1 // dwarf_reader.cc -- parse dwarf2/3 debug information
3 // Copyright (C) 2007-2019 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "elfcpp_swap.h"
33 #include "dwarf_reader.h"
34 #include "int_encoding.h"
35 #include "compressed_output.h"
39 // Class Sized_elf_reloc_mapper
41 // Initialize the relocation tracker for section RELOC_SHNDX.
43 template<int size
, bool big_endian
>
45 Sized_elf_reloc_mapper
<size
, big_endian
>::do_initialize(
46 unsigned int reloc_shndx
, unsigned int reloc_type
)
48 this->reloc_type_
= reloc_type
;
49 return this->track_relocs_
.initialize(this->object_
, reloc_shndx
,
53 // Looks in the symtab to see what section a symbol is in.
55 template<int size
, bool big_endian
>
57 Sized_elf_reloc_mapper
<size
, big_endian
>::symbol_section(
58 unsigned int symndx
, Address
* value
, bool* is_ordinary
)
60 const int symsize
= elfcpp::Elf_sizes
<size
>::sym_size
;
61 gold_assert(static_cast<off_t
>((symndx
+ 1) * symsize
) <= this->symtab_size_
);
62 elfcpp::Sym
<size
, big_endian
> elfsym(this->symtab_
+ symndx
* symsize
);
63 *value
= elfsym
.get_st_value();
64 return this->object_
->adjust_sym_shndx(symndx
, elfsym
.get_st_shndx(),
68 // Return the section index and offset within the section of
69 // the target of the relocation for RELOC_OFFSET.
71 template<int size
, bool big_endian
>
73 Sized_elf_reloc_mapper
<size
, big_endian
>::do_get_reloc_target(
74 off_t reloc_offset
, off_t
* target_offset
)
76 this->track_relocs_
.advance(reloc_offset
);
77 if (reloc_offset
!= this->track_relocs_
.next_offset())
79 unsigned int symndx
= this->track_relocs_
.next_symndx();
80 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
;
82 unsigned int target_shndx
= this->symbol_section(symndx
, &value
,
86 if (this->reloc_type_
== elfcpp::SHT_RELA
)
87 value
+= this->track_relocs_
.next_addend();
88 *target_offset
= value
;
92 static inline Elf_reloc_mapper
*
93 make_elf_reloc_mapper(Relobj
* object
, const unsigned char* symtab
,
96 if (object
->elfsize() == 32)
98 if (object
->is_big_endian())
100 #ifdef HAVE_TARGET_32_BIG
101 return new Sized_elf_reloc_mapper
<32, true>(object
, symtab
,
109 #ifdef HAVE_TARGET_32_LITTLE
110 return new Sized_elf_reloc_mapper
<32, false>(object
, symtab
,
117 else if (object
->elfsize() == 64)
119 if (object
->is_big_endian())
121 #ifdef HAVE_TARGET_64_BIG
122 return new Sized_elf_reloc_mapper
<64, true>(object
, symtab
,
130 #ifdef HAVE_TARGET_64_LITTLE
131 return new Sized_elf_reloc_mapper
<64, false>(object
, symtab
,
142 // class Dwarf_abbrev_table
145 Dwarf_abbrev_table::clear_abbrev_codes()
147 for (unsigned int code
= 0; code
< this->low_abbrev_code_max_
; ++code
)
149 if (this->low_abbrev_codes_
[code
] != NULL
)
151 delete this->low_abbrev_codes_
[code
];
152 this->low_abbrev_codes_
[code
] = NULL
;
155 for (Abbrev_code_table::iterator it
= this->high_abbrev_codes_
.begin();
156 it
!= this->high_abbrev_codes_
.end();
159 if (it
->second
!= NULL
)
162 this->high_abbrev_codes_
.clear();
165 // Read the abbrev table from an object file.
168 Dwarf_abbrev_table::do_read_abbrevs(
170 unsigned int abbrev_shndx
,
173 this->clear_abbrev_codes();
175 // If we don't have relocations, abbrev_shndx will be 0, and
176 // we'll have to hunt for the .debug_abbrev section.
177 if (abbrev_shndx
== 0 && this->abbrev_shndx_
> 0)
178 abbrev_shndx
= this->abbrev_shndx_
;
179 else if (abbrev_shndx
== 0)
181 for (unsigned int i
= 1; i
< object
->shnum(); ++i
)
183 std::string name
= object
->section_name(i
);
184 if (name
== ".debug_abbrev" || name
== ".zdebug_abbrev")
187 // Correct the offset. For incremental update links, we have a
188 // relocated offset that is relative to the output section, but
189 // here we need an offset relative to the input section.
190 abbrev_offset
-= object
->output_section_offset(i
);
194 if (abbrev_shndx
== 0)
198 // Get the section contents and decompress if necessary.
199 if (abbrev_shndx
!= this->abbrev_shndx_
)
201 if (this->owns_buffer_
&& this->buffer_
!= NULL
)
203 delete[] this->buffer_
;
204 this->owns_buffer_
= false;
207 section_size_type buffer_size
;
209 object
->decompressed_section_contents(abbrev_shndx
,
211 &this->owns_buffer_
);
212 this->buffer_end_
= this->buffer_
+ buffer_size
;
213 this->abbrev_shndx_
= abbrev_shndx
;
216 this->buffer_pos_
= this->buffer_
+ abbrev_offset
;
220 // Lookup the abbrev code entry for CODE. This function is called
221 // only when the abbrev code is not in the direct lookup table.
222 // It may be in the hash table, it may not have been read yet,
223 // or it may not exist in the abbrev table.
225 const Dwarf_abbrev_table::Abbrev_code
*
226 Dwarf_abbrev_table::do_get_abbrev(unsigned int code
)
228 // See if the abbrev code is already in the hash table.
229 Abbrev_code_table::const_iterator it
= this->high_abbrev_codes_
.find(code
);
230 if (it
!= this->high_abbrev_codes_
.end())
233 // Read and store abbrev code definitions until we find the
234 // one we're looking for.
237 // Read the abbrev code. A zero here indicates the end of the
240 if (this->buffer_pos_
>= this->buffer_end_
)
242 uint64_t nextcode
= read_unsigned_LEB_128(this->buffer_pos_
, &len
);
245 this->buffer_pos_
= this->buffer_end_
;
248 this->buffer_pos_
+= len
;
251 if (this->buffer_pos_
>= this->buffer_end_
)
253 uint64_t tag
= read_unsigned_LEB_128(this->buffer_pos_
, &len
);
254 this->buffer_pos_
+= len
;
256 // Read the has_children flag.
257 if (this->buffer_pos_
>= this->buffer_end_
)
259 bool has_children
= *this->buffer_pos_
== elfcpp::DW_CHILDREN_yes
;
260 this->buffer_pos_
+= 1;
262 // Read the list of (attribute, form) pairs.
263 Abbrev_code
* entry
= new Abbrev_code(tag
, has_children
);
266 // Read the attribute.
267 if (this->buffer_pos_
>= this->buffer_end_
)
269 uint64_t attr
= read_unsigned_LEB_128(this->buffer_pos_
, &len
);
270 this->buffer_pos_
+= len
;
273 if (this->buffer_pos_
>= this->buffer_end_
)
275 uint64_t form
= read_unsigned_LEB_128(this->buffer_pos_
, &len
);
276 this->buffer_pos_
+= len
;
278 // A (0,0) pair terminates the list.
279 if (attr
== 0 && form
== 0)
282 if (attr
== elfcpp::DW_AT_sibling
)
283 entry
->has_sibling_attribute
= true;
285 entry
->add_attribute(attr
, form
);
288 this->store_abbrev(nextcode
, entry
);
289 if (nextcode
== code
)
296 // class Dwarf_ranges_table
298 // Read the ranges table from an object file.
301 Dwarf_ranges_table::read_ranges_table(
303 const unsigned char* symtab
,
305 unsigned int ranges_shndx
)
307 // If we've already read this abbrev table, return immediately.
308 if (this->ranges_shndx_
> 0
309 && this->ranges_shndx_
== ranges_shndx
)
312 // If we don't have relocations, ranges_shndx will be 0, and
313 // we'll have to hunt for the .debug_ranges section.
314 if (ranges_shndx
== 0 && this->ranges_shndx_
> 0)
315 ranges_shndx
= this->ranges_shndx_
;
316 else if (ranges_shndx
== 0)
318 for (unsigned int i
= 1; i
< object
->shnum(); ++i
)
320 std::string name
= object
->section_name(i
);
321 if (name
== ".debug_ranges" || name
== ".zdebug_ranges")
324 this->output_section_offset_
= object
->output_section_offset(i
);
328 if (ranges_shndx
== 0)
332 // Get the section contents and decompress if necessary.
333 if (ranges_shndx
!= this->ranges_shndx_
)
335 if (this->owns_ranges_buffer_
&& this->ranges_buffer_
!= NULL
)
337 delete[] this->ranges_buffer_
;
338 this->owns_ranges_buffer_
= false;
341 section_size_type buffer_size
;
342 this->ranges_buffer_
=
343 object
->decompressed_section_contents(ranges_shndx
,
345 &this->owns_ranges_buffer_
);
346 this->ranges_buffer_end_
= this->ranges_buffer_
+ buffer_size
;
347 this->ranges_shndx_
= ranges_shndx
;
350 if (this->ranges_reloc_mapper_
!= NULL
)
352 delete this->ranges_reloc_mapper_
;
353 this->ranges_reloc_mapper_
= NULL
;
356 // For incremental objects, we have no relocations.
357 if (object
->is_incremental())
360 // Find the relocation section for ".debug_ranges".
361 unsigned int reloc_shndx
= 0;
362 unsigned int reloc_type
= 0;
363 for (unsigned int i
= 0; i
< object
->shnum(); ++i
)
365 reloc_type
= object
->section_type(i
);
366 if ((reloc_type
== elfcpp::SHT_REL
367 || reloc_type
== elfcpp::SHT_RELA
)
368 && object
->section_info(i
) == ranges_shndx
)
375 this->ranges_reloc_mapper_
= make_elf_reloc_mapper(object
, symtab
,
377 this->ranges_reloc_mapper_
->initialize(reloc_shndx
, reloc_type
);
378 this->reloc_type_
= reloc_type
;
383 // Read a range list from section RANGES_SHNDX at offset RANGES_OFFSET.
386 Dwarf_ranges_table::read_range_list(
388 const unsigned char* symtab
,
390 unsigned int addr_size
,
391 unsigned int ranges_shndx
,
394 Dwarf_range_list
* ranges
;
396 if (!this->read_ranges_table(object
, symtab
, symtab_size
, ranges_shndx
))
399 // Correct the offset. For incremental update links, we have a
400 // relocated offset that is relative to the output section, but
401 // here we need an offset relative to the input section.
402 offset
-= this->output_section_offset_
;
404 // Read the range list at OFFSET.
405 ranges
= new Dwarf_range_list();
408 this->ranges_buffer_
+ offset
< this->ranges_buffer_end_
;
409 offset
+= 2 * addr_size
)
414 // Read the raw contents of the section.
417 start
= this->dwinfo_
->read_from_pointer
<32>(this->ranges_buffer_
419 end
= this->dwinfo_
->read_from_pointer
<32>(this->ranges_buffer_
424 start
= this->dwinfo_
->read_from_pointer
<64>(this->ranges_buffer_
426 end
= this->dwinfo_
->read_from_pointer
<64>(this->ranges_buffer_
430 // Check for relocations and adjust the values.
431 unsigned int shndx1
= 0;
432 unsigned int shndx2
= 0;
433 if (this->ranges_reloc_mapper_
!= NULL
)
435 shndx1
= this->lookup_reloc(offset
, &start
);
436 shndx2
= this->lookup_reloc(offset
+ addr_size
, &end
);
439 // End of list is marked by a pair of zeroes.
440 if (shndx1
== 0 && start
== 0 && end
== 0)
443 // A "base address selection entry" is identified by
444 // 0xffffffff for the first value of the pair. The second
445 // value is used as a base for subsequent range list entries.
446 if (shndx1
== 0 && start
== -1)
448 else if (shndx1
== shndx2
)
450 if (shndx1
== 0 || object
->is_section_included(shndx1
))
451 ranges
->add(shndx1
, base
+ start
, base
+ end
);
454 gold_warning(_("%s: DWARF info may be corrupt; offsets in a "
455 "range list entry are in different sections"),
456 object
->name().c_str());
462 // Look for a relocation at offset OFF in the range table,
463 // and return the section index and offset of the target.
466 Dwarf_ranges_table::lookup_reloc(off_t off
, off_t
* target_off
)
470 this->ranges_reloc_mapper_
->get_reloc_target(off
, &value
);
473 if (this->reloc_type_
== elfcpp::SHT_REL
)
474 *target_off
+= value
;
480 // class Dwarf_pubnames_table
482 // Read the pubnames section from the object file.
485 Dwarf_pubnames_table::read_section(Relobj
* object
, const unsigned char* symtab
,
488 section_size_type buffer_size
;
489 unsigned int shndx
= 0;
490 const char* name
= this->is_pubtypes_
? "pubtypes" : "pubnames";
491 const char* gnu_name
= (this->is_pubtypes_
495 for (unsigned int i
= 1; i
< object
->shnum(); ++i
)
497 std::string section_name
= object
->section_name(i
);
498 const char* section_name_suffix
= section_name
.c_str();
499 if (is_prefix_of(".debug_", section_name_suffix
))
500 section_name_suffix
+= 7;
501 else if (is_prefix_of(".zdebug_", section_name_suffix
))
502 section_name_suffix
+= 8;
505 if (strcmp(section_name_suffix
, name
) == 0)
510 else if (strcmp(section_name_suffix
, gnu_name
) == 0)
513 this->is_gnu_style_
= true;
520 this->buffer_
= object
->decompressed_section_contents(shndx
,
522 &this->owns_buffer_
);
523 if (this->buffer_
== NULL
)
525 this->buffer_end_
= this->buffer_
+ buffer_size
;
527 // For incremental objects, we have no relocations.
528 if (object
->is_incremental())
531 // Find the relocation section
532 unsigned int reloc_shndx
= 0;
533 unsigned int reloc_type
= 0;
534 for (unsigned int i
= 0; i
< object
->shnum(); ++i
)
536 reloc_type
= object
->section_type(i
);
537 if ((reloc_type
== elfcpp::SHT_REL
538 || reloc_type
== elfcpp::SHT_RELA
)
539 && object
->section_info(i
) == shndx
)
546 this->reloc_mapper_
= make_elf_reloc_mapper(object
, symtab
, symtab_size
);
547 this->reloc_mapper_
->initialize(reloc_shndx
, reloc_type
);
548 this->reloc_type_
= reloc_type
;
553 // Read the header for the set at OFFSET.
556 Dwarf_pubnames_table::read_header(off_t offset
)
558 // Make sure we have actually read the section.
559 gold_assert(this->buffer_
!= NULL
);
561 if (offset
< 0 || offset
+ 14 >= this->buffer_end_
- this->buffer_
)
564 const unsigned char* pinfo
= this->buffer_
+ offset
;
566 // Read the unit_length field.
567 uint64_t unit_length
= this->dwinfo_
->read_from_pointer
<32>(pinfo
);
569 if (unit_length
== 0xffffffff)
571 unit_length
= this->dwinfo_
->read_from_pointer
<64>(pinfo
);
572 this->unit_length_
= unit_length
+ 12;
574 this->offset_size_
= 8;
578 this->unit_length_
= unit_length
+ 4;
579 this->offset_size_
= 4;
581 this->end_of_table_
= pinfo
+ unit_length
;
583 // If unit_length is too big, maybe we should reject the whole table,
584 // but in cases we know about, it seems OK to assume that the table
585 // is valid through the actual end of the section.
586 if (this->end_of_table_
> this->buffer_end_
)
587 this->end_of_table_
= this->buffer_end_
;
589 // Check the version.
590 unsigned int version
= this->dwinfo_
->read_from_pointer
<16>(pinfo
);
595 this->reloc_mapper_
->get_reloc_target(pinfo
- this->buffer_
,
598 // Skip the debug_info_offset and debug_info_size fields.
599 pinfo
+= 2 * this->offset_size_
;
601 if (pinfo
>= this->buffer_end_
)
604 this->pinfo_
= pinfo
;
608 // Read the next name from the set.
611 Dwarf_pubnames_table::next_name(uint8_t* flag_byte
)
613 const unsigned char* pinfo
= this->pinfo_
;
615 // Check for end of list. The table should be terminated by an
616 // entry containing nothing but a DIE offset of 0.
617 if (pinfo
+ this->offset_size_
>= this->end_of_table_
)
620 // Skip the offset within the CU. If this is zero, but we're not
621 // at the end of the table, then we have a real pubnames entry
622 // whose DIE offset is 0 (likely to be a GCC bug). Since we
623 // don't actually use the DIE offset in building .gdb_index,
625 pinfo
+= this->offset_size_
;
627 if (this->is_gnu_style_
)
628 *flag_byte
= *pinfo
++;
632 // Return a pointer to the string at the current location,
633 // and advance the pointer to the next entry.
634 const char* ret
= reinterpret_cast<const char*>(pinfo
);
635 while (pinfo
< this->buffer_end_
&& *pinfo
!= '\0')
637 if (pinfo
< this->buffer_end_
)
640 this->pinfo_
= pinfo
;
646 Dwarf_die::Dwarf_die(
647 Dwarf_info_reader
* dwinfo
,
650 : dwinfo_(dwinfo
), parent_(parent
), die_offset_(die_offset
),
651 child_offset_(0), sibling_offset_(0), abbrev_code_(NULL
), attributes_(),
652 attributes_read_(false), name_(NULL
), name_off_(-1), linkage_name_(NULL
),
653 linkage_name_off_(-1), string_shndx_(0), specification_(0),
657 const unsigned char* pdie
= dwinfo
->buffer_at_offset(die_offset
);
660 unsigned int code
= read_unsigned_LEB_128(pdie
, &len
);
664 parent
->set_sibling_offset(die_offset
+ len
);
667 this->attr_offset_
= len
;
669 // Lookup the abbrev code in the abbrev table.
670 this->abbrev_code_
= dwinfo
->get_abbrev(code
);
673 // Read all the attributes of the DIE.
676 Dwarf_die::read_attributes()
678 if (this->attributes_read_
)
681 gold_assert(this->abbrev_code_
!= NULL
);
683 const unsigned char* pdie
=
684 this->dwinfo_
->buffer_at_offset(this->die_offset_
);
687 const unsigned char* pattr
= pdie
+ this->attr_offset_
;
689 unsigned int nattr
= this->abbrev_code_
->attributes
.size();
690 this->attributes_
.reserve(nattr
);
691 for (unsigned int i
= 0; i
< nattr
; ++i
)
694 unsigned int attr
= this->abbrev_code_
->attributes
[i
].attr
;
695 unsigned int form
= this->abbrev_code_
->attributes
[i
].form
;
696 if (form
== elfcpp::DW_FORM_indirect
)
698 form
= read_unsigned_LEB_128(pattr
, &len
);
701 off_t attr_off
= this->die_offset_
+ (pattr
- pdie
);
702 bool ref_form
= false;
703 Attribute_value attr_value
;
704 attr_value
.attr
= attr
;
705 attr_value
.form
= form
;
706 attr_value
.aux
.shndx
= 0;
709 case elfcpp::DW_FORM_flag_present
:
710 attr_value
.val
.intval
= 1;
712 case elfcpp::DW_FORM_strp
:
715 if (this->dwinfo_
->offset_size() == 4)
716 str_off
= this->dwinfo_
->read_from_pointer
<32>(&pattr
);
718 str_off
= this->dwinfo_
->read_from_pointer
<64>(&pattr
);
720 this->dwinfo_
->lookup_reloc(attr_off
, &str_off
);
721 attr_value
.aux
.shndx
= shndx
;
722 attr_value
.val
.refval
= str_off
;
725 case elfcpp::DW_FORM_sec_offset
:
728 if (this->dwinfo_
->offset_size() == 4)
729 sec_off
= this->dwinfo_
->read_from_pointer
<32>(&pattr
);
731 sec_off
= this->dwinfo_
->read_from_pointer
<64>(&pattr
);
733 this->dwinfo_
->lookup_reloc(attr_off
, &sec_off
);
734 attr_value
.aux
.shndx
= shndx
;
735 attr_value
.val
.refval
= sec_off
;
739 case elfcpp::DW_FORM_addr
:
742 if (this->dwinfo_
->address_size() == 4)
743 sec_off
= this->dwinfo_
->read_from_pointer
<32>(&pattr
);
745 sec_off
= this->dwinfo_
->read_from_pointer
<64>(&pattr
);
747 this->dwinfo_
->lookup_reloc(attr_off
, &sec_off
);
748 attr_value
.aux
.shndx
= shndx
;
749 attr_value
.val
.refval
= sec_off
;
753 case elfcpp::DW_FORM_ref_addr
:
756 if (this->dwinfo_
->ref_addr_size() == 4)
757 sec_off
= this->dwinfo_
->read_from_pointer
<32>(&pattr
);
759 sec_off
= this->dwinfo_
->read_from_pointer
<64>(&pattr
);
761 this->dwinfo_
->lookup_reloc(attr_off
, &sec_off
);
762 attr_value
.aux
.shndx
= shndx
;
763 attr_value
.val
.refval
= sec_off
;
767 case elfcpp::DW_FORM_block1
:
768 attr_value
.aux
.blocklen
= *pattr
++;
769 attr_value
.val
.blockval
= pattr
;
770 pattr
+= attr_value
.aux
.blocklen
;
772 case elfcpp::DW_FORM_block2
:
773 attr_value
.aux
.blocklen
=
774 this->dwinfo_
->read_from_pointer
<16>(&pattr
);
775 attr_value
.val
.blockval
= pattr
;
776 pattr
+= attr_value
.aux
.blocklen
;
778 case elfcpp::DW_FORM_block4
:
779 attr_value
.aux
.blocklen
=
780 this->dwinfo_
->read_from_pointer
<32>(&pattr
);
781 attr_value
.val
.blockval
= pattr
;
782 pattr
+= attr_value
.aux
.blocklen
;
784 case elfcpp::DW_FORM_block
:
785 case elfcpp::DW_FORM_exprloc
:
786 attr_value
.aux
.blocklen
= read_unsigned_LEB_128(pattr
, &len
);
787 attr_value
.val
.blockval
= pattr
+ len
;
788 pattr
+= len
+ attr_value
.aux
.blocklen
;
790 case elfcpp::DW_FORM_data1
:
791 case elfcpp::DW_FORM_flag
:
792 attr_value
.val
.intval
= *pattr
++;
794 case elfcpp::DW_FORM_ref1
:
795 attr_value
.val
.refval
= *pattr
++;
798 case elfcpp::DW_FORM_data2
:
799 attr_value
.val
.intval
=
800 this->dwinfo_
->read_from_pointer
<16>(&pattr
);
802 case elfcpp::DW_FORM_ref2
:
803 attr_value
.val
.refval
=
804 this->dwinfo_
->read_from_pointer
<16>(&pattr
);
807 case elfcpp::DW_FORM_data4
:
810 sec_off
= this->dwinfo_
->read_from_pointer
<32>(&pattr
);
812 this->dwinfo_
->lookup_reloc(attr_off
, &sec_off
);
813 attr_value
.aux
.shndx
= shndx
;
814 attr_value
.val
.intval
= sec_off
;
817 case elfcpp::DW_FORM_ref4
:
820 sec_off
= this->dwinfo_
->read_from_pointer
<32>(&pattr
);
822 this->dwinfo_
->lookup_reloc(attr_off
, &sec_off
);
823 attr_value
.aux
.shndx
= shndx
;
824 attr_value
.val
.refval
= sec_off
;
828 case elfcpp::DW_FORM_data8
:
831 sec_off
= this->dwinfo_
->read_from_pointer
<64>(&pattr
);
833 this->dwinfo_
->lookup_reloc(attr_off
, &sec_off
);
834 attr_value
.aux
.shndx
= shndx
;
835 attr_value
.val
.intval
= sec_off
;
838 case elfcpp::DW_FORM_ref_sig8
:
839 attr_value
.val
.uintval
=
840 this->dwinfo_
->read_from_pointer
<64>(&pattr
);
842 case elfcpp::DW_FORM_ref8
:
845 sec_off
= this->dwinfo_
->read_from_pointer
<64>(&pattr
);
847 this->dwinfo_
->lookup_reloc(attr_off
, &sec_off
);
848 attr_value
.aux
.shndx
= shndx
;
849 attr_value
.val
.refval
= sec_off
;
853 case elfcpp::DW_FORM_ref_udata
:
854 attr_value
.val
.refval
= read_unsigned_LEB_128(pattr
, &len
);
858 case elfcpp::DW_FORM_udata
:
859 case elfcpp::DW_FORM_GNU_addr_index
:
860 case elfcpp::DW_FORM_GNU_str_index
:
861 attr_value
.val
.uintval
= read_unsigned_LEB_128(pattr
, &len
);
864 case elfcpp::DW_FORM_sdata
:
865 attr_value
.val
.intval
= read_signed_LEB_128(pattr
, &len
);
868 case elfcpp::DW_FORM_string
:
869 attr_value
.val
.stringval
= reinterpret_cast<const char*>(pattr
);
870 len
= strlen(attr_value
.val
.stringval
);
877 // Cache the most frequently-requested attributes.
880 case elfcpp::DW_AT_name
:
881 if (form
== elfcpp::DW_FORM_string
)
882 this->name_
= attr_value
.val
.stringval
;
883 else if (form
== elfcpp::DW_FORM_strp
)
885 // All indirect strings should refer to the same
886 // string section, so we just save the last one seen.
887 this->string_shndx_
= attr_value
.aux
.shndx
;
888 this->name_off_
= attr_value
.val
.refval
;
891 case elfcpp::DW_AT_linkage_name
:
892 case elfcpp::DW_AT_MIPS_linkage_name
:
893 if (form
== elfcpp::DW_FORM_string
)
894 this->linkage_name_
= attr_value
.val
.stringval
;
895 else if (form
== elfcpp::DW_FORM_strp
)
897 // All indirect strings should refer to the same
898 // string section, so we just save the last one seen.
899 this->string_shndx_
= attr_value
.aux
.shndx
;
900 this->linkage_name_off_
= attr_value
.val
.refval
;
903 case elfcpp::DW_AT_specification
:
905 this->specification_
= attr_value
.val
.refval
;
907 case elfcpp::DW_AT_abstract_origin
:
909 this->abstract_origin_
= attr_value
.val
.refval
;
911 case elfcpp::DW_AT_sibling
:
912 if (ref_form
&& attr_value
.aux
.shndx
== 0)
913 this->sibling_offset_
= attr_value
.val
.refval
;
918 this->attributes_
.push_back(attr_value
);
921 // Now that we know where the next DIE begins, record the offset
922 // to avoid later recalculation.
923 if (this->has_children())
924 this->child_offset_
= this->die_offset_
+ (pattr
- pdie
);
926 this->sibling_offset_
= this->die_offset_
+ (pattr
- pdie
);
928 this->attributes_read_
= true;
932 // Skip all the attributes of the DIE and return the offset of the next DIE.
935 Dwarf_die::skip_attributes()
937 gold_assert(this->abbrev_code_
!= NULL
);
939 const unsigned char* pdie
=
940 this->dwinfo_
->buffer_at_offset(this->die_offset_
);
943 const unsigned char* pattr
= pdie
+ this->attr_offset_
;
945 for (unsigned int i
= 0; i
< this->abbrev_code_
->attributes
.size(); ++i
)
948 unsigned int form
= this->abbrev_code_
->attributes
[i
].form
;
949 if (form
== elfcpp::DW_FORM_indirect
)
951 form
= read_unsigned_LEB_128(pattr
, &len
);
956 case elfcpp::DW_FORM_flag_present
:
958 case elfcpp::DW_FORM_strp
:
959 case elfcpp::DW_FORM_sec_offset
:
960 pattr
+= this->dwinfo_
->offset_size();
962 case elfcpp::DW_FORM_addr
:
963 pattr
+= this->dwinfo_
->address_size();
965 case elfcpp::DW_FORM_ref_addr
:
966 pattr
+= this->dwinfo_
->ref_addr_size();
968 case elfcpp::DW_FORM_block1
:
971 case elfcpp::DW_FORM_block2
:
974 block_size
= this->dwinfo_
->read_from_pointer
<16>(&pattr
);
978 case elfcpp::DW_FORM_block4
:
981 block_size
= this->dwinfo_
->read_from_pointer
<32>(&pattr
);
985 case elfcpp::DW_FORM_block
:
986 case elfcpp::DW_FORM_exprloc
:
989 block_size
= read_unsigned_LEB_128(pattr
, &len
);
990 pattr
+= len
+ block_size
;
993 case elfcpp::DW_FORM_data1
:
994 case elfcpp::DW_FORM_ref1
:
995 case elfcpp::DW_FORM_flag
:
998 case elfcpp::DW_FORM_data2
:
999 case elfcpp::DW_FORM_ref2
:
1002 case elfcpp::DW_FORM_data4
:
1003 case elfcpp::DW_FORM_ref4
:
1006 case elfcpp::DW_FORM_data8
:
1007 case elfcpp::DW_FORM_ref8
:
1008 case elfcpp::DW_FORM_ref_sig8
:
1011 case elfcpp::DW_FORM_ref_udata
:
1012 case elfcpp::DW_FORM_udata
:
1013 case elfcpp::DW_FORM_GNU_addr_index
:
1014 case elfcpp::DW_FORM_GNU_str_index
:
1015 read_unsigned_LEB_128(pattr
, &len
);
1018 case elfcpp::DW_FORM_sdata
:
1019 read_signed_LEB_128(pattr
, &len
);
1022 case elfcpp::DW_FORM_string
:
1023 len
= strlen(reinterpret_cast<const char*>(pattr
));
1031 return this->die_offset_
+ (pattr
- pdie
);
1034 // Get the name of the DIE and cache it.
1037 Dwarf_die::set_name()
1039 if (this->name_
!= NULL
|| !this->read_attributes())
1041 if (this->name_off_
!= -1)
1042 this->name_
= this->dwinfo_
->get_string(this->name_off_
,
1043 this->string_shndx_
);
1046 // Get the linkage name of the DIE and cache it.
1049 Dwarf_die::set_linkage_name()
1051 if (this->linkage_name_
!= NULL
|| !this->read_attributes())
1053 if (this->linkage_name_off_
!= -1)
1054 this->linkage_name_
= this->dwinfo_
->get_string(this->linkage_name_off_
,
1055 this->string_shndx_
);
1058 // Return the value of attribute ATTR.
1060 const Dwarf_die::Attribute_value
*
1061 Dwarf_die::attribute(unsigned int attr
)
1063 if (!this->read_attributes())
1065 for (unsigned int i
= 0; i
< this->attributes_
.size(); ++i
)
1067 if (this->attributes_
[i
].attr
== attr
)
1068 return &this->attributes_
[i
];
1074 Dwarf_die::string_attribute(unsigned int attr
)
1076 const Attribute_value
* attr_val
= this->attribute(attr
);
1077 if (attr_val
== NULL
)
1079 switch (attr_val
->form
)
1081 case elfcpp::DW_FORM_string
:
1082 return attr_val
->val
.stringval
;
1083 case elfcpp::DW_FORM_strp
:
1084 return this->dwinfo_
->get_string(attr_val
->val
.refval
,
1085 attr_val
->aux
.shndx
);
1092 Dwarf_die::int_attribute(unsigned int attr
)
1094 const Attribute_value
* attr_val
= this->attribute(attr
);
1095 if (attr_val
== NULL
)
1097 switch (attr_val
->form
)
1099 case elfcpp::DW_FORM_flag_present
:
1100 case elfcpp::DW_FORM_data1
:
1101 case elfcpp::DW_FORM_flag
:
1102 case elfcpp::DW_FORM_data2
:
1103 case elfcpp::DW_FORM_data4
:
1104 case elfcpp::DW_FORM_data8
:
1105 case elfcpp::DW_FORM_sdata
:
1106 return attr_val
->val
.intval
;
1113 Dwarf_die::uint_attribute(unsigned int attr
)
1115 const Attribute_value
* attr_val
= this->attribute(attr
);
1116 if (attr_val
== NULL
)
1118 switch (attr_val
->form
)
1120 case elfcpp::DW_FORM_flag_present
:
1121 case elfcpp::DW_FORM_data1
:
1122 case elfcpp::DW_FORM_flag
:
1123 case elfcpp::DW_FORM_data4
:
1124 case elfcpp::DW_FORM_data8
:
1125 case elfcpp::DW_FORM_ref_sig8
:
1126 case elfcpp::DW_FORM_udata
:
1127 return attr_val
->val
.uintval
;
1134 Dwarf_die::ref_attribute(unsigned int attr
, unsigned int* shndx
)
1136 const Attribute_value
* attr_val
= this->attribute(attr
);
1137 if (attr_val
== NULL
)
1139 switch (attr_val
->form
)
1141 case elfcpp::DW_FORM_sec_offset
:
1142 case elfcpp::DW_FORM_addr
:
1143 case elfcpp::DW_FORM_ref_addr
:
1144 case elfcpp::DW_FORM_ref1
:
1145 case elfcpp::DW_FORM_ref2
:
1146 case elfcpp::DW_FORM_ref4
:
1147 case elfcpp::DW_FORM_ref8
:
1148 case elfcpp::DW_FORM_ref_udata
:
1149 *shndx
= attr_val
->aux
.shndx
;
1150 return attr_val
->val
.refval
;
1151 case elfcpp::DW_FORM_ref_sig8
:
1152 *shndx
= attr_val
->aux
.shndx
;
1153 return attr_val
->val
.uintval
;
1154 case elfcpp::DW_FORM_data4
:
1155 case elfcpp::DW_FORM_data8
:
1156 *shndx
= attr_val
->aux
.shndx
;
1157 return attr_val
->val
.intval
;
1164 Dwarf_die::address_attribute(unsigned int attr
, unsigned int* shndx
)
1166 const Attribute_value
* attr_val
= this->attribute(attr
);
1167 if (attr_val
== NULL
|| attr_val
->form
!= elfcpp::DW_FORM_addr
)
1170 *shndx
= attr_val
->aux
.shndx
;
1171 return attr_val
->val
.refval
;
1174 // Return the offset of this DIE's first child.
1177 Dwarf_die::child_offset()
1179 gold_assert(this->abbrev_code_
!= NULL
);
1180 if (!this->has_children())
1182 if (this->child_offset_
== 0)
1183 this->child_offset_
= this->skip_attributes();
1184 return this->child_offset_
;
1187 // Return the offset of this DIE's next sibling.
1190 Dwarf_die::sibling_offset()
1192 gold_assert(this->abbrev_code_
!= NULL
);
1194 if (this->sibling_offset_
!= 0)
1195 return this->sibling_offset_
;
1197 if (!this->has_children())
1199 this->sibling_offset_
= this->skip_attributes();
1200 return this->sibling_offset_
;
1203 if (this->has_sibling_attribute())
1205 if (!this->read_attributes())
1207 if (this->sibling_offset_
!= 0)
1208 return this->sibling_offset_
;
1211 // Skip over the children.
1212 off_t child_offset
= this->child_offset();
1213 while (child_offset
> 0)
1215 Dwarf_die
die(this->dwinfo_
, child_offset
, this);
1216 // The Dwarf_die ctor will set this DIE's sibling offset
1217 // when it reads a zero abbrev code.
1220 child_offset
= die
.sibling_offset();
1223 // This should be set by now. If not, there was a problem reading
1224 // the DWARF info, and we return 0.
1225 return this->sibling_offset_
;
1228 // class Dwarf_info_reader
1230 // Begin parsing the debug info. This calls visit_compilation_unit()
1231 // or visit_type_unit() for each compilation or type unit found in the
1232 // section, and visit_die() for each top-level DIE.
1235 Dwarf_info_reader::parse()
1237 if (this->object_
->is_big_endian())
1239 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1240 this->do_parse
<true>();
1247 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1248 this->do_parse
<false>();
1255 template<bool big_endian
>
1257 Dwarf_info_reader::do_parse()
1259 // Get the section contents and decompress if necessary.
1260 section_size_type buffer_size
;
1262 this->buffer_
= this->object_
->decompressed_section_contents(this->shndx_
,
1265 if (this->buffer_
== NULL
|| buffer_size
== 0)
1267 this->buffer_end_
= this->buffer_
+ buffer_size
;
1269 // The offset of this input section in the output section.
1270 off_t section_offset
= this->object_
->output_section_offset(this->shndx_
);
1272 // Start tracking relocations for this section.
1273 this->reloc_mapper_
= make_elf_reloc_mapper(this->object_
, this->symtab_
,
1274 this->symtab_size_
);
1275 this->reloc_mapper_
->initialize(this->reloc_shndx_
, this->reloc_type_
);
1277 // Loop over compilation units (or type units).
1278 unsigned int abbrev_shndx
= this->abbrev_shndx_
;
1279 off_t abbrev_offset
= 0;
1280 const unsigned char* pinfo
= this->buffer_
;
1281 while (pinfo
< this->buffer_end_
)
1283 // Read the compilation (or type) unit header.
1284 const unsigned char* cu_start
= pinfo
;
1285 this->cu_offset_
= cu_start
- this->buffer_
;
1286 this->cu_length_
= this->buffer_end_
- cu_start
;
1288 // Read unit_length (4 or 12 bytes).
1289 if (!this->check_buffer(pinfo
+ 4))
1291 uint32_t unit_length
=
1292 elfcpp::Swap_unaligned
<32, big_endian
>::readval(pinfo
);
1294 if (unit_length
== 0xffffffff)
1296 if (!this->check_buffer(pinfo
+ 8))
1298 unit_length
= elfcpp::Swap_unaligned
<64, big_endian
>::readval(pinfo
);
1300 this->offset_size_
= 8;
1303 this->offset_size_
= 4;
1304 if (!this->check_buffer(pinfo
+ unit_length
))
1306 const unsigned char* cu_end
= pinfo
+ unit_length
;
1307 this->cu_length_
= cu_end
- cu_start
;
1308 if (!this->check_buffer(pinfo
+ 2 + this->offset_size_
+ 1))
1311 // Read version (2 bytes).
1313 elfcpp::Swap_unaligned
<16, big_endian
>::readval(pinfo
);
1316 // Read debug_abbrev_offset (4 or 8 bytes).
1317 if (this->offset_size_
== 4)
1318 abbrev_offset
= elfcpp::Swap_unaligned
<32, big_endian
>::readval(pinfo
);
1320 abbrev_offset
= elfcpp::Swap_unaligned
<64, big_endian
>::readval(pinfo
);
1321 if (this->reloc_shndx_
> 0)
1323 off_t reloc_offset
= pinfo
- this->buffer_
;
1326 this->reloc_mapper_
->get_reloc_target(reloc_offset
, &value
);
1327 if (abbrev_shndx
== 0)
1329 if (this->reloc_type_
== elfcpp::SHT_REL
)
1330 abbrev_offset
+= value
;
1332 abbrev_offset
= value
;
1334 pinfo
+= this->offset_size_
;
1336 // Read address_size (1 byte).
1337 this->address_size_
= *pinfo
++;
1339 // For type units, read the two extra fields.
1340 uint64_t signature
= 0;
1341 off_t type_offset
= 0;
1342 if (this->is_type_unit_
)
1344 if (!this->check_buffer(pinfo
+ 8 + this->offset_size_
))
1347 // Read type_signature (8 bytes).
1348 signature
= elfcpp::Swap_unaligned
<64, big_endian
>::readval(pinfo
);
1351 // Read type_offset (4 or 8 bytes).
1352 if (this->offset_size_
== 4)
1354 elfcpp::Swap_unaligned
<32, big_endian
>::readval(pinfo
);
1357 elfcpp::Swap_unaligned
<64, big_endian
>::readval(pinfo
);
1358 pinfo
+= this->offset_size_
;
1361 // Read the .debug_abbrev table.
1362 this->abbrev_table_
.read_abbrevs(this->object_
, abbrev_shndx
,
1365 // Visit the root DIE.
1366 Dwarf_die
root_die(this,
1367 pinfo
- (this->buffer_
+ this->cu_offset_
),
1369 if (root_die
.tag() != 0)
1371 // Visit the CU or TU.
1372 if (this->is_type_unit_
)
1373 this->visit_type_unit(section_offset
+ this->cu_offset_
,
1374 cu_end
- cu_start
, type_offset
, signature
,
1377 this->visit_compilation_unit(section_offset
+ this->cu_offset_
,
1378 cu_end
- cu_start
, &root_die
);
1381 // Advance to the next CU.
1387 delete[] this->buffer_
;
1388 this->buffer_
= NULL
;
1392 // Read the DWARF string table.
1395 Dwarf_info_reader::do_read_string_table(unsigned int string_shndx
)
1397 Relobj
* object
= this->object_
;
1399 // If we don't have relocations, string_shndx will be 0, and
1400 // we'll have to hunt for the .debug_str section.
1401 if (string_shndx
== 0)
1403 for (unsigned int i
= 1; i
< this->object_
->shnum(); ++i
)
1405 std::string name
= object
->section_name(i
);
1406 if (name
== ".debug_str" || name
== ".zdebug_str")
1409 this->string_output_section_offset_
=
1410 object
->output_section_offset(i
);
1414 if (string_shndx
== 0)
1418 if (this->owns_string_buffer_
&& this->string_buffer_
!= NULL
)
1420 delete[] this->string_buffer_
;
1421 this->owns_string_buffer_
= false;
1424 // Get the secton contents and decompress if necessary.
1425 section_size_type buffer_size
;
1426 const unsigned char* buffer
=
1427 object
->decompressed_section_contents(string_shndx
,
1429 &this->owns_string_buffer_
);
1430 this->string_buffer_
= reinterpret_cast<const char*>(buffer
);
1431 this->string_buffer_end_
= this->string_buffer_
+ buffer_size
;
1432 this->string_shndx_
= string_shndx
;
1436 // Read a possibly unaligned integer of SIZE.
1437 template <int valsize
>
1438 inline typename
elfcpp::Valtype_base
<valsize
>::Valtype
1439 Dwarf_info_reader::read_from_pointer(const unsigned char* source
)
1441 typename
elfcpp::Valtype_base
<valsize
>::Valtype return_value
;
1442 if (this->object_
->is_big_endian())
1443 return_value
= elfcpp::Swap_unaligned
<valsize
, true>::readval(source
);
1445 return_value
= elfcpp::Swap_unaligned
<valsize
, false>::readval(source
);
1446 return return_value
;
1449 // Read a possibly unaligned integer of SIZE. Update SOURCE after read.
1450 template <int valsize
>
1451 inline typename
elfcpp::Valtype_base
<valsize
>::Valtype
1452 Dwarf_info_reader::read_from_pointer(const unsigned char** source
)
1454 typename
elfcpp::Valtype_base
<valsize
>::Valtype return_value
;
1455 if (this->object_
->is_big_endian())
1456 return_value
= elfcpp::Swap_unaligned
<valsize
, true>::readval(*source
);
1458 return_value
= elfcpp::Swap_unaligned
<valsize
, false>::readval(*source
);
1459 *source
+= valsize
/ 8;
1460 return return_value
;
1463 // Look for a relocation at offset ATTR_OFF in the dwarf info,
1464 // and return the section index and offset of the target.
1467 Dwarf_info_reader::lookup_reloc(off_t attr_off
, off_t
* target_off
)
1470 attr_off
+= this->cu_offset_
;
1471 unsigned int shndx
= this->reloc_mapper_
->get_reloc_target(attr_off
, &value
);
1474 if (this->reloc_type_
== elfcpp::SHT_REL
)
1475 *target_off
+= value
;
1477 *target_off
= value
;
1481 // Return a string from the DWARF string table.
1484 Dwarf_info_reader::get_string(off_t str_off
, unsigned int string_shndx
)
1486 if (!this->read_string_table(string_shndx
))
1489 // Correct the offset. For incremental update links, we have a
1490 // relocated offset that is relative to the output section, but
1491 // here we need an offset relative to the input section.
1492 str_off
-= this->string_output_section_offset_
;
1494 const char* p
= this->string_buffer_
+ str_off
;
1496 if (p
< this->string_buffer_
|| p
>= this->string_buffer_end_
)
1502 // The following are default, do-nothing, implementations of the
1503 // hook methods normally provided by a derived class. We provide
1504 // default implementations rather than no implementation so that
1505 // a derived class needs to implement only the hooks that it needs
1508 // Process a compilation unit and parse its child DIE.
1511 Dwarf_info_reader::visit_compilation_unit(off_t
, off_t
, Dwarf_die
*)
1515 // Process a type unit and parse its child DIE.
1518 Dwarf_info_reader::visit_type_unit(off_t
, off_t
, off_t
, uint64_t, Dwarf_die
*)
1522 // Print a warning about a corrupt debug section.
1525 Dwarf_info_reader::warn_corrupt_debug_section() const
1527 gold_warning(_("%s: corrupt debug info in %s"),
1528 this->object_
->name().c_str(),
1529 this->object_
->section_name(this->shndx_
).c_str());
1532 // class Sized_dwarf_line_info
1534 struct LineStateMachine
1540 unsigned int shndx
; // the section address refers to
1541 bool is_stmt
; // stmt means statement.
1547 ResetLineStateMachine(struct LineStateMachine
* lsm
, bool default_is_stmt
)
1552 lsm
->column_num
= 0;
1554 lsm
->is_stmt
= default_is_stmt
;
1555 lsm
->basic_block
= false;
1556 lsm
->end_sequence
= false;
1559 template<int size
, bool big_endian
>
1560 Sized_dwarf_line_info
<size
, big_endian
>::Sized_dwarf_line_info(
1562 unsigned int read_shndx
)
1563 : data_valid_(false), buffer_(NULL
), buffer_start_(NULL
),
1564 reloc_mapper_(NULL
), symtab_buffer_(NULL
), directories_(), files_(),
1565 current_header_index_(-1)
1567 unsigned int debug_shndx
;
1569 for (debug_shndx
= 1; debug_shndx
< object
->shnum(); ++debug_shndx
)
1571 // FIXME: do this more efficiently: section_name() isn't super-fast
1572 std::string name
= object
->section_name(debug_shndx
);
1573 if (name
== ".debug_line" || name
== ".zdebug_line")
1575 section_size_type buffer_size
;
1576 bool is_new
= false;
1577 this->buffer_
= object
->decompressed_section_contents(debug_shndx
,
1581 this->buffer_start_
= this->buffer_
;
1582 this->buffer_end_
= this->buffer_
+ buffer_size
;
1586 if (this->buffer_
== NULL
)
1589 // Find the relocation section for ".debug_line".
1590 // We expect these for relobjs (.o's) but not dynobjs (.so's).
1591 unsigned int reloc_shndx
= 0;
1592 for (unsigned int i
= 0; i
< object
->shnum(); ++i
)
1594 unsigned int reloc_sh_type
= object
->section_type(i
);
1595 if ((reloc_sh_type
== elfcpp::SHT_REL
1596 || reloc_sh_type
== elfcpp::SHT_RELA
)
1597 && object
->section_info(i
) == debug_shndx
)
1600 this->track_relocs_type_
= reloc_sh_type
;
1605 // Finally, we need the symtab section to interpret the relocs.
1606 if (reloc_shndx
!= 0)
1608 unsigned int symtab_shndx
;
1609 for (symtab_shndx
= 0; symtab_shndx
< object
->shnum(); ++symtab_shndx
)
1610 if (object
->section_type(symtab_shndx
) == elfcpp::SHT_SYMTAB
)
1612 this->symtab_buffer_
= object
->section_contents(
1613 symtab_shndx
, &this->symtab_buffer_size_
, false);
1616 if (this->symtab_buffer_
== NULL
)
1620 this->reloc_mapper_
=
1621 new Sized_elf_reloc_mapper
<size
, big_endian
>(object
,
1622 this->symtab_buffer_
,
1623 this->symtab_buffer_size_
);
1624 if (!this->reloc_mapper_
->initialize(reloc_shndx
, this->track_relocs_type_
))
1627 // Now that we have successfully read all the data, parse the debug
1629 this->data_valid_
= true;
1630 this->read_line_mappings(read_shndx
);
1633 // Read the DWARF header.
1635 template<int size
, bool big_endian
>
1636 const unsigned char*
1637 Sized_dwarf_line_info
<size
, big_endian
>::read_header_prolog(
1638 const unsigned char* lineptr
)
1640 uint32_t initial_length
= elfcpp::Swap_unaligned
<32, big_endian
>::readval(lineptr
);
1643 // In DWARF2/3, if the initial length is all 1 bits, then the offset
1644 // size is 8 and we need to read the next 8 bytes for the real length.
1645 if (initial_length
== 0xffffffff)
1647 header_
.offset_size
= 8;
1648 initial_length
= elfcpp::Swap_unaligned
<64, big_endian
>::readval(lineptr
);
1652 header_
.offset_size
= 4;
1654 header_
.total_length
= initial_length
;
1656 gold_assert(lineptr
+ header_
.total_length
<= buffer_end_
);
1658 header_
.version
= elfcpp::Swap_unaligned
<16, big_endian
>::readval(lineptr
);
1661 if (header_
.offset_size
== 4)
1662 header_
.prologue_length
= elfcpp::Swap_unaligned
<32, big_endian
>::readval(lineptr
);
1664 header_
.prologue_length
= elfcpp::Swap_unaligned
<64, big_endian
>::readval(lineptr
);
1665 lineptr
+= header_
.offset_size
;
1667 header_
.min_insn_length
= *lineptr
;
1670 if (header_
.version
< 4)
1671 header_
.max_ops_per_insn
= 1;
1674 // DWARF 4 added the maximum_operations_per_instruction field.
1675 header_
.max_ops_per_insn
= *lineptr
;
1677 // TODO: Add support for values other than 1.
1678 gold_assert(header_
.max_ops_per_insn
== 1);
1681 header_
.default_is_stmt
= *lineptr
;
1684 header_
.line_base
= *reinterpret_cast<const signed char*>(lineptr
);
1687 header_
.line_range
= *lineptr
;
1690 header_
.opcode_base
= *lineptr
;
1693 header_
.std_opcode_lengths
.resize(header_
.opcode_base
+ 1);
1694 header_
.std_opcode_lengths
[0] = 0;
1695 for (int i
= 1; i
< header_
.opcode_base
; i
++)
1697 header_
.std_opcode_lengths
[i
] = *lineptr
;
1704 // The header for a debug_line section is mildly complicated, because
1705 // the line info is very tightly encoded.
1707 template<int size
, bool big_endian
>
1708 const unsigned char*
1709 Sized_dwarf_line_info
<size
, big_endian
>::read_header_tables(
1710 const unsigned char* lineptr
)
1712 ++this->current_header_index_
;
1714 // Create a new directories_ entry and a new files_ entry for our new
1715 // header. We initialize each with a single empty element, because
1716 // dwarf indexes directory and filenames starting at 1.
1717 gold_assert(static_cast<int>(this->directories_
.size())
1718 == this->current_header_index_
);
1719 gold_assert(static_cast<int>(this->files_
.size())
1720 == this->current_header_index_
);
1721 this->directories_
.push_back(std::vector
<std::string
>(1));
1722 this->files_
.push_back(std::vector
<std::pair
<int, std::string
> >(1));
1724 // It is legal for the directory entry table to be empty.
1730 const char* dirname
= reinterpret_cast<const char*>(lineptr
);
1731 gold_assert(dirindex
1732 == static_cast<int>(this->directories_
.back().size()));
1733 this->directories_
.back().push_back(dirname
);
1734 lineptr
+= this->directories_
.back().back().size() + 1;
1740 // It is also legal for the file entry table to be empty.
1747 const char* filename
= reinterpret_cast<const char*>(lineptr
);
1748 lineptr
+= strlen(filename
) + 1;
1750 uint64_t dirindex
= read_unsigned_LEB_128(lineptr
, &len
);
1753 if (dirindex
>= this->directories_
.back().size())
1755 int dirindexi
= static_cast<int>(dirindex
);
1757 read_unsigned_LEB_128(lineptr
, &len
); // mod_time
1760 read_unsigned_LEB_128(lineptr
, &len
); // filelength
1763 gold_assert(fileindex
1764 == static_cast<int>(this->files_
.back().size()));
1765 this->files_
.back().push_back(std::make_pair(dirindexi
, filename
));
1774 // Process a single opcode in the .debug.line structure.
1776 template<int size
, bool big_endian
>
1778 Sized_dwarf_line_info
<size
, big_endian
>::process_one_opcode(
1779 const unsigned char* start
, struct LineStateMachine
* lsm
, size_t* len
)
1783 unsigned char opcode
= *start
;
1787 // If the opcode is great than the opcode_base, it is a special
1788 // opcode. Most line programs consist mainly of special opcodes.
1789 if (opcode
>= header_
.opcode_base
)
1791 opcode
-= header_
.opcode_base
;
1792 const int advance_address
= ((opcode
/ header_
.line_range
)
1793 * header_
.min_insn_length
);
1794 lsm
->address
+= advance_address
;
1796 const int advance_line
= ((opcode
% header_
.line_range
)
1797 + header_
.line_base
);
1798 lsm
->line_num
+= advance_line
;
1799 lsm
->basic_block
= true;
1804 // Otherwise, we have the regular opcodes
1807 case elfcpp::DW_LNS_copy
:
1808 lsm
->basic_block
= false;
1812 case elfcpp::DW_LNS_advance_pc
:
1814 const uint64_t advance_address
1815 = read_unsigned_LEB_128(start
, &templen
);
1817 lsm
->address
+= header_
.min_insn_length
* advance_address
;
1821 case elfcpp::DW_LNS_advance_line
:
1823 const uint64_t advance_line
= read_signed_LEB_128(start
, &templen
);
1825 lsm
->line_num
+= advance_line
;
1829 case elfcpp::DW_LNS_set_file
:
1831 const uint64_t fileno
= read_unsigned_LEB_128(start
, &templen
);
1833 lsm
->file_num
= fileno
;
1837 case elfcpp::DW_LNS_set_column
:
1839 const uint64_t colno
= read_unsigned_LEB_128(start
, &templen
);
1841 lsm
->column_num
= colno
;
1845 case elfcpp::DW_LNS_negate_stmt
:
1846 lsm
->is_stmt
= !lsm
->is_stmt
;
1849 case elfcpp::DW_LNS_set_basic_block
:
1850 lsm
->basic_block
= true;
1853 case elfcpp::DW_LNS_fixed_advance_pc
:
1855 int advance_address
;
1856 advance_address
= elfcpp::Swap_unaligned
<16, big_endian
>::readval(start
);
1858 lsm
->address
+= advance_address
;
1862 case elfcpp::DW_LNS_const_add_pc
:
1864 const int advance_address
= (header_
.min_insn_length
1865 * ((255 - header_
.opcode_base
)
1866 / header_
.line_range
));
1867 lsm
->address
+= advance_address
;
1871 case elfcpp::DW_LNS_extended_op
:
1873 const uint64_t extended_op_len
1874 = read_unsigned_LEB_128(start
, &templen
);
1876 oplen
+= templen
+ extended_op_len
;
1878 const unsigned char extended_op
= *start
;
1881 switch (extended_op
)
1883 case elfcpp::DW_LNE_end_sequence
:
1884 // This means that the current byte is the one immediately
1885 // after a set of instructions. Record the current line
1886 // for up to one less than the current address.
1888 lsm
->end_sequence
= true;
1892 case elfcpp::DW_LNE_set_address
:
1895 elfcpp::Swap_unaligned
<size
, big_endian
>::readval(start
);
1896 typename
Reloc_map::const_iterator it
1897 = this->reloc_map_
.find(start
- this->buffer_
);
1898 if (it
!= reloc_map_
.end())
1900 // If this is a SHT_RELA section, then ignore the
1901 // section contents. This assumes that this is a
1902 // straight reloc which just uses the reloc addend.
1903 // The reloc addend has already been included in the
1905 if (this->track_relocs_type_
== elfcpp::SHT_RELA
)
1907 // Add in the symbol value.
1908 lsm
->address
+= it
->second
.second
;
1909 lsm
->shndx
= it
->second
.first
;
1913 // If we're a normal .o file, with relocs, every
1914 // set_address should have an associated relocation.
1915 if (this->input_is_relobj())
1916 this->data_valid_
= false;
1920 case elfcpp::DW_LNE_define_file
:
1922 const char* filename
= reinterpret_cast<const char*>(start
);
1923 templen
= strlen(filename
) + 1;
1926 uint64_t dirindex
= read_unsigned_LEB_128(start
, &templen
);
1928 if (dirindex
>= this->directories_
.back().size())
1930 int dirindexi
= static_cast<int>(dirindex
);
1932 // This opcode takes two additional ULEB128 parameters
1933 // (mod_time and filelength), but we don't use those
1934 // values. Because OPLEN already tells us how far to
1935 // skip to the next opcode, we don't need to read
1938 this->files_
.back().push_back(std::make_pair(dirindexi
,
1948 // Ignore unknown opcode silently
1949 for (int i
= 0; i
< header_
.std_opcode_lengths
[opcode
]; i
++)
1952 read_unsigned_LEB_128(start
, &templen
);
1963 // Read the debug information at LINEPTR and store it in the line
1966 template<int size
, bool big_endian
>
1967 unsigned const char*
1968 Sized_dwarf_line_info
<size
, big_endian
>::read_lines(unsigned const char* lineptr
,
1971 struct LineStateMachine lsm
;
1973 // LENGTHSTART is the place the length field is based on. It is the
1974 // point in the header after the initial length field.
1975 const unsigned char* lengthstart
= buffer_
;
1977 // In 64 bit dwarf, the initial length is 12 bytes, because of the
1978 // 0xffffffff at the start.
1979 if (header_
.offset_size
== 8)
1984 while (lineptr
< lengthstart
+ header_
.total_length
)
1986 ResetLineStateMachine(&lsm
, header_
.default_is_stmt
);
1987 while (!lsm
.end_sequence
)
1990 bool add_line
= this->process_one_opcode(lineptr
, &lsm
, &oplength
);
1992 && (shndx
== -1U || lsm
.shndx
== -1U || shndx
== lsm
.shndx
))
1994 Offset_to_lineno_entry entry
1995 = { static_cast<off_t
>(lsm
.address
),
1996 this->current_header_index_
,
1997 static_cast<unsigned int>(lsm
.file_num
),
1998 true, lsm
.line_num
};
1999 std::vector
<Offset_to_lineno_entry
>&
2000 map(this->line_number_map_
[lsm
.shndx
]);
2001 // If we see two consecutive entries with the same
2002 // offset and a real line number, then mark the first
2003 // one as non-canonical.
2005 && (map
.back().offset
== static_cast<off_t
>(lsm
.address
))
2006 && lsm
.line_num
!= -1
2007 && map
.back().line_num
!= -1)
2008 map
.back().last_line_for_offset
= false;
2009 map
.push_back(entry
);
2011 lineptr
+= oplength
;
2015 return lengthstart
+ header_
.total_length
;
2018 // Read the relocations into a Reloc_map.
2020 template<int size
, bool big_endian
>
2022 Sized_dwarf_line_info
<size
, big_endian
>::read_relocs()
2024 if (this->symtab_buffer_
== NULL
)
2029 while ((reloc_offset
= this->reloc_mapper_
->next_offset()) != -1)
2031 const unsigned int shndx
=
2032 this->reloc_mapper_
->get_reloc_target(reloc_offset
, &value
);
2034 // There is no reason to record non-ordinary section indexes, or
2035 // SHN_UNDEF, because they will never match the real section.
2037 this->reloc_map_
[reloc_offset
] = std::make_pair(shndx
, value
);
2039 this->reloc_mapper_
->advance(reloc_offset
+ 1);
2043 // Read the line number info.
2045 template<int size
, bool big_endian
>
2047 Sized_dwarf_line_info
<size
, big_endian
>::read_line_mappings(unsigned int shndx
)
2049 gold_assert(this->data_valid_
== true);
2051 this->read_relocs();
2052 while (this->buffer_
< this->buffer_end_
)
2054 const unsigned char* lineptr
= this->buffer_
;
2055 lineptr
= this->read_header_prolog(lineptr
);
2056 lineptr
= this->read_header_tables(lineptr
);
2057 lineptr
= this->read_lines(lineptr
, shndx
);
2058 this->buffer_
= lineptr
;
2061 // Sort the lines numbers, so addr2line can use binary search.
2062 for (typename
Lineno_map::iterator it
= line_number_map_
.begin();
2063 it
!= line_number_map_
.end();
2065 // Each vector needs to be sorted by offset.
2066 std::sort(it
->second
.begin(), it
->second
.end());
2069 // Some processing depends on whether the input is a .o file or not.
2070 // For instance, .o files have relocs, and have .debug_lines
2071 // information on a per section basis. .so files, on the other hand,
2072 // lack relocs, and offsets are unique, so we can ignore the section
2075 template<int size
, bool big_endian
>
2077 Sized_dwarf_line_info
<size
, big_endian
>::input_is_relobj()
2079 // Only .o files have relocs and the symtab buffer that goes with them.
2080 return this->symtab_buffer_
!= NULL
;
2083 // Given an Offset_to_lineno_entry vector, and an offset, figure out
2084 // if the offset points into a function according to the vector (see
2085 // comments below for the algorithm). If it does, return an iterator
2086 // into the vector that points to the line-number that contains that
2087 // offset. If not, it returns vector::end().
2089 static std::vector
<Offset_to_lineno_entry
>::const_iterator
2090 offset_to_iterator(const std::vector
<Offset_to_lineno_entry
>* offsets
,
2093 const Offset_to_lineno_entry lookup_key
= { offset
, 0, 0, true, 0 };
2095 // lower_bound() returns the smallest offset which is >= lookup_key.
2096 // If no offset in offsets is >= lookup_key, returns end().
2097 std::vector
<Offset_to_lineno_entry
>::const_iterator it
2098 = std::lower_bound(offsets
->begin(), offsets
->end(), lookup_key
);
2100 // This code is easiest to understand with a concrete example.
2101 // Here's a possible offsets array:
2102 // {{offset = 3211, header_num = 0, file_num = 1, last, line_num = 16}, // 0
2103 // {offset = 3224, header_num = 0, file_num = 1, last, line_num = 20}, // 1
2104 // {offset = 3226, header_num = 0, file_num = 1, last, line_num = 22}, // 2
2105 // {offset = 3231, header_num = 0, file_num = 1, last, line_num = 25}, // 3
2106 // {offset = 3232, header_num = 0, file_num = 1, last, line_num = -1}, // 4
2107 // {offset = 3232, header_num = 0, file_num = 1, last, line_num = 65}, // 5
2108 // {offset = 3235, header_num = 0, file_num = 1, last, line_num = 66}, // 6
2109 // {offset = 3236, header_num = 0, file_num = 1, last, line_num = -1}, // 7
2110 // {offset = 5764, header_num = 0, file_num = 1, last, line_num = 48}, // 8
2111 // {offset = 5764, header_num = 0, file_num = 1,!last, line_num = 47}, // 9
2112 // {offset = 5765, header_num = 0, file_num = 1, last, line_num = 49}, // 10
2113 // {offset = 5767, header_num = 0, file_num = 1, last, line_num = 50}, // 11
2114 // {offset = 5768, header_num = 0, file_num = 1, last, line_num = 51}, // 12
2115 // {offset = 5773, header_num = 0, file_num = 1, last, line_num = -1}, // 13
2116 // {offset = 5787, header_num = 1, file_num = 1, last, line_num = 19}, // 14
2117 // {offset = 5790, header_num = 1, file_num = 1, last, line_num = 20}, // 15
2118 // {offset = 5793, header_num = 1, file_num = 1, last, line_num = 67}, // 16
2119 // {offset = 5793, header_num = 1, file_num = 1, last, line_num = -1}, // 17
2120 // {offset = 5793, header_num = 1, file_num = 1,!last, line_num = 66}, // 18
2121 // {offset = 5795, header_num = 1, file_num = 1, last, line_num = 68}, // 19
2122 // {offset = 5798, header_num = 1, file_num = 1, last, line_num = -1}, // 20
2123 // The entries with line_num == -1 mark the end of a function: the
2124 // associated offset is one past the last instruction in the
2125 // function. This can correspond to the beginning of the next
2126 // function (as is true for offset 3232); alternately, there can be
2127 // a gap between the end of one function and the start of the next
2128 // (as is true for some others, most obviously from 3236->5764).
2130 // Case 1: lookup_key has offset == 10. lower_bound returns
2131 // offsets[0]. Since it's not an exact match and we're
2132 // at the beginning of offsets, we return end() (invalid).
2133 // Case 2: lookup_key has offset 10000. lower_bound returns
2134 // offset[21] (end()). We return end() (invalid).
2135 // Case 3: lookup_key has offset == 3211. lower_bound matches
2136 // offsets[0] exactly, and that's the entry we return.
2137 // Case 4: lookup_key has offset == 3232. lower_bound returns
2138 // offsets[4]. That's an exact match, but indicates
2139 // end-of-function. We check if offsets[5] is also an
2140 // exact match but not end-of-function. It is, so we
2141 // return offsets[5].
2142 // Case 5: lookup_key has offset == 3214. lower_bound returns
2143 // offsets[1]. Since it's not an exact match, we back
2144 // up to the offset that's < lookup_key, offsets[0].
2145 // We note offsets[0] is a valid entry (not end-of-function),
2146 // so that's the entry we return.
2147 // Case 6: lookup_key has offset == 4000. lower_bound returns
2148 // offsets[8]. Since it's not an exact match, we back
2149 // up to offsets[7]. Since offsets[7] indicates
2150 // end-of-function, we know lookup_key is between
2151 // functions, so we return end() (not a valid offset).
2152 // Case 7: lookup_key has offset == 5794. lower_bound returns
2153 // offsets[19]. Since it's not an exact match, we back
2154 // up to offsets[16]. Note we back up to the *first*
2155 // entry with offset 5793, not just offsets[19-1].
2156 // We note offsets[16] is a valid entry, so we return it.
2157 // If offsets[16] had had line_num == -1, we would have
2158 // checked offsets[17]. The reason for this is that
2159 // 16 and 17 can be in an arbitrary order, since we sort
2160 // only by offset and last_line_for_offset. (Note it
2161 // doesn't help to use line_number as a tertiary sort key,
2162 // since sometimes we want the -1 to be first and sometimes
2163 // we want it to be last.)
2165 // This deals with cases (1) and (2).
2166 if ((it
== offsets
->begin() && offset
< it
->offset
)
2167 || it
== offsets
->end())
2168 return offsets
->end();
2170 // This deals with cases (3) and (4).
2171 if (offset
== it
->offset
)
2173 while (it
!= offsets
->end()
2174 && it
->offset
== offset
2175 && it
->line_num
== -1)
2177 if (it
== offsets
->end() || it
->offset
!= offset
)
2178 return offsets
->end();
2183 // This handles the first part of case (7) -- we back up to the
2184 // *first* entry that has the offset that's behind us.
2185 gold_assert(it
!= offsets
->begin());
2186 std::vector
<Offset_to_lineno_entry
>::const_iterator range_end
= it
;
2188 const off_t range_value
= it
->offset
;
2189 while (it
!= offsets
->begin() && (it
-1)->offset
== range_value
)
2192 // This handles cases (5), (6), and (7): if any entry in the
2193 // equal_range [it, range_end) has a line_num != -1, it's a valid
2194 // match. If not, we're not in a function. The line number we saw
2195 // last for an offset will be sorted first, so it'll get returned if
2197 for (; it
!= range_end
; ++it
)
2198 if (it
->line_num
!= -1)
2200 return offsets
->end();
2203 // Returns the canonical filename:lineno for the address passed in.
2204 // If other_lines is not NULL, appends the non-canonical lines
2205 // assigned to the same address.
2207 template<int size
, bool big_endian
>
2209 Sized_dwarf_line_info
<size
, big_endian
>::do_addr2line(
2212 std::vector
<std::string
>* other_lines
)
2214 if (this->data_valid_
== false)
2217 const std::vector
<Offset_to_lineno_entry
>* offsets
;
2218 // If we do not have reloc information, then our input is a .so or
2219 // some similar data structure where all the information is held in
2220 // the offset. In that case, we ignore the input shndx.
2221 if (this->input_is_relobj())
2222 offsets
= &this->line_number_map_
[shndx
];
2224 offsets
= &this->line_number_map_
[-1U];
2225 if (offsets
->empty())
2228 typename
std::vector
<Offset_to_lineno_entry
>::const_iterator it
2229 = offset_to_iterator(offsets
, offset
);
2230 if (it
== offsets
->end())
2233 std::string result
= this->format_file_lineno(*it
);
2234 gold_debug(DEBUG_LOCATION
, "do_addr2line: canonical result: %s",
2236 if (other_lines
!= NULL
)
2238 unsigned int last_file_num
= it
->file_num
;
2239 int last_line_num
= it
->line_num
;
2240 // Return up to 4 more locations from the beginning of the function
2241 // for fuzzy matching.
2242 for (++it
; it
!= offsets
->end(); ++it
)
2244 if (it
->offset
== offset
&& it
->line_num
== -1)
2245 continue; // The end of a previous function.
2246 if (it
->line_num
== -1)
2247 break; // The end of the current function.
2248 if (it
->file_num
!= last_file_num
|| it
->line_num
!= last_line_num
)
2250 other_lines
->push_back(this->format_file_lineno(*it
));
2251 gold_debug(DEBUG_LOCATION
, "do_addr2line: other: %s",
2252 other_lines
->back().c_str());
2253 last_file_num
= it
->file_num
;
2254 last_line_num
= it
->line_num
;
2256 if (it
->offset
> offset
&& other_lines
->size() >= 4)
2264 // Convert the file_num + line_num into a string.
2266 template<int size
, bool big_endian
>
2268 Sized_dwarf_line_info
<size
, big_endian
>::format_file_lineno(
2269 const Offset_to_lineno_entry
& loc
) const
2273 gold_assert(loc
.header_num
< static_cast<int>(this->files_
.size()));
2274 gold_assert(loc
.file_num
2275 < static_cast<unsigned int>(this->files_
[loc
.header_num
].size()));
2276 const std::pair
<int, std::string
>& filename_pair
2277 = this->files_
[loc
.header_num
][loc
.file_num
];
2278 const std::string
& filename
= filename_pair
.second
;
2280 gold_assert(loc
.header_num
< static_cast<int>(this->directories_
.size()));
2281 gold_assert(filename_pair
.first
2282 < static_cast<int>(this->directories_
[loc
.header_num
].size()));
2283 const std::string
& dirname
2284 = this->directories_
[loc
.header_num
][filename_pair
.first
];
2286 if (!dirname
.empty())
2295 char buffer
[64]; // enough to hold a line number
2296 snprintf(buffer
, sizeof(buffer
), "%d", loc
.line_num
);
2303 // Dwarf_line_info routines.
2305 static unsigned int next_generation_count
= 0;
2307 struct Addr2line_cache_entry
2311 Dwarf_line_info
* dwarf_line_info
;
2312 unsigned int generation_count
;
2313 unsigned int access_count
;
2315 Addr2line_cache_entry(Object
* o
, unsigned int s
, Dwarf_line_info
* d
)
2316 : object(o
), shndx(s
), dwarf_line_info(d
),
2317 generation_count(next_generation_count
), access_count(0)
2319 if (next_generation_count
< (1U << 31))
2320 ++next_generation_count
;
2323 // We expect this cache to be small, so don't bother with a hashtable
2324 // or priority queue or anything: just use a simple vector.
2325 static std::vector
<Addr2line_cache_entry
> addr2line_cache
;
2328 Dwarf_line_info::one_addr2line(Object
* object
,
2329 unsigned int shndx
, off_t offset
,
2331 std::vector
<std::string
>* other_lines
)
2333 Dwarf_line_info
* lineinfo
= NULL
;
2334 std::vector
<Addr2line_cache_entry
>::iterator it
;
2336 // First, check the cache. If we hit, update the counts.
2337 for (it
= addr2line_cache
.begin(); it
!= addr2line_cache
.end(); ++it
)
2339 if (it
->object
== object
&& it
->shndx
== shndx
)
2341 lineinfo
= it
->dwarf_line_info
;
2342 it
->generation_count
= next_generation_count
;
2343 // We cap generation_count at 2^31 -1 to avoid overflow.
2344 if (next_generation_count
< (1U << 31))
2345 ++next_generation_count
;
2346 // We cap access_count at 31 so 2^access_count doesn't overflow
2347 if (it
->access_count
< 31)
2353 // If we don't hit the cache, create a new object and insert into the
2355 if (lineinfo
== NULL
)
2357 switch (parameters
->size_and_endianness())
2359 #ifdef HAVE_TARGET_32_LITTLE
2360 case Parameters::TARGET_32_LITTLE
:
2361 lineinfo
= new Sized_dwarf_line_info
<32, false>(object
, shndx
); break;
2363 #ifdef HAVE_TARGET_32_BIG
2364 case Parameters::TARGET_32_BIG
:
2365 lineinfo
= new Sized_dwarf_line_info
<32, true>(object
, shndx
); break;
2367 #ifdef HAVE_TARGET_64_LITTLE
2368 case Parameters::TARGET_64_LITTLE
:
2369 lineinfo
= new Sized_dwarf_line_info
<64, false>(object
, shndx
); break;
2371 #ifdef HAVE_TARGET_64_BIG
2372 case Parameters::TARGET_64_BIG
:
2373 lineinfo
= new Sized_dwarf_line_info
<64, true>(object
, shndx
); break;
2378 addr2line_cache
.push_back(Addr2line_cache_entry(object
, shndx
, lineinfo
));
2381 // Now that we have our object, figure out the answer
2382 std::string retval
= lineinfo
->addr2line(shndx
, offset
, other_lines
);
2384 // Finally, if our cache has grown too big, delete old objects. We
2385 // assume the common (probably only) case is deleting only one object.
2386 // We use a pretty simple scheme to evict: function of LRU and MFU.
2387 while (addr2line_cache
.size() > cache_size
)
2389 unsigned int lowest_score
= ~0U;
2390 std::vector
<Addr2line_cache_entry
>::iterator lowest
2391 = addr2line_cache
.end();
2392 for (it
= addr2line_cache
.begin(); it
!= addr2line_cache
.end(); ++it
)
2394 const unsigned int score
= (it
->generation_count
2395 + (1U << it
->access_count
));
2396 if (score
< lowest_score
)
2398 lowest_score
= score
;
2402 if (lowest
!= addr2line_cache
.end())
2404 delete lowest
->dwarf_line_info
;
2405 addr2line_cache
.erase(lowest
);
2413 Dwarf_line_info::clear_addr2line_cache()
2415 for (std::vector
<Addr2line_cache_entry
>::iterator it
= addr2line_cache
.begin();
2416 it
!= addr2line_cache
.end();
2418 delete it
->dwarf_line_info
;
2419 addr2line_cache
.clear();
2422 #ifdef HAVE_TARGET_32_LITTLE
2424 class Sized_dwarf_line_info
<32, false>;
2427 #ifdef HAVE_TARGET_32_BIG
2429 class Sized_dwarf_line_info
<32, true>;
2432 #ifdef HAVE_TARGET_64_LITTLE
2434 class Sized_dwarf_line_info
<64, false>;
2437 #ifdef HAVE_TARGET_64_BIG
2439 class Sized_dwarf_line_info
<64, true>;
2442 } // End namespace gold.