an R3010 in it.
114 * Again, see the comments in m68k-tdep.c.
117 void
118 supply_fpregset (fpregsetp)
119 fpregset_t *fpregsetp;
121 register int regi;
122 static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
124 /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
126 for (regi = 0; regi < 32; regi++)
127 supply_register (FP0_REGNUM + regi,
128 (char *)&fpregsetp->fp_r.fp_regs[regi]);
130 supply_register (FCRCS_REGNUM, (char *)&fpregsetp->fp_csr);
132 /* FIXME: how can we supply FCRIR_REGNUM? SGI doesn't tell us. */
133 supply_register (FCRIR_REGNUM, zerobuf);
136 void
137 fill_fpregset (fpregsetp, regno)
138 fpregset_t *fpregsetp;
139 int regno;
141 int regi;
142 char *from, *to;
144 /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
146 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
148 if ((regno == -1) || (regno == regi))
150 from = (char *) &registers[REGISTER_BYTE (regi)];
151 to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
152 memcpy(to, from, REGISTER_RAW_SIZE (regi));
156 if ((regno == -1) || (regno == FCRCS_REGNUM))
157 fpregsetp->fp_csr = *(unsigned *) &registers[REGISTER_BYTE(FCRCS_REGNUM)];
161 /* Figure out where the longjmp will land.
162 We expect the first arg to be a pointer to the jmp_buf structure from which
163 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
164 This routine returns true on success. */
167 get_longjmp_target (pc)
168 CORE_ADDR *pc;
170 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
171 CORE_ADDR jb_addr;
173 jb_addr = read_register (A0_REGNUM);
175 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
176 TARGET_PTR_BIT / TARGET_CHAR_BIT))
177 return 0;
179 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
181 return 1;
184 static void
185 fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
186 char *core_reg_sect;
187 unsigned core_reg_size;
188 int which; /* Unused */
189 CORE_ADDR reg_addr; /* Unused */
191 if (core_reg_size == REGISTER_BYTES)
193 memcpy ((char *)registers, core_reg_sect, core_reg_size);
195 else if (MIPS_REGSIZE == 4 &&
196 core_reg_size == (2 * MIPS_REGSIZE) * NUM_REGS)
198 /* This is a core file from a N32 executable, 64 bits are saved
199 for all registers. */
200 char *srcp = core_reg_sect;
201 char *dstp = registers;
202 int regno;
204 for (regno = 0; regno < NUM_REGS; regno++)
206 if (regno >= FP0_REGNUM && regno < (FP0_REGNUM + 32))
208 /* FIXME, this is wrong, N32 has 64 bit FP regs, but GDB
209 currently assumes that they are 32 bit. */
210 *dstp++ = *srcp++;
211 *dstp++ = *srcp++;
212 *dstp++ = *srcp++;
213 *dstp++ = *srcp++;
214 if (REGISTER_RAW_SIZE(regno) == 4)
216 /* copying 4 bytes from eight bytes?
217 I don't see how this can be right... */
218 srcp += 4;
220 else
222 /* copy all 8 bytes (sizeof(double)) */
223 *dstp++ = *srcp++;
224 *dstp++ = *srcp++;
225 *dstp++ = *srcp++;
226 *dstp++ = *srcp++;
229 else
231 srcp += 4;
232 *dstp++ = *srcp++;
233 *dstp++ = *srcp++;
234 *dstp++ = *srcp++;
235 *dstp++ = *srcp++;
239 else
241 warning ("wrong size gregset struct in core file");
242 return;
245 registers_fetched ();
248 /* Irix 5 uses what appears to be a unique form of shared library
249 support. This is a copy of solib.c modified for Irix 5. */
250 /* FIXME: Most of this code could be merged with osfsolib.c and solib.c
251 by using next_link_map_member and xfer_link_map_member in solib.c. */
253 #include <sys/types.h>
254 #include <signal.h>
255 #include <sys/param.h>
256 #include <fcntl.h>
258 /* <obj.h> includes <sym.h> and <symconst.h>, which causes conflicts
259 with our versions of those files included by tm-mips.h. Prevent
260 <obj.h> from including them with some appropriate defines. */
261 #define __SYM_H__
262 #define __SYMCONST_H__
263 #include <obj.h>
264 #ifdef HAVE_OBJLIST_H
265 #include <objlist.h>
266 #endif
268 #ifdef NEW_OBJ_INFO_MAGIC
269 #define HANDLE_NEW_OBJ_LIST
270 #endif
272 #include "symtab.h"
273 #include "bfd.h"
274 #include "symfile.h"
275 #include "objfiles.h"
276 #include "command.h"
277 #include "frame.h"
278 #include "gnu-regex.h"
279 #include "inferior.h"
280 #include "language.h"
281 #include "gdbcmd.h"
283 /* The symbol which starts off the list of shared libraries. */
284 #define DEBUG_BASE "__rld_obj_head"
286 /* Irix 6.x introduces a new variant of object lists.
287 To be able to debug O32 executables under Irix 6, we have to handle both
288 variants. */
290 typedef enum
292 OBJ_LIST_OLD, /* Pre Irix 6.x object list. */
293 OBJ_LIST_32, /* 32 Bit Elf32_Obj_Info. */
294 OBJ_LIST_64 /* 64 Bit Elf64_Obj_Info, FIXME not yet implemented. */
295 } obj_list_variant;
297 /* Define our own link_map structure.
298 This will help to share code with osfsolib.c and solib.c. */
300 struct link_map {
301 obj_list_variant l_variant; /* which variant of object list */
302 CORE_ADDR l_lladdr; /* addr in inferior list was read from */
303 CORE_ADDR l_next; /* address of next object list entry */
306 /* Irix 5 shared objects are pre-linked to particular addresses
307 although the dynamic linker may have to relocate them if the
308 address ranges of the libraries used by the main program clash.
309 The offset is the difference between the address where the object
310 is mapped and the binding address of the shared library. */
311 #define LM_OFFSET(so) ((so) -> offset)
312 /* Loaded address of shared library. */
313 #define LM_ADDR(so) ((so) -> lmstart)
315 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
317 struct so_list {
318 struct so_list *next; /* next structure in linked list */
319 struct link_map lm;
320 CORE_ADDR offset; /* prelink to load address offset */
321 char *so_name; /* shared object lib name */
322 CORE_ADDR lmstart; /* lower addr bound of mapped object */
323 CORE_ADDR lmend; /* upper addr bound of mapped object */
324 char symbols_loaded; /* flag: symbols read in yet? */
325 char from_tty; /* flag: print msgs? */
326 struct objfile *objfile; /* objfile for loaded lib */
327 struct section_table *sections;
328 struct section_table *sections_end;
329 struct section_table *textsection;
330 bfd *abfd;
333 static struct so_list *so_list_head; /* List of known shared objects */
334 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
335 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
337 /* Local function prototypes */
339 static void
340 sharedlibrary_command PARAMS ((char *, int));
342 static int
343 enable_break PARAMS ((void));
345 static int
346 disable_break PARAMS ((void));
348 static void
349 info_sharedlibrary_command PARAMS ((char *, int));
351 static int
352 symbol_add_stub PARAMS ((char *));
354 static struct so_list *
355 find_solib PARAMS ((struct so_list *));
357 static struct link_map *
358 first_link_map_member PARAMS ((void));
360 static struct link_map *
361 next_link_map_member PARAMS ((struct so_list *));
363 static void
364 xfer_link_map_member PARAMS ((struct so_list *, struct link_map *));
366 static CORE_ADDR
367 locate_base PARAMS ((void));
369 static int
370 solib_map_sections PARAMS ((char *));
374 LOCAL FUNCTION
376 solib_map_sections -- open bfd and build sections for shared lib
378 SYNOPSIS
380 static int solib_map_sections (struct so_list *so)
382 DESCRIPTION
384 Given a pointer to one of the shared objects in our list
385 of mapped objects, use the recorded name to open a bfd
386 descriptor for the object, build a section table, and then
387 relocate all the section addresses by the base address at
388 which the shared object was mapped.
390 FIXMES
392 In most (all?) cases the shared object file name recorded in the
393 dynamic linkage tables will be a fully qualified pathname. For
394 cases where it isn't, do we really mimic the systems search
395 mechanism correctly in the below code (particularly the tilde
396 expansion stuff?).
399 static int
400 solib_map_sections (arg)
401 char *arg;
403 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
404 char *filename;
405 char *scratch_pathname;
406 int scratch_chan;
407 struct section_table *p;
408 struct cleanup *old_chain;
409 bfd *abfd;
411 filename = tilde_expand (so -> so_name);
412 old_chain = make_cleanup (free, filename);
414 scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
415 &scratch_pathname);
416 if (scratch_chan < 0)
418 scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
419 O_RDONLY, 0, &scratch_pathname);
421 if (scratch_chan < 0)
423 perror_with_name (filename);
425 /* Leave scratch_pathname allocated. abfd->name will point to it. */
427 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
428 if (!abfd)
430 close (scratch_chan);
431 error ("Could not open `%s' as an executable file: %s",
432 scratch_pathname, bfd_errmsg (bfd_get_error ()));
434 /* Leave bfd open, core_xfer_memory and "info files" need it. */
435 so -> abfd = abfd;
436 abfd -> cacheable = true;
438 if (!bfd_check_format (abfd, bfd_object))
440 error ("\"%s\": not in executable format: %s.",
441 scratch_pathname, bfd_errmsg (bfd_get_error ()));
443 if (build_section_table (abfd, &so -> sections, &so -> sections_end))
445 error ("Can't find the file sections in `%s': %s",
446 bfd_get_filename (exec_bfd), bfd_errmsg (bfd_get_error ()));
449 for (p = so -> sections; p < so -> sections_end; p++)
451 /* Relocate the section binding addresses as recorded in the shared
452 object's file by the offset to get the address to which the
453 object was actually mapped. */
454 p -> addr += LM_OFFSET (so);
455 p -> endaddr += LM_OFFSET (so);
456 so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend);
457 if (STREQ (p -> the_bfd_section -> name, ".text"))
459 so -> textsection = p;
463 /* Free the file names, close the file now. */
464 do_cleanups (old_chain);
466 return (1);
471 LOCAL FUNCTION
473 locate_base -- locate the base address of dynamic linker structs
475 SYNOPSIS
477 CORE_ADDR locate_base (void)
479 DESCRIPTION
481 For both the SunOS and SVR4 shared library implementations, if the
482 inferior executable has been linked dynamically, there is a single
483 address somewhere in the inferior's data space which is the key to
484 locating all of the dynamic linker's runtime structures. This
485 address is the value of the symbol defined by the macro DEBUG_BASE.
486 The job of this function is to find and return that address, or to
487 return 0 if there is no such address (the executable is statically
488 linked for example).
490 For SunOS, the job is almost trivial, since the dynamic linker and
491 all of it's structures are statically linked to the executable at
492 link time. Thus the symbol for the address we are looking for has
493 already been added to the minimal symbol table for the executable's
494 objfile at the time the symbol file's symbols were read, and all we
495 have to do is look it up there. Note that we explicitly do NOT want
496 to find the copies in the shared library.
498 The SVR4 version is much more complicated because the dynamic linker
499 and it's structures are located in the shared C library, which gets
500 run as the executable's "interpreter" by the kernel. We have to go
501 to a lot more work to discover the address of DEBUG_BASE. Because
502 of this complexity, we cache the value we find and return that value
503 on subsequent invocations. Note there is no copy in the executable
504 symbol tables.
506 Irix 5 is basically like SunOS.
508 Note that we can assume nothing about the process state at the time
509 we need to find this address. We may be stopped on the first instruc-
510 tion of the interpreter (C shared library), the first instruction of
511 the executable itself, or somewhere else entirely (if we attached
512 to the process for example).
516 static CORE_ADDR
517 locate_base ()
519 struct minimal_symbol *msymbol;
520 CORE_ADDR address = 0;
522 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
523 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
525 address = SYMBOL_VALUE_ADDRESS (msymbol);
527 return (address);
532 LOCAL FUNCTION
534 first_link_map_member -- locate first member in dynamic linker's map
536 SYNOPSIS
538 static struct link_map *first_link_map_member (void)
540 DESCRIPTION
542 Read in a copy of the first member in the inferior's dynamic
543 link map from the inferior's dynamic linker structures, and return
544 a pointer to the link map descriptor.
547 static struct link_map *
548 first_link_map_member ()
550 struct obj_list *listp;
551 struct obj_list list_old;
552 struct link_map *lm;
553 static struct link_map first_lm;
554 CORE_ADDR lladdr;
555 CORE_ADDR next_lladdr;
557 /* We have not already read in the dynamic linking structures
558 from the inferior, lookup the address of the base structure. */
559 debug_base = locate_base ();
560 if (debug_base == 0)
561 return NULL;
563 /* Get address of first list entry. */
564 read_memory (debug_base, (char *) &listp, sizeof (struct obj_list *));
566 if (listp == NULL)
567 return NULL;
569 /* Get first list entry. */
570 lladdr = (CORE_ADDR) listp;
571 read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
573 /* The first entry in the list is the object file we are debugging,
574 so skip it. */
575 next_lladdr = (CORE_ADDR) list_old.next;
577 #ifdef HANDLE_NEW_OBJ_LIST
578 if (list_old.data == NEW_OBJ_INFO_MAGIC)
580 Elf32_Obj_Info list_32;
582 read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
583 if (list_32.oi_size != sizeof (Elf32_Obj_Info))
584 return NULL;
585 next_lladdr = (CORE_ADDR) list_32.oi_next;
587 #endif
589 if (next_lladdr == 0)
590 return NULL;
592 first_lm.l_lladdr = next_lladdr;
593 lm = &first_lm;
594 return lm;
599 LOCAL FUNCTION
601 next_link_map_member -- locate next member in dynamic linker's map
603 SYNOPSIS
605 static struct link_map *next_link_map_member (so_list_ptr)
607 DESCRIPTION
609 Read in a copy of the next member in the inferior's dynamic
610 link map from the inferior's dynamic linker structures, and return
611 a pointer to the link map descriptor.
614 static struct link_map *
615 next_link_map_member (so_list_ptr)
616 struct so_list *so_list_ptr;
618 struct link_map *lm = &so_list_ptr -> lm;
619 CORE_ADDR next_lladdr = lm -> l_next;
620 static struct link_map next_lm;
622 if (next_lladdr == 0)
624 /* We have hit the end of the list, so check to see if any were
625 added, but be quiet if we can't read from the target any more. */
626 int status = 0;
628 if (lm -> l_variant == OBJ_LIST_OLD)
630 struct obj_list list_old;
632 status = target_read_memory (lm -> l_lladdr,
633 (char *) &list_old,
634 sizeof (struct obj_list));
635 next_lladdr = (CORE_ADDR) list_old.next;
637 #ifdef HANDLE_NEW_OBJ_LIST
638 else if (lm -> l_variant == OBJ_LIST_32)
640 Elf32_Obj_Info list_32;
641 status = target_read_memory (lm -> l_lladdr,
642 (char *) &list_32,
643 sizeof (Elf32_Obj_Info));
644 next_lladdr = (CORE_ADDR) list_32.oi_next;
646 #endif
648 if (status != 0 || next_lladdr == 0)
649 return NULL;
652 next_lm.l_lladdr = next_lladdr;
653 lm = &next_lm;
654 return lm;
659 LOCAL FUNCTION
661 xfer_link_map_member -- set local variables from dynamic linker's map
663 SYNOPSIS
665 static void xfer_link_map_member (so_list_ptr, lm)
667 DESCRIPTION
669 Read in a copy of the requested member in the inferior's dynamic
670 link map from the inferior's dynamic linker structures, and fill
671 in the necessary so_list_ptr elements.
674 static void
675 xfer_link_map_member (so_list_ptr, lm)
676 struct so_list *so_list_ptr;
677 struct link_map *lm;
679 struct obj_list list_old;
680 CORE_ADDR lladdr = lm -> l_lladdr;
681 struct link_map *new_lm = &so_list_ptr -> lm;
682 int errcode;
684 read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
686 new_lm -> l_variant = OBJ_LIST_OLD;
687 new_lm -> l_lladdr = lladdr;
688 new_lm -> l_next = (CORE_ADDR) list_old.next;
690 #ifdef HANDLE_NEW_OBJ_LIST
691 if (list_old.data == NEW_OBJ_INFO_MAGIC)
693 Elf32_Obj_Info list_32;
695 read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
696 if (list_32.oi_size != sizeof (Elf32_Obj_Info))
697 return;
698 new_lm -> l_variant = OBJ_LIST_32;
699 new_lm -> l_next = (CORE_ADDR) list_32.oi_next;
701 target_read_string ((CORE_ADDR) list_32.oi_pathname,
702 &so_list_ptr -> so_name,
703 list_32.oi_pathname_len + 1, &errcode);
704 if (errcode != 0)
705 memory_error (errcode, (CORE_ADDR) list_32.oi_pathname);
707 LM_ADDR (so_list_ptr) = (CORE_ADDR) list_32.oi_ehdr;
708 LM_OFFSET (so_list_ptr) =
709 (CORE_ADDR) list_32.oi_ehdr - (CORE_ADDR) list_32.oi_orig_ehdr;
711 else
712 #endif
714 #if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32
715 /* If we are compiling GDB under N32 ABI, the alignments in
716 the obj struct are different from the O32 ABI and we will get
717 wrong values when accessing the struct.
718 As a workaround we use fixed values which are good for
719 Irix 6.2. */
720 char buf[432];
722 read_memory ((CORE_ADDR) list_old.data, buf, sizeof (buf));
724 target_read_string (extract_address (&buf[236], 4),
725 &so_list_ptr -> so_name,
726 INT_MAX, &errcode);
727 if (errcode != 0)
728 memory_error (errcode, extract_address (&buf[236], 4));
730 LM_ADDR (so_list_ptr) = extract_address (&buf[196], 4);
731 LM_OFFSET (so_list_ptr) =
732 extract_address (&buf[196], 4) - extract_address (&buf[248], 4);
733 #else
734 struct obj obj_old;
736 read_memory ((CORE_ADDR) list_old.data, (char *) &obj_old,
737 sizeof (struct obj));
739 target_read_string ((CORE_ADDR) obj_old.o_path,
740 &so_list_ptr -> so_name,
741 INT_MAX, &errcode);
742 if (errcode != 0)
743 memory_error (errcode, (CORE_ADDR) obj_old.o_path);
745 LM_ADDR (so_list_ptr) = (CORE_ADDR) obj_old.o_praw;
746 LM_OFFSET (so_list_ptr) =
747 (CORE_ADDR) obj_old.o_praw - obj_old.o_base_address;
748 #endif
751 catch_errors (solib_map_sections, (char *) so_list_ptr,
752 "Error while mapping shared library sections:\n",
753 RETURN_MASK_ALL);
759 LOCAL FUNCTION
761 find_solib -- step through list of shared objects
763 SYNOPSIS
765 struct so_list *find_solib (struct so_list *so_list_ptr)
767 DESCRIPTION
769 This module contains the routine which finds the names of any
770 loaded "images" in the current process. The argument in must be
771 NULL on the first call, and then the returned value must be passed
772 in on subsequent calls. This provides the capability to "step" down
773 the list of loaded objects. On the last object, a NULL value is
774 returned.
777 static struct so_list *
778 find_solib (so_list_ptr)
779 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
781 struct so_list *so_list_next = NULL;
782 struct link_map *lm = NULL;
783 struct so_list *new;
785 if (so_list_ptr == NULL)
787 /* We are setting up for a new scan through the loaded images. */
788 if ((so_list_next = so_list_head) == NULL)
790 /* Find the first link map list member. */
791 lm = first_link_map_member ();
794 else
796 /* We have been called before, and are in the process of walking
797 the shared library list. Advance to the next shared object. */
798 lm = next_link_map_member (so_list_ptr);
799 so_list_next = so_list_ptr -> next;
801 if ((so_list_next == NULL) && (lm != NULL))
803 new = (struct so_list *) xmalloc (sizeof (struct so_list));
804 memset ((char *) new, 0, sizeof (struct so_list));
805 /* Add the new node as the next node in the list, or as the root
806 node if this is the first one. */
807 if (so_list_ptr != NULL)
809 so_list_ptr -> next = new;
811 else
813 so_list_head = new;
815 so_list_next = new;
816 xfer_link_map_member (new, lm);
818 return (so_list_next);
821 /* A small stub to get us past the arg-passing pinhole of catch_errors. */
823 static int
824 symbol_add_stub (arg)
825 char *arg;
827 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
828 CORE_ADDR text_addr = 0;
830 if (so -> textsection)
831 text_addr = so -> textsection -> addr;
832 else if (so -> abfd != NULL)
834 asection *lowest_sect;
836 /* If we didn't find a mapped non zero sized .text section, set up
837 text_addr so that the relocation in symbol_file_add does no harm. */
839 lowest_sect = bfd_get_section_by_name (so -> abfd, ".text");
840 if (lowest_sect == NULL)
841 bfd_map_over_sections (so -> abfd, find_lowest_section,
842 (PTR) &lowest_sect);
843 if (lowest_sect)
844 text_addr = bfd_section_vma (so -> abfd, lowest_sect) + LM_OFFSET (so);
847 so -> objfile = symbol_file_add (so -> so_name, so -> from_tty,
848 text_addr,
849 0, 0, 0);
850 return (1);
855 GLOBAL FUNCTION
857 solib_add -- add a shared library file to the symtab and section list
859 SYNOPSIS
861 void solib_add (char *arg_string, int from_tty,
862 struct target_ops *target)
864 DESCRIPTION
868 void
869 solib_add (arg_string, from_tty, target)
870 char *arg_string;
871 int from_tty;
872 struct target_ops *target;
874 register struct so_list *so = NULL; /* link map state variable */
876 /* Last shared library that we read. */
877 struct so_list *so_last = NULL;
879 char *re_err;
880 int count;
881 int old;
883 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
885 error ("Invalid regexp: %s", re_err);
888 /* Add the shared library sections to the section table of the
889 specified target, if any. */
890 if (target)
892 /* Count how many new section_table entries there are. */
893 so = NULL;
894 count = 0;
895 while ((so = find_solib (so)) != NULL)
897 if (so -> so_name[0])
899 count += so -> sections_end - so -> sections;
903 if (count)
905 int update_coreops;
907 /* We must update the to_sections field in the core_ops structure
908 here, otherwise we dereference a potential dangling pointer
909 for each call to target_read/write_memory within this routine. */
910 update_coreops = core_ops.to_sections == target->to_sections;
912 /* Reallocate the target's section table including the new size. */
913 if (target -> to_sections)
915 old = target -> to_sections_end - target -> to_sections;
916 target -> to_sections = (struct section_table *)
917 xrealloc ((char *)target -> to_sections,
918 (sizeof (struct section_table)) * (count + old));
920 else
922 old = 0;
923 target -> to_sections = (struct section_table *)
924 xmalloc ((sizeof (struct section_table)) * count);
926 target -> to_sections_end = target -> to_sections + (count + old);
928 /* Update the to_sections field in the core_ops structure
929 if needed. */
930 if (update_coreops)
932 core_ops.to_sections = target->to_sections;
933 core_ops.to_sections_end = target->to_sections_end;
936 /* Add these section table entries to the target's table. */
937 while ((so = find_solib (so)) != NULL)
939 if (so -> so_name[0])
941 count = so -> sections_end - so -> sections;
942 memcpy ((char *) (target -> to_sections + old),
943 so -> sections,
944 (sizeof (struct section_table)) * count);
945 old += count;
951 /* Now add the symbol files. */
952 while ((so = find_solib (so)) != NULL)
954 if (so -> so_name[0] && re_exec (so -> so_name))
956 so -> from_tty = from_tty;
957 if (so -> symbols_loaded)
959 if (from_tty)
961 printf_unfiltered ("Symbols already loaded for %s\n", so -> so_name);
964 else if (catch_errors
965 (symbol_add_stub, (char *) so,
966 "Error while reading shared library symbols:\n",
967 RETURN_MASK_ALL))
969 so_last = so;
970 so -> symbols_loaded = 1;
975 /* Getting new symbols may change our opinion about what is
976 frameless. */
977 if (so_last)
978 reinit_frame_cache ();
983 LOCAL FUNCTION
985 info_sharedlibrary_command -- code for "info sharedlibrary"
987 SYNOPSIS
989 static void info_sharedlibrary_command ()
991 DESCRIPTION
993 Walk through the shared library list and print information
994 about each attached library.
997 static void
998 info_sharedlibrary_command (ignore, from_tty)
999 char *ignore;
1000 int from_tty;
1002 register struct so_list *so = NULL; /* link map state variable */
1003 int header_done = 0;
1005 if (exec_bfd == NULL)
1007 printf_unfiltered ("No exec file.\n");
1008 return;
1010 while ((so = find_solib (so)) != NULL)
1012 if (so -> so_name[0])
1014 if (!header_done)
1016 printf_unfiltered("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
1017 "Shared Object Library");
1018 header_done++;
1020 printf_unfiltered ("%-12s",
1021 local_hex_string_custom ((unsigned long) LM_ADDR (so),
1022 "08l"));
1023 printf_unfiltered ("%-12s",
1024 local_hex_string_custom ((unsigned long) so -> lmend,
1025 "08l"));
1026 printf_unfiltered ("%-12s", so -> symbols_loaded ? "Yes" : "No");
1027 printf_unfiltered ("%s\n", so -> so_name);
1030 if (so_list_head == NULL)
1032 printf_unfiltered ("No shared libraries loaded at this time.\n");
1038 GLOBAL FUNCTION
1040 solib_address -- check to see if an address is in a shared lib
1042 SYNOPSIS
1044 char *solib_address (CORE_ADDR address)
1046 DESCRIPTION
1048 Provides a hook for other gdb routines to discover whether or
1049 not a particular address is within the mapped address space of
1050 a shared library. Any address between the base mapping address
1051 and the first address beyond the end of the last mapping, is
1052 considered to be within the shared library address space, for
1053 our purposes.
1055 For example, this routine is called at one point to disable
1056 breakpoints which are in shared libraries that are not currently
1057 mapped in.
1060 char *
1061 solib_address (address)
1062 CORE_ADDR address;
1064 register struct so_list *so = 0; /* link map state variable */
1066 while ((so = find_solib (so)) != NULL)
1068 if (so -> so_name[0])
1070 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
1071 (address < (CORE_ADDR) so -> lmend))
1072 return (so->so_name);
1075 return (0);
1078 /* Called by free_all_symtabs */
1080 void
1081 clear_solib()
1083 struct so_list *next;
1084 char *bfd_filename;
1086 while (so_list_head)
1088 if (so_list_head -> sections)
1090 free ((PTR)so_list_head -> sections);
1092 if (so_list_head -> abfd)
1094 bfd_filename = bfd_get_filename (so_list_head -> abfd);
1095 if (!bfd_close (so_list_head -> abfd))
1096 warning ("cannot close \"%s\": %s",
1097 bfd_filename, bfd_errmsg (bfd_get_error ()));
1099 else
1100 /* This happens for the executable on SVR4. */
1101 bfd_filename = NULL;
1103 next = so_list_head -> next;
1104 if (bfd_filename)
1105 free ((PTR)bfd_filename);
1106 free (so_list_head->so_name);
1107 free ((PTR)so_list_head);
1108 so_list_head = next;
1110 debug_base = 0;
1115 LOCAL FUNCTION
1117 disable_break -- remove the "mapping changed" breakpoint
1119 SYNOPSIS
1121 static int disable_break ()
1123 DESCRIPTION
1125 Removes the breakpoint that gets hit when the dynamic linker
1126 completes a mapping change.
1130 static int
1131 disable_break ()
1133 int status = 1;
1136 /* Note that breakpoint address and original contents are in our address
1137 space, so we just need to write the original contents back. */
1139 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1141 status = 0;
1144 /* For the SVR4 version, we always know the breakpoint address. For the
1145 SunOS version we don't know it until the above code is executed.
1146 Grumble if we are stopped anywhere besides the breakpoint address. */
1148 if (stop_pc != breakpoint_addr)
1150 warning ("stopped at unknown breakpoint while handling shared libraries");
1153 return (status);
1158 LOCAL FUNCTION
1160 enable_break -- arrange for dynamic linker to hit breakpoint
1162 SYNOPSIS
1164 int enable_break (void)
1166 DESCRIPTION
1168 This functions inserts a breakpoint at the entry point of the
1169 main executable, where all shared libraries are mapped in.
1172 static int
1173 enable_break ()
1175 if (symfile_objfile != NULL
1176 && target_insert_breakpoint (symfile_objfile->ei.entry_point,
1177 shadow_contents) == 0)
1179 breakpoint_addr = symfile_objfile->ei.entry_point;
1180 return 1;
1183 return 0;
1188 GLOBAL FUNCTION
1190 solib_create_inferior_hook -- shared library startup support
1192 SYNOPSIS
1194 void solib_create_inferior_hook()
1196 DESCRIPTION
1198 When gdb starts up the inferior, it nurses it along (through the
1199 shell) until it is ready to execute it's first instruction. At this
1200 point, this function gets called via expansion of the macro
1201 SOLIB_CREATE_INFERIOR_HOOK.
1203 For SunOS executables, this first instruction is typically the
1204 one at "_start", or a similar text label, regardless of whether
1205 the executable is statically or dynamically linked. The runtime
1206 startup code takes care of dynamically linking in any shared
1207 libraries, once gdb allows the inferior to continue.
1209 For SVR4 executables, this first instruction is either the first
1210 instruction in the dynamic linker (for dynamically linked
1211 executables) or the instruction at "start" for statically linked
1212 executables. For dynamically linked executables, the system
1213 first exec's /lib/libc.so.N, which contains the dynamic linker,
1214 and starts it running. The dynamic linker maps in any needed
1215 shared libraries, maps in the actual user executable, and then
1216 jumps to "start" in the user executable.
1218 For both SunOS shared libraries, and SVR4 shared libraries, we
1219 can arrange to cooperate with the dynamic linker to discover the
1220 names of shared libraries that are dynamically linked, and the
1221 base addresses to which they are linked.
1223 This function is responsible for discovering those names and
1224 addresses, and saving sufficient information about them to allow
1225 their symbols to be read at a later time.
1227 FIXME
1229 Between enable_break() and disable_break(), this code does not
1230 properly handle hitting breakpoints which the user might have
1231 set in the startup code or in the dynamic linker itself. Proper
1232 handling will probably have to wait until the implementation is
1233 changed to use the "breakpoint handler function" method.
1235 Also, what if child has exit()ed? Must exit loop somehow.
1238 void
1239 solib_create_inferior_hook()
1241 if (!enable_break ())
1243 warning ("shared library handler failed to enable breakpoint");
1244 return;
1247 /* Now run the target. It will eventually hit the breakpoint, at
1248 which point all of the libraries will have been mapped in and we
1249 can go groveling around in the dynamic linker structures to find
1250 out what we need to know about them. */
1252 clear_proceed_status ();
1253 stop_soon_quietly = 1;
1254 stop_signal = TARGET_SIGNAL_0;
1257 target_resume (-1, 0, stop_signal);
1258 wait_for_inferior ();
1260 while (stop_signal != TARGET_SIGNAL_TRAP);
1262 /* We are now either at the "mapping complete" breakpoint (or somewhere
1263 else, a condition we aren't prepared to deal with anyway), so adjust
1264 the PC as necessary after a breakpoint, disable the breakpoint, and
1265 add any shared libraries that were mapped in. */
1267 if (DECR_PC_AFTER_BREAK)
1269 stop_pc -= DECR_PC_AFTER_BREAK;
1270 write_register (PC_REGNUM, stop_pc);
1273 if (!disable_break ())
1275 warning ("shared library handler failed to disable breakpoint");
1278 /* solib_add will call reinit_frame_cache.
1279 But we are stopped in the startup code and we might not have symbols
1280 for the startup code, so heuristic_proc_start could be called
1281 and will put out an annoying warning.
1282 Delaying the resetting of stop_soon_quietly until after symbol loading
1283 suppresses the warning. */
1284 if (auto_solib_add)
1285 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1286 stop_soon_quietly = 0;
1291 LOCAL FUNCTION
1293 sharedlibrary_command -- handle command to explicitly add library
1295 SYNOPSIS
1297 static void sharedlibrary_command (char *args, int from_tty)
1299 DESCRIPTION
1303 static void
1304 sharedlibrary_command (args, from_tty)
1305 char *args;
1306 int from_tty;
1308 dont_repeat ();
1309 solib_add (args, from_tty, (struct target_ops *) 0);
1312 void
1313 _initialize_solib()
1315 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1316 "Load shared object library symbols for files matching REGEXP.");
1317 add_info ("sharedlibrary", info_sharedlibrary_command,
1318 "Status of loaded shared object libraries.");
1320 add_show_from_set
1321 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
1322 (char *) &auto_solib_add,
1323 "Set autoloading of shared library symbols.\n\
1324 If nonzero, symbols from all shared object libraries will be loaded\n\
1325 automatically when the inferior begins execution or when the dynamic linker\n\
1326 informs gdb that a new library has been loaded. Otherwise, symbols\n\
1327 must be loaded manually, using `sharedlibrary'.",
1328 &setlist),
1329 &showlist);
1333 /* Register that we are able to handle irix5 core file formats.
1334 This really is bfd_target_unknown_flavour */
1336 static struct core_fns irix5_core_fns =
1338 bfd_target_unknown_flavour,
1339 fetch_core_registers,
1340 NULL
1343 void
1344 _initialize_core_irix5 ()
1346 add_core_fns (&irix5_core_fns);