1 // object.cc -- support for an object file for linking in gold
3 // Copyright (C) 2006-2019 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "libiberty.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
49 // Struct Read_symbols_data.
51 // Destroy any remaining File_view objects and buffers of decompressed
54 Read_symbols_data::~Read_symbols_data()
56 if (this->section_headers
!= NULL
)
57 delete this->section_headers
;
58 if (this->section_names
!= NULL
)
59 delete this->section_names
;
60 if (this->symbols
!= NULL
)
62 if (this->symbol_names
!= NULL
)
63 delete this->symbol_names
;
64 if (this->versym
!= NULL
)
66 if (this->verdef
!= NULL
)
68 if (this->verneed
!= NULL
)
74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
75 // section and read it in. SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
78 template<int size
, bool big_endian
>
80 Xindex::initialize_symtab_xindex(Object
* object
, unsigned int symtab_shndx
)
82 if (!this->symtab_xindex_
.empty())
85 gold_assert(symtab_shndx
!= 0);
87 // Look through the sections in reverse order, on the theory that it
88 // is more likely to be near the end than the beginning.
89 unsigned int i
= object
->shnum();
93 if (object
->section_type(i
) == elfcpp::SHT_SYMTAB_SHNDX
94 && this->adjust_shndx(object
->section_link(i
)) == symtab_shndx
)
96 this->read_symtab_xindex
<size
, big_endian
>(object
, i
, NULL
);
101 object
->error(_("missing SHT_SYMTAB_SHNDX section"));
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
108 template<int size
, bool big_endian
>
110 Xindex::read_symtab_xindex(Object
* object
, unsigned int xindex_shndx
,
111 const unsigned char* pshdrs
)
113 section_size_type bytecount
;
114 const unsigned char* contents
;
116 contents
= object
->section_contents(xindex_shndx
, &bytecount
, false);
119 const unsigned char* p
= (pshdrs
121 * elfcpp::Elf_sizes
<size
>::shdr_size
));
122 typename
elfcpp::Shdr
<size
, big_endian
> shdr(p
);
123 bytecount
= convert_to_section_size_type(shdr
.get_sh_size());
124 contents
= object
->get_view(shdr
.get_sh_offset(), bytecount
, true, false);
127 gold_assert(this->symtab_xindex_
.empty());
128 this->symtab_xindex_
.reserve(bytecount
/ 4);
129 for (section_size_type i
= 0; i
< bytecount
; i
+= 4)
131 unsigned int shndx
= elfcpp::Swap
<32, big_endian
>::readval(contents
+ i
);
132 // We preadjust the section indexes we save.
133 this->symtab_xindex_
.push_back(this->adjust_shndx(shndx
));
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
141 Xindex::sym_xindex_to_shndx(Object
* object
, unsigned int symndx
)
143 if (symndx
>= this->symtab_xindex_
.size())
145 object
->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
147 return elfcpp::SHN_UNDEF
;
149 unsigned int shndx
= this->symtab_xindex_
[symndx
];
150 if (shndx
< elfcpp::SHN_LORESERVE
|| shndx
>= object
->shnum())
152 object
->error(_("extended index for symbol %u out of range: %u"),
154 return elfcpp::SHN_UNDEF
;
161 // Report an error for this object file. This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
166 Object::error(const char* format
, ...) const
169 va_start(args
, format
);
171 if (vasprintf(&buf
, format
, args
) < 0)
174 gold_error(_("%s: %s"), this->name().c_str(), buf
);
178 // Return a view of the contents of a section.
181 Object::section_contents(unsigned int shndx
, section_size_type
* plen
,
183 { return this->do_section_contents(shndx
, plen
, cache
); }
185 // Read the section data into SD. This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
188 template<int size
, bool big_endian
>
190 Object::read_section_data(elfcpp::Elf_file
<size
, big_endian
, Object
>* elf_file
,
191 Read_symbols_data
* sd
)
193 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
195 // Read the section headers.
196 const off_t shoff
= elf_file
->shoff();
197 const unsigned int shnum
= this->shnum();
198 sd
->section_headers
= this->get_lasting_view(shoff
, shnum
* shdr_size
,
201 // Read the section names.
202 const unsigned char* pshdrs
= sd
->section_headers
->data();
203 const unsigned char* pshdrnames
= pshdrs
+ elf_file
->shstrndx() * shdr_size
;
204 typename
elfcpp::Shdr
<size
, big_endian
> shdrnames(pshdrnames
);
206 if (shdrnames
.get_sh_type() != elfcpp::SHT_STRTAB
)
207 this->error(_("section name section has wrong type: %u"),
208 static_cast<unsigned int>(shdrnames
.get_sh_type()));
210 sd
->section_names_size
=
211 convert_to_section_size_type(shdrnames
.get_sh_size());
212 sd
->section_names
= this->get_lasting_view(shdrnames
.get_sh_offset(),
213 sd
->section_names_size
, false,
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued. SHNDX is the section index. Return
219 // whether it is a warning section.
222 Object::handle_gnu_warning_section(const char* name
, unsigned int shndx
,
223 Symbol_table
* symtab
)
225 const char warn_prefix
[] = ".gnu.warning.";
226 const int warn_prefix_len
= sizeof warn_prefix
- 1;
227 if (strncmp(name
, warn_prefix
, warn_prefix_len
) == 0)
229 // Read the section contents to get the warning text. It would
230 // be nicer if we only did this if we have to actually issue a
231 // warning. Unfortunately, warnings are issued as we relocate
232 // sections. That means that we can not lock the object then,
233 // as we might try to issue the same warning multiple times
235 section_size_type len
;
236 const unsigned char* contents
= this->section_contents(shndx
, &len
,
240 const char* warning
= name
+ warn_prefix_len
;
241 contents
= reinterpret_cast<const unsigned char*>(warning
);
242 len
= strlen(warning
);
244 std::string
warning(reinterpret_cast<const char*>(contents
), len
);
245 symtab
->add_warning(name
+ warn_prefix_len
, this, warning
);
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
255 Object::handle_split_stack_section(const char* name
)
257 if (strcmp(name
, ".note.GNU-split-stack") == 0)
259 this->uses_split_stack_
= true;
262 if (strcmp(name
, ".note.GNU-no-split-stack") == 0)
264 this->has_no_split_stack_
= true;
274 Relobj::initialize_input_to_output_map(unsigned int shndx
,
275 typename
elfcpp::Elf_types
<size
>::Elf_Addr starting_address
,
276 Unordered_map
<section_offset_type
,
277 typename
elfcpp::Elf_types
<size
>::Elf_Addr
>* output_addresses
) const {
278 Object_merge_map
*map
= this->object_merge_map_
;
279 map
->initialize_input_to_output_map
<size
>(shndx
, starting_address
,
284 Relobj::add_merge_mapping(Output_section_data
*output_data
,
285 unsigned int shndx
, section_offset_type offset
,
286 section_size_type length
,
287 section_offset_type output_offset
) {
288 Object_merge_map
* object_merge_map
= this->get_or_create_merge_map();
289 object_merge_map
->add_mapping(output_data
, shndx
, offset
, length
, output_offset
);
293 Relobj::merge_output_offset(unsigned int shndx
, section_offset_type offset
,
294 section_offset_type
*poutput
) const {
295 Object_merge_map
* object_merge_map
= this->object_merge_map_
;
296 if (object_merge_map
== NULL
)
298 return object_merge_map
->get_output_offset(shndx
, offset
, poutput
);
301 const Output_section_data
*
302 Relobj::find_merge_section(unsigned int shndx
) const {
303 Object_merge_map
* object_merge_map
= this->object_merge_map_
;
304 if (object_merge_map
== NULL
)
306 return object_merge_map
->find_merge_section(shndx
);
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
314 Relobj::copy_symbols_data(Symbols_data
* gc_sd
, Read_symbols_data
* sd
,
315 unsigned int section_header_size
)
317 gc_sd
->section_headers_data
=
318 new unsigned char[(section_header_size
)];
319 memcpy(gc_sd
->section_headers_data
, sd
->section_headers
->data(),
320 section_header_size
);
321 gc_sd
->section_names_data
=
322 new unsigned char[sd
->section_names_size
];
323 memcpy(gc_sd
->section_names_data
, sd
->section_names
->data(),
324 sd
->section_names_size
);
325 gc_sd
->section_names_size
= sd
->section_names_size
;
326 if (sd
->symbols
!= NULL
)
328 gc_sd
->symbols_data
=
329 new unsigned char[sd
->symbols_size
];
330 memcpy(gc_sd
->symbols_data
, sd
->symbols
->data(),
335 gc_sd
->symbols_data
= NULL
;
337 gc_sd
->symbols_size
= sd
->symbols_size
;
338 gc_sd
->external_symbols_offset
= sd
->external_symbols_offset
;
339 if (sd
->symbol_names
!= NULL
)
341 gc_sd
->symbol_names_data
=
342 new unsigned char[sd
->symbol_names_size
];
343 memcpy(gc_sd
->symbol_names_data
, sd
->symbol_names
->data(),
344 sd
->symbol_names_size
);
348 gc_sd
->symbol_names_data
= NULL
;
350 gc_sd
->symbol_names_size
= sd
->symbol_names_size
;
353 // This function determines if a particular section name must be included
354 // in the link. This is used during garbage collection to determine the
355 // roots of the worklist.
358 Relobj::is_section_name_included(const char* name
)
360 if (is_prefix_of(".ctors", name
)
361 || is_prefix_of(".dtors", name
)
362 || is_prefix_of(".note", name
)
363 || is_prefix_of(".init", name
)
364 || is_prefix_of(".fini", name
)
365 || is_prefix_of(".gcc_except_table", name
)
366 || is_prefix_of(".jcr", name
)
367 || is_prefix_of(".preinit_array", name
)
368 || (is_prefix_of(".text", name
)
369 && strstr(name
, "personality"))
370 || (is_prefix_of(".data", name
)
371 && strstr(name
, "personality"))
372 || (is_prefix_of(".sdata", name
)
373 && strstr(name
, "personality"))
374 || (is_prefix_of(".gnu.linkonce.d", name
)
375 && strstr(name
, "personality"))
376 || (is_prefix_of(".rodata", name
)
377 && strstr(name
, "nptl_version")))
384 // Finalize the incremental relocation information. Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block. If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
390 Relobj::finalize_incremental_relocs(Layout
* layout
, bool clear_counts
)
392 unsigned int nsyms
= this->get_global_symbols()->size();
393 this->reloc_bases_
= new unsigned int[nsyms
];
395 gold_assert(this->reloc_bases_
!= NULL
);
396 gold_assert(layout
->incremental_inputs() != NULL
);
398 unsigned int rindex
= layout
->incremental_inputs()->get_reloc_count();
399 for (unsigned int i
= 0; i
< nsyms
; ++i
)
401 this->reloc_bases_
[i
] = rindex
;
402 rindex
+= this->reloc_counts_
[i
];
404 this->reloc_counts_
[i
] = 0;
406 layout
->incremental_inputs()->set_reloc_count(rindex
);
410 Relobj::get_or_create_merge_map()
412 if (!this->object_merge_map_
)
413 this->object_merge_map_
= new Object_merge_map();
414 return this->object_merge_map_
;
417 // Class Sized_relobj.
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
422 template<int size
, bool big_endian
>
424 Sized_relobj
<size
, big_endian
>::do_for_all_local_got_entries(
425 Got_offset_list::Visitor
* v
) const
427 unsigned int nsyms
= this->local_symbol_count();
428 for (unsigned int i
= 0; i
< nsyms
; i
++)
430 Local_got_entry_key
key(i
, 0);
431 Local_got_offsets::const_iterator p
= this->local_got_offsets_
.find(key
);
432 if (p
!= this->local_got_offsets_
.end())
434 const Got_offset_list
* got_offsets
= p
->second
;
435 got_offsets
->for_all_got_offsets(v
);
440 // Get the address of an output section.
442 template<int size
, bool big_endian
>
444 Sized_relobj
<size
, big_endian
>::do_output_section_address(
447 // If the input file is linked as --just-symbols, the output
448 // section address is the input section address.
449 if (this->just_symbols())
450 return this->section_address(shndx
);
452 const Output_section
* os
= this->do_output_section(shndx
);
453 gold_assert(os
!= NULL
);
454 return os
->address();
457 // Class Sized_relobj_file.
459 template<int size
, bool big_endian
>
460 Sized_relobj_file
<size
, big_endian
>::Sized_relobj_file(
461 const std::string
& name
,
462 Input_file
* input_file
,
464 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
465 : Sized_relobj
<size
, big_endian
>(name
, input_file
, offset
),
466 elf_file_(this, ehdr
),
468 local_symbol_count_(0),
469 output_local_symbol_count_(0),
470 output_local_dynsym_count_(0),
473 local_symbol_offset_(0),
474 local_dynsym_offset_(0),
476 local_plt_offsets_(),
477 kept_comdat_sections_(),
478 has_eh_frame_(false),
479 is_deferred_layout_(false),
481 deferred_layout_relocs_(),
484 this->e_type_
= ehdr
.get_e_type();
487 template<int size
, bool big_endian
>
488 Sized_relobj_file
<size
, big_endian
>::~Sized_relobj_file()
492 // Set up an object file based on the file header. This sets up the
493 // section information.
495 template<int size
, bool big_endian
>
497 Sized_relobj_file
<size
, big_endian
>::do_setup()
499 const unsigned int shnum
= this->elf_file_
.shnum();
500 this->set_shnum(shnum
);
503 // Find the SHT_SYMTAB section, given the section headers. The ELF
504 // standard says that maybe in the future there can be more than one
505 // SHT_SYMTAB section. Until somebody figures out how that could
506 // work, we assume there is only one.
508 template<int size
, bool big_endian
>
510 Sized_relobj_file
<size
, big_endian
>::find_symtab(const unsigned char* pshdrs
)
512 const unsigned int shnum
= this->shnum();
513 this->symtab_shndx_
= 0;
516 // Look through the sections in reverse order, since gas tends
517 // to put the symbol table at the end.
518 const unsigned char* p
= pshdrs
+ shnum
* This::shdr_size
;
519 unsigned int i
= shnum
;
520 unsigned int xindex_shndx
= 0;
521 unsigned int xindex_link
= 0;
525 p
-= This::shdr_size
;
526 typename
This::Shdr
shdr(p
);
527 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB
)
529 this->symtab_shndx_
= i
;
530 if (xindex_shndx
> 0 && xindex_link
== i
)
533 new Xindex(this->elf_file_
.large_shndx_offset());
534 xindex
->read_symtab_xindex
<size
, big_endian
>(this,
537 this->set_xindex(xindex
);
542 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
543 // one. This will work if it follows the SHT_SYMTAB
545 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX
)
548 xindex_link
= this->adjust_shndx(shdr
.get_sh_link());
554 // Return the Xindex structure to use for object with lots of
557 template<int size
, bool big_endian
>
559 Sized_relobj_file
<size
, big_endian
>::do_initialize_xindex()
561 gold_assert(this->symtab_shndx_
!= -1U);
562 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
563 xindex
->initialize_symtab_xindex
<size
, big_endian
>(this, this->symtab_shndx_
);
567 // Return whether SHDR has the right type and flags to be a GNU
568 // .eh_frame section.
570 template<int size
, bool big_endian
>
572 Sized_relobj_file
<size
, big_endian
>::check_eh_frame_flags(
573 const elfcpp::Shdr
<size
, big_endian
>* shdr
) const
575 elfcpp::Elf_Word sh_type
= shdr
->get_sh_type();
576 return ((sh_type
== elfcpp::SHT_PROGBITS
577 || sh_type
== parameters
->target().unwind_section_type())
578 && (shdr
->get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
581 // Find the section header with the given name.
583 template<int size
, bool big_endian
>
586 const unsigned char* pshdrs
,
589 section_size_type names_size
,
590 const unsigned char* hdr
) const
592 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
593 const unsigned int shnum
= this->shnum();
594 const unsigned char* hdr_end
= pshdrs
+ shdr_size
* shnum
;
601 // We found HDR last time we were called, continue looking.
602 typename
elfcpp::Shdr
<size
, big_endian
> shdr(hdr
);
603 sh_name
= shdr
.get_sh_name();
607 // Look for the next occurrence of NAME in NAMES.
608 // The fact that .shstrtab produced by current GNU tools is
609 // string merged means we shouldn't have both .not.foo and
610 // .foo in .shstrtab, and multiple .foo sections should all
611 // have the same sh_name. However, this is not guaranteed
612 // by the ELF spec and not all ELF object file producers may
614 size_t len
= strlen(name
) + 1;
615 const char *p
= sh_name
? names
+ sh_name
+ len
: names
;
616 p
= reinterpret_cast<const char*>(memmem(p
, names_size
- (p
- names
),
627 while (hdr
< hdr_end
)
629 typename
elfcpp::Shdr
<size
, big_endian
> shdr(hdr
);
630 if (shdr
.get_sh_name() == sh_name
)
640 // Return whether there is a GNU .eh_frame section, given the section
641 // headers and the section names.
643 template<int size
, bool big_endian
>
645 Sized_relobj_file
<size
, big_endian
>::find_eh_frame(
646 const unsigned char* pshdrs
,
648 section_size_type names_size
) const
650 const unsigned char* s
= NULL
;
654 s
= this->template find_shdr
<size
, big_endian
>(pshdrs
, ".eh_frame",
655 names
, names_size
, s
);
659 typename
This::Shdr
shdr(s
);
660 if (this->check_eh_frame_flags(&shdr
))
665 // Return TRUE if this is a section whose contents will be needed in the
666 // Add_symbols task. This function is only called for sections that have
667 // already passed the test in is_compressed_debug_section() and the debug
668 // section name prefix, ".debug"/".zdebug", has been skipped.
671 need_decompressed_section(const char* name
)
676 #ifdef ENABLE_THREADS
677 // Decompressing these sections now will help only if we're
679 if (parameters
->options().threads())
681 // We will need .zdebug_str if this is not an incremental link
682 // (i.e., we are processing string merge sections) or if we need
683 // to build a gdb index.
684 if ((!parameters
->incremental() || parameters
->options().gdb_index())
685 && strcmp(name
, "str") == 0)
688 // We will need these other sections when building a gdb index.
689 if (parameters
->options().gdb_index()
690 && (strcmp(name
, "info") == 0
691 || strcmp(name
, "types") == 0
692 || strcmp(name
, "pubnames") == 0
693 || strcmp(name
, "pubtypes") == 0
694 || strcmp(name
, "ranges") == 0
695 || strcmp(name
, "abbrev") == 0))
700 // Even when single-threaded, we will need .zdebug_str if this is
701 // not an incremental link and we are building a gdb index.
702 // Otherwise, we would decompress the section twice: once for
703 // string merge processing, and once for building the gdb index.
704 if (!parameters
->incremental()
705 && parameters
->options().gdb_index()
706 && strcmp(name
, "str") == 0)
712 // Build a table for any compressed debug sections, mapping each section index
713 // to the uncompressed size and (if needed) the decompressed contents.
715 template<int size
, bool big_endian
>
716 Compressed_section_map
*
717 build_compressed_section_map(
718 const unsigned char* pshdrs
,
721 section_size_type names_size
,
723 bool decompress_if_needed
)
725 Compressed_section_map
* uncompressed_map
= new Compressed_section_map();
726 const unsigned int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
727 const unsigned char* p
= pshdrs
+ shdr_size
;
729 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= shdr_size
)
731 typename
elfcpp::Shdr
<size
, big_endian
> shdr(p
);
732 if (shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
733 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
735 if (shdr
.get_sh_name() >= names_size
)
737 obj
->error(_("bad section name offset for section %u: %lu"),
738 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
742 const char* name
= names
+ shdr
.get_sh_name();
743 bool is_compressed
= ((shdr
.get_sh_flags()
744 & elfcpp::SHF_COMPRESSED
) != 0);
745 bool is_zcompressed
= (!is_compressed
746 && is_compressed_debug_section(name
));
748 if (is_zcompressed
|| is_compressed
)
750 section_size_type len
;
751 const unsigned char* contents
=
752 obj
->section_contents(i
, &len
, false);
753 uint64_t uncompressed_size
;
754 Compressed_section_info info
;
757 // Skip over the ".zdebug" prefix.
759 uncompressed_size
= get_uncompressed_size(contents
, len
);
760 info
.addralign
= shdr
.get_sh_addralign();
764 // Skip over the ".debug" prefix.
766 elfcpp::Chdr
<size
, big_endian
> chdr(contents
);
767 uncompressed_size
= chdr
.get_ch_size();
768 info
.addralign
= chdr
.get_ch_addralign();
770 info
.size
= convert_to_section_size_type(uncompressed_size
);
771 info
.flag
= shdr
.get_sh_flags();
772 info
.contents
= NULL
;
773 if (uncompressed_size
!= -1ULL)
775 unsigned char* uncompressed_data
= NULL
;
776 if (decompress_if_needed
&& need_decompressed_section(name
))
778 uncompressed_data
= new unsigned char[uncompressed_size
];
779 if (decompress_input_section(contents
, len
,
783 shdr
.get_sh_flags()))
784 info
.contents
= uncompressed_data
;
786 delete[] uncompressed_data
;
788 (*uncompressed_map
)[i
] = info
;
793 return uncompressed_map
;
796 // Stash away info for a number of special sections.
797 // Return true if any of the sections found require local symbols to be read.
799 template<int size
, bool big_endian
>
801 Sized_relobj_file
<size
, big_endian
>::do_find_special_sections(
802 Read_symbols_data
* sd
)
804 const unsigned char* const pshdrs
= sd
->section_headers
->data();
805 const unsigned char* namesu
= sd
->section_names
->data();
806 const char* names
= reinterpret_cast<const char*>(namesu
);
808 if (this->find_eh_frame(pshdrs
, names
, sd
->section_names_size
))
809 this->has_eh_frame_
= true;
811 Compressed_section_map
* compressed_sections
=
812 build_compressed_section_map
<size
, big_endian
>(
813 pshdrs
, this->shnum(), names
, sd
->section_names_size
, this, true);
814 if (compressed_sections
!= NULL
)
815 this->set_compressed_sections(compressed_sections
);
817 return (this->has_eh_frame_
818 || (!parameters
->options().relocatable()
819 && parameters
->options().gdb_index()
820 && (memmem(names
, sd
->section_names_size
, "debug_info", 11) != NULL
821 || memmem(names
, sd
->section_names_size
,
822 "debug_types", 12) != NULL
)));
825 // Read the sections and symbols from an object file.
827 template<int size
, bool big_endian
>
829 Sized_relobj_file
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
831 this->base_read_symbols(sd
);
834 // Read the sections and symbols from an object file. This is common
835 // code for all target-specific overrides of do_read_symbols().
837 template<int size
, bool big_endian
>
839 Sized_relobj_file
<size
, big_endian
>::base_read_symbols(Read_symbols_data
* sd
)
841 this->read_section_data(&this->elf_file_
, sd
);
843 const unsigned char* const pshdrs
= sd
->section_headers
->data();
845 this->find_symtab(pshdrs
);
847 bool need_local_symbols
= this->do_find_special_sections(sd
);
850 sd
->symbols_size
= 0;
851 sd
->external_symbols_offset
= 0;
852 sd
->symbol_names
= NULL
;
853 sd
->symbol_names_size
= 0;
855 if (this->symtab_shndx_
== 0)
857 // No symbol table. Weird but legal.
861 // Get the symbol table section header.
862 typename
This::Shdr
symtabshdr(pshdrs
863 + this->symtab_shndx_
* This::shdr_size
);
864 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
866 // If this object has a .eh_frame section, or if building a .gdb_index
867 // section and there is debug info, we need all the symbols.
868 // Otherwise we only need the external symbols. While it would be
869 // simpler to just always read all the symbols, I've seen object
870 // files with well over 2000 local symbols, which for a 64-bit
871 // object file format is over 5 pages that we don't need to read
874 const int sym_size
= This::sym_size
;
875 const unsigned int loccount
= symtabshdr
.get_sh_info();
876 this->local_symbol_count_
= loccount
;
877 this->local_values_
.resize(loccount
);
878 section_offset_type locsize
= loccount
* sym_size
;
879 off_t dataoff
= symtabshdr
.get_sh_offset();
880 section_size_type datasize
=
881 convert_to_section_size_type(symtabshdr
.get_sh_size());
882 off_t extoff
= dataoff
+ locsize
;
883 section_size_type extsize
= datasize
- locsize
;
885 off_t readoff
= need_local_symbols
? dataoff
: extoff
;
886 section_size_type readsize
= need_local_symbols
? datasize
: extsize
;
890 // No external symbols. Also weird but also legal.
894 File_view
* fvsymtab
= this->get_lasting_view(readoff
, readsize
, true, false);
896 // Read the section header for the symbol names.
897 unsigned int strtab_shndx
= this->adjust_shndx(symtabshdr
.get_sh_link());
898 if (strtab_shndx
>= this->shnum())
900 this->error(_("invalid symbol table name index: %u"), strtab_shndx
);
903 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
904 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
906 this->error(_("symbol table name section has wrong type: %u"),
907 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
911 // Read the symbol names.
912 File_view
* fvstrtab
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
913 strtabshdr
.get_sh_size(),
916 sd
->symbols
= fvsymtab
;
917 sd
->symbols_size
= readsize
;
918 sd
->external_symbols_offset
= need_local_symbols
? locsize
: 0;
919 sd
->symbol_names
= fvstrtab
;
920 sd
->symbol_names_size
=
921 convert_to_section_size_type(strtabshdr
.get_sh_size());
924 // Return the section index of symbol SYM. Set *VALUE to its value in
925 // the object file. Set *IS_ORDINARY if this is an ordinary section
926 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
927 // Note that for a symbol which is not defined in this object file,
928 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
929 // the final value of the symbol in the link.
931 template<int size
, bool big_endian
>
933 Sized_relobj_file
<size
, big_endian
>::symbol_section_and_value(unsigned int sym
,
937 section_size_type symbols_size
;
938 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
942 const size_t count
= symbols_size
/ This::sym_size
;
943 gold_assert(sym
< count
);
945 elfcpp::Sym
<size
, big_endian
> elfsym(symbols
+ sym
* This::sym_size
);
946 *value
= elfsym
.get_st_value();
948 return this->adjust_sym_shndx(sym
, elfsym
.get_st_shndx(), is_ordinary
);
951 // Return whether to include a section group in the link. LAYOUT is
952 // used to keep track of which section groups we have already seen.
953 // INDEX is the index of the section group and SHDR is the section
954 // header. If we do not want to include this group, we set bits in
955 // OMIT for each section which should be discarded.
957 template<int size
, bool big_endian
>
959 Sized_relobj_file
<size
, big_endian
>::include_section_group(
960 Symbol_table
* symtab
,
964 const unsigned char* shdrs
,
965 const char* section_names
,
966 section_size_type section_names_size
,
967 std::vector
<bool>* omit
)
969 // Read the section contents.
970 typename
This::Shdr
shdr(shdrs
+ index
* This::shdr_size
);
971 const unsigned char* pcon
= this->get_view(shdr
.get_sh_offset(),
972 shdr
.get_sh_size(), true, false);
973 const elfcpp::Elf_Word
* pword
=
974 reinterpret_cast<const elfcpp::Elf_Word
*>(pcon
);
976 // The first word contains flags. We only care about COMDAT section
977 // groups. Other section groups are always included in the link
978 // just like ordinary sections.
979 elfcpp::Elf_Word flags
= elfcpp::Swap
<32, big_endian
>::readval(pword
);
981 // Look up the group signature, which is the name of a symbol. ELF
982 // uses a symbol name because some group signatures are long, and
983 // the name is generally already in the symbol table, so it makes
984 // sense to put the long string just once in .strtab rather than in
985 // both .strtab and .shstrtab.
987 // Get the appropriate symbol table header (this will normally be
988 // the single SHT_SYMTAB section, but in principle it need not be).
989 const unsigned int link
= this->adjust_shndx(shdr
.get_sh_link());
990 typename
This::Shdr
symshdr(this, this->elf_file_
.section_header(link
));
992 // Read the symbol table entry.
993 unsigned int symndx
= shdr
.get_sh_info();
994 if (symndx
>= symshdr
.get_sh_size() / This::sym_size
)
996 this->error(_("section group %u info %u out of range"),
1000 off_t symoff
= symshdr
.get_sh_offset() + symndx
* This::sym_size
;
1001 const unsigned char* psym
= this->get_view(symoff
, This::sym_size
, true,
1003 elfcpp::Sym
<size
, big_endian
> sym(psym
);
1005 // Read the symbol table names.
1006 section_size_type symnamelen
;
1007 const unsigned char* psymnamesu
;
1008 psymnamesu
= this->section_contents(this->adjust_shndx(symshdr
.get_sh_link()),
1010 const char* psymnames
= reinterpret_cast<const char*>(psymnamesu
);
1012 // Get the section group signature.
1013 if (sym
.get_st_name() >= symnamelen
)
1015 this->error(_("symbol %u name offset %u out of range"),
1016 symndx
, sym
.get_st_name());
1020 std::string
signature(psymnames
+ sym
.get_st_name());
1022 // It seems that some versions of gas will create a section group
1023 // associated with a section symbol, and then fail to give a name to
1024 // the section symbol. In such a case, use the name of the section.
1025 if (signature
[0] == '\0' && sym
.get_st_type() == elfcpp::STT_SECTION
)
1028 unsigned int sym_shndx
= this->adjust_sym_shndx(symndx
,
1031 if (!is_ordinary
|| sym_shndx
>= this->shnum())
1033 this->error(_("symbol %u invalid section index %u"),
1037 typename
This::Shdr
member_shdr(shdrs
+ sym_shndx
* This::shdr_size
);
1038 if (member_shdr
.get_sh_name() < section_names_size
)
1039 signature
= section_names
+ member_shdr
.get_sh_name();
1042 // Record this section group in the layout, and see whether we've already
1043 // seen one with the same signature.
1046 Kept_section
* kept_section
= NULL
;
1048 if ((flags
& elfcpp::GRP_COMDAT
) == 0)
1050 include_group
= true;
1055 include_group
= layout
->find_or_add_kept_section(signature
,
1057 true, &kept_section
);
1061 if (is_comdat
&& include_group
)
1063 Incremental_inputs
* incremental_inputs
= layout
->incremental_inputs();
1064 if (incremental_inputs
!= NULL
)
1065 incremental_inputs
->report_comdat_group(this, signature
.c_str());
1068 size_t count
= shdr
.get_sh_size() / sizeof(elfcpp::Elf_Word
);
1070 std::vector
<unsigned int> shndxes
;
1071 bool relocate_group
= include_group
&& parameters
->options().relocatable();
1073 shndxes
.reserve(count
- 1);
1075 for (size_t i
= 1; i
< count
; ++i
)
1077 elfcpp::Elf_Word shndx
=
1078 this->adjust_shndx(elfcpp::Swap
<32, big_endian
>::readval(pword
+ i
));
1081 shndxes
.push_back(shndx
);
1083 if (shndx
>= this->shnum())
1085 this->error(_("section %u in section group %u out of range"),
1090 // Check for an earlier section number, since we're going to get
1091 // it wrong--we may have already decided to include the section.
1093 this->error(_("invalid section group %u refers to earlier section %u"),
1096 // Get the name of the member section.
1097 typename
This::Shdr
member_shdr(shdrs
+ shndx
* This::shdr_size
);
1098 if (member_shdr
.get_sh_name() >= section_names_size
)
1100 // This is an error, but it will be diagnosed eventually
1101 // in do_layout, so we don't need to do anything here but
1105 std::string
mname(section_names
+ member_shdr
.get_sh_name());
1110 kept_section
->add_comdat_section(mname
, shndx
,
1111 member_shdr
.get_sh_size());
1115 (*omit
)[shndx
] = true;
1117 // Store a mapping from this section to the Kept_section
1118 // information for the group. This mapping is used for
1119 // relocation processing and diagnostics.
1120 // If the kept section is a linkonce section, we don't
1121 // bother with it unless the comdat group contains just
1122 // a single section, making it easy to match up.
1124 && (kept_section
->is_comdat() || count
== 2))
1125 this->set_kept_comdat_section(shndx
, true, symndx
,
1126 member_shdr
.get_sh_size(),
1132 layout
->layout_group(symtab
, this, index
, name
, signature
.c_str(),
1133 shdr
, flags
, &shndxes
);
1135 return include_group
;
1138 // Whether to include a linkonce section in the link. NAME is the
1139 // name of the section and SHDR is the section header.
1141 // Linkonce sections are a GNU extension implemented in the original
1142 // GNU linker before section groups were defined. The semantics are
1143 // that we only include one linkonce section with a given name. The
1144 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1145 // where T is the type of section and SYMNAME is the name of a symbol.
1146 // In an attempt to make linkonce sections interact well with section
1147 // groups, we try to identify SYMNAME and use it like a section group
1148 // signature. We want to block section groups with that signature,
1149 // but not other linkonce sections with that signature. We also use
1150 // the full name of the linkonce section as a normal section group
1153 template<int size
, bool big_endian
>
1155 Sized_relobj_file
<size
, big_endian
>::include_linkonce_section(
1159 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
1161 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_size
= shdr
.get_sh_size();
1162 // In general the symbol name we want will be the string following
1163 // the last '.'. However, we have to handle the case of
1164 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1165 // some versions of gcc. So we use a heuristic: if the name starts
1166 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1167 // we look for the last '.'. We can't always simply skip
1168 // ".gnu.linkonce.X", because we have to deal with cases like
1169 // ".gnu.linkonce.d.rel.ro.local".
1170 const char* const linkonce_t
= ".gnu.linkonce.t.";
1171 const char* symname
;
1172 if (strncmp(name
, linkonce_t
, strlen(linkonce_t
)) == 0)
1173 symname
= name
+ strlen(linkonce_t
);
1175 symname
= strrchr(name
, '.') + 1;
1176 std::string
sig1(symname
);
1177 std::string
sig2(name
);
1178 Kept_section
* kept1
;
1179 Kept_section
* kept2
;
1180 bool include1
= layout
->find_or_add_kept_section(sig1
, this, index
, false,
1182 bool include2
= layout
->find_or_add_kept_section(sig2
, this, index
, false,
1187 // We are not including this section because we already saw the
1188 // name of the section as a signature. This normally implies
1189 // that the kept section is another linkonce section. If it is
1190 // the same size, record it as the section which corresponds to
1192 if (kept2
->object() != NULL
&& !kept2
->is_comdat())
1193 this->set_kept_comdat_section(index
, false, 0, sh_size
, kept2
);
1197 // The section is being discarded on the basis of its symbol
1198 // name. This means that the corresponding kept section was
1199 // part of a comdat group, and it will be difficult to identify
1200 // the specific section within that group that corresponds to
1201 // this linkonce section. We'll handle the simple case where
1202 // the group has only one member section. Otherwise, it's not
1203 // worth the effort.
1204 if (kept1
->object() != NULL
&& kept1
->is_comdat())
1205 this->set_kept_comdat_section(index
, false, 0, sh_size
, kept1
);
1209 kept1
->set_linkonce_size(sh_size
);
1210 kept2
->set_linkonce_size(sh_size
);
1213 return include1
&& include2
;
1216 // Layout an input section.
1218 template<int size
, bool big_endian
>
1220 Sized_relobj_file
<size
, big_endian
>::layout_section(
1224 const typename
This::Shdr
& shdr
,
1225 unsigned int sh_type
,
1226 unsigned int reloc_shndx
,
1227 unsigned int reloc_type
)
1230 Output_section
* os
= layout
->layout(this, shndx
, name
, shdr
, sh_type
,
1231 reloc_shndx
, reloc_type
, &offset
);
1233 this->output_sections()[shndx
] = os
;
1235 this->section_offsets()[shndx
] = invalid_address
;
1237 this->section_offsets()[shndx
] = convert_types
<Address
, off_t
>(offset
);
1239 // If this section requires special handling, and if there are
1240 // relocs that apply to it, then we must do the special handling
1241 // before we apply the relocs.
1242 if (offset
== -1 && reloc_shndx
!= 0)
1243 this->set_relocs_must_follow_section_writes();
1246 // Layout an input .eh_frame section.
1248 template<int size
, bool big_endian
>
1250 Sized_relobj_file
<size
, big_endian
>::layout_eh_frame_section(
1252 const unsigned char* symbols_data
,
1253 section_size_type symbols_size
,
1254 const unsigned char* symbol_names_data
,
1255 section_size_type symbol_names_size
,
1257 const typename
This::Shdr
& shdr
,
1258 unsigned int reloc_shndx
,
1259 unsigned int reloc_type
)
1261 gold_assert(this->has_eh_frame_
);
1264 Output_section
* os
= layout
->layout_eh_frame(this,
1274 this->output_sections()[shndx
] = os
;
1275 if (os
== NULL
|| offset
== -1)
1276 this->section_offsets()[shndx
] = invalid_address
;
1278 this->section_offsets()[shndx
] = convert_types
<Address
, off_t
>(offset
);
1280 // If this section requires special handling, and if there are
1281 // relocs that aply to it, then we must do the special handling
1282 // before we apply the relocs.
1283 if (os
!= NULL
&& offset
== -1 && reloc_shndx
!= 0)
1284 this->set_relocs_must_follow_section_writes();
1287 // Layout an input .note.gnu.property section.
1289 // This note section has an *extremely* non-standard layout.
1290 // The gABI spec says that ELF-64 files should have 8-byte fields and
1291 // 8-byte alignment in the note section, but the Gnu tools generally
1292 // use 4-byte fields and 4-byte alignment (see the comment for
1293 // Layout::create_note). This section uses 4-byte fields (i.e.,
1294 // namesz, descsz, and type are always 4 bytes), the name field is
1295 // padded to a multiple of 4 bytes, but the desc field is padded
1296 // to a multiple of 4 or 8 bytes, depending on the ELF class.
1297 // The individual properties within the desc field always use
1298 // 4-byte pr_type and pr_datasz fields, but pr_data is padded to
1299 // a multiple of 4 or 8 bytes, depending on the ELF class.
1301 template<int size
, bool big_endian
>
1303 Sized_relobj_file
<size
, big_endian
>::layout_gnu_property_section(
1307 section_size_type contents_len
;
1308 const unsigned char* pcontents
= this->section_contents(shndx
,
1311 const unsigned char* pcontents_end
= pcontents
+ contents_len
;
1313 // Loop over all the notes in this section.
1314 while (pcontents
< pcontents_end
)
1316 if (pcontents
+ 16 > pcontents_end
)
1318 gold_warning(_("%s: corrupt .note.gnu.property section "
1319 "(note too short)"),
1320 this->name().c_str());
1324 size_t namesz
= elfcpp::Swap
<32, big_endian
>::readval(pcontents
);
1325 size_t descsz
= elfcpp::Swap
<32, big_endian
>::readval(pcontents
+ 4);
1326 unsigned int ntype
= elfcpp::Swap
<32, big_endian
>::readval(pcontents
+ 8);
1327 const unsigned char* pname
= pcontents
+ 12;
1329 if (namesz
!= 4 || strcmp(reinterpret_cast<const char*>(pname
), "GNU") != 0)
1331 gold_warning(_("%s: corrupt .note.gnu.property section "
1332 "(name is not 'GNU')"),
1333 this->name().c_str());
1337 if (ntype
!= elfcpp::NT_GNU_PROPERTY_TYPE_0
)
1339 gold_warning(_("%s: unsupported note type %d "
1340 "in .note.gnu.property section"),
1341 this->name().c_str(), ntype
);
1345 size_t aligned_namesz
= align_address(namesz
, 4);
1346 const unsigned char* pdesc
= pname
+ aligned_namesz
;
1348 if (pdesc
+ descsz
> pcontents
+ contents_len
)
1350 gold_warning(_("%s: corrupt .note.gnu.property section"),
1351 this->name().c_str());
1355 const unsigned char* pprop
= pdesc
;
1357 // Loop over the program properties in this note.
1358 while (pprop
< pdesc
+ descsz
)
1360 if (pprop
+ 8 > pdesc
+ descsz
)
1362 gold_warning(_("%s: corrupt .note.gnu.property section"),
1363 this->name().c_str());
1366 unsigned int pr_type
= elfcpp::Swap
<32, big_endian
>::readval(pprop
);
1367 size_t pr_datasz
= elfcpp::Swap
<32, big_endian
>::readval(pprop
+ 4);
1369 if (pprop
+ pr_datasz
> pdesc
+ descsz
)
1371 gold_warning(_("%s: corrupt .note.gnu.property section"),
1372 this->name().c_str());
1375 layout
->layout_gnu_property(ntype
, pr_type
, pr_datasz
, pprop
, this);
1376 pprop
+= align_address(pr_datasz
, size
/ 8);
1379 pcontents
= pdesc
+ align_address(descsz
, size
/ 8);
1383 // Lay out the input sections. We walk through the sections and check
1384 // whether they should be included in the link. If they should, we
1385 // pass them to the Layout object, which will return an output section
1387 // This function is called twice sometimes, two passes, when mapping
1388 // of input sections to output sections must be delayed.
1389 // This is true for the following :
1390 // * Garbage collection (--gc-sections): Some input sections will be
1391 // discarded and hence the assignment must wait until the second pass.
1392 // In the first pass, it is for setting up some sections as roots to
1393 // a work-list for --gc-sections and to do comdat processing.
1394 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1395 // will be folded and hence the assignment must wait.
1396 // * Using plugins to map some sections to unique segments: Mapping
1397 // some sections to unique segments requires mapping them to unique
1398 // output sections too. This can be done via plugins now and this
1399 // information is not available in the first pass.
1401 template<int size
, bool big_endian
>
1403 Sized_relobj_file
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
1405 Read_symbols_data
* sd
)
1407 const unsigned int unwind_section_type
=
1408 parameters
->target().unwind_section_type();
1409 const unsigned int shnum
= this->shnum();
1411 /* Should this function be called twice? */
1412 bool is_two_pass
= (parameters
->options().gc_sections()
1413 || parameters
->options().icf_enabled()
1414 || layout
->is_unique_segment_for_sections_specified());
1416 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1417 a two-pass approach is not needed. */
1418 bool is_pass_one
= false;
1419 bool is_pass_two
= false;
1421 Symbols_data
* gc_sd
= NULL
;
1423 /* Check if do_layout needs to be two-pass. If so, find out which pass
1424 should happen. In the first pass, the data in sd is saved to be used
1425 later in the second pass. */
1428 gc_sd
= this->get_symbols_data();
1431 gold_assert(sd
!= NULL
);
1436 if (parameters
->options().gc_sections())
1437 gold_assert(symtab
->gc()->is_worklist_ready());
1438 if (parameters
->options().icf_enabled())
1439 gold_assert(symtab
->icf()->is_icf_ready());
1449 // During garbage collection save the symbols data to use it when
1450 // re-entering this function.
1451 gc_sd
= new Symbols_data
;
1452 this->copy_symbols_data(gc_sd
, sd
, This::shdr_size
* shnum
);
1453 this->set_symbols_data(gc_sd
);
1456 const unsigned char* section_headers_data
= NULL
;
1457 section_size_type section_names_size
;
1458 const unsigned char* symbols_data
= NULL
;
1459 section_size_type symbols_size
;
1460 const unsigned char* symbol_names_data
= NULL
;
1461 section_size_type symbol_names_size
;
1465 section_headers_data
= gc_sd
->section_headers_data
;
1466 section_names_size
= gc_sd
->section_names_size
;
1467 symbols_data
= gc_sd
->symbols_data
;
1468 symbols_size
= gc_sd
->symbols_size
;
1469 symbol_names_data
= gc_sd
->symbol_names_data
;
1470 symbol_names_size
= gc_sd
->symbol_names_size
;
1474 section_headers_data
= sd
->section_headers
->data();
1475 section_names_size
= sd
->section_names_size
;
1476 if (sd
->symbols
!= NULL
)
1477 symbols_data
= sd
->symbols
->data();
1478 symbols_size
= sd
->symbols_size
;
1479 if (sd
->symbol_names
!= NULL
)
1480 symbol_names_data
= sd
->symbol_names
->data();
1481 symbol_names_size
= sd
->symbol_names_size
;
1484 // Get the section headers.
1485 const unsigned char* shdrs
= section_headers_data
;
1486 const unsigned char* pshdrs
;
1488 // Get the section names.
1489 const unsigned char* pnamesu
= (is_two_pass
1490 ? gc_sd
->section_names_data
1491 : sd
->section_names
->data());
1493 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1495 // If any input files have been claimed by plugins, we need to defer
1496 // actual layout until the replacement files have arrived.
1497 const bool should_defer_layout
=
1498 (parameters
->options().has_plugins()
1499 && parameters
->options().plugins()->should_defer_layout());
1500 unsigned int num_sections_to_defer
= 0;
1502 // For each section, record the index of the reloc section if any.
1503 // Use 0 to mean that there is no reloc section, -1U to mean that
1504 // there is more than one.
1505 std::vector
<unsigned int> reloc_shndx(shnum
, 0);
1506 std::vector
<unsigned int> reloc_type(shnum
, elfcpp::SHT_NULL
);
1507 // Skip the first, dummy, section.
1508 pshdrs
= shdrs
+ This::shdr_size
;
1509 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1511 typename
This::Shdr
shdr(pshdrs
);
1513 // Count the number of sections whose layout will be deferred.
1514 if (should_defer_layout
&& (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1515 ++num_sections_to_defer
;
1517 unsigned int sh_type
= shdr
.get_sh_type();
1518 if (sh_type
== elfcpp::SHT_REL
|| sh_type
== elfcpp::SHT_RELA
)
1520 unsigned int target_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1521 if (target_shndx
== 0 || target_shndx
>= shnum
)
1523 this->error(_("relocation section %u has bad info %u"),
1528 if (reloc_shndx
[target_shndx
] != 0)
1529 reloc_shndx
[target_shndx
] = -1U;
1532 reloc_shndx
[target_shndx
] = i
;
1533 reloc_type
[target_shndx
] = sh_type
;
1538 Output_sections
& out_sections(this->output_sections());
1539 std::vector
<Address
>& out_section_offsets(this->section_offsets());
1543 out_sections
.resize(shnum
);
1544 out_section_offsets
.resize(shnum
);
1547 // If we are only linking for symbols, then there is nothing else to
1549 if (this->input_file()->just_symbols())
1553 delete sd
->section_headers
;
1554 sd
->section_headers
= NULL
;
1555 delete sd
->section_names
;
1556 sd
->section_names
= NULL
;
1561 if (num_sections_to_defer
> 0)
1563 parameters
->options().plugins()->add_deferred_layout_object(this);
1564 this->deferred_layout_
.reserve(num_sections_to_defer
);
1565 this->is_deferred_layout_
= true;
1568 // Whether we've seen a .note.GNU-stack section.
1569 bool seen_gnu_stack
= false;
1570 // The flags of a .note.GNU-stack section.
1571 uint64_t gnu_stack_flags
= 0;
1573 // Keep track of which sections to omit.
1574 std::vector
<bool> omit(shnum
, false);
1576 // Keep track of reloc sections when emitting relocations.
1577 const bool relocatable
= parameters
->options().relocatable();
1578 const bool emit_relocs
= (relocatable
1579 || parameters
->options().emit_relocs());
1580 std::vector
<unsigned int> reloc_sections
;
1582 // Keep track of .eh_frame sections.
1583 std::vector
<unsigned int> eh_frame_sections
;
1585 // Keep track of .debug_info and .debug_types sections.
1586 std::vector
<unsigned int> debug_info_sections
;
1587 std::vector
<unsigned int> debug_types_sections
;
1589 // Skip the first, dummy, section.
1590 pshdrs
= shdrs
+ This::shdr_size
;
1591 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1593 typename
This::Shdr
shdr(pshdrs
);
1594 const unsigned int sh_name
= shdr
.get_sh_name();
1595 unsigned int sh_type
= shdr
.get_sh_type();
1597 if (sh_name
>= section_names_size
)
1599 this->error(_("bad section name offset for section %u: %lu"),
1600 i
, static_cast<unsigned long>(sh_name
));
1604 const char* name
= pnames
+ sh_name
;
1608 if (this->handle_gnu_warning_section(name
, i
, symtab
))
1610 if (!relocatable
&& !parameters
->options().shared())
1614 // The .note.GNU-stack section is special. It gives the
1615 // protection flags that this object file requires for the stack
1617 if (strcmp(name
, ".note.GNU-stack") == 0)
1619 seen_gnu_stack
= true;
1620 gnu_stack_flags
|= shdr
.get_sh_flags();
1624 // The .note.GNU-split-stack section is also special. It
1625 // indicates that the object was compiled with
1627 if (this->handle_split_stack_section(name
))
1629 if (!relocatable
&& !parameters
->options().shared())
1633 // Skip attributes section.
1634 if (parameters
->target().is_attributes_section(name
))
1639 // Handle .note.gnu.property sections.
1640 if (sh_type
== elfcpp::SHT_NOTE
1641 && strcmp(name
, ".note.gnu.property") == 0)
1643 this->layout_gnu_property_section(layout
, i
);
1647 bool discard
= omit
[i
];
1650 if (sh_type
== elfcpp::SHT_GROUP
)
1652 if (!this->include_section_group(symtab
, layout
, i
, name
,
1658 else if ((shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) == 0
1659 && Layout::is_linkonce(name
))
1661 if (!this->include_linkonce_section(layout
, i
, name
, shdr
))
1666 // Add the section to the incremental inputs layout.
1667 Incremental_inputs
* incremental_inputs
= layout
->incremental_inputs();
1668 if (incremental_inputs
!= NULL
1670 && can_incremental_update(sh_type
))
1672 off_t sh_size
= shdr
.get_sh_size();
1673 section_size_type uncompressed_size
;
1674 if (this->section_is_compressed(i
, &uncompressed_size
))
1675 sh_size
= uncompressed_size
;
1676 incremental_inputs
->report_input_section(this, i
, name
, sh_size
);
1681 // Do not include this section in the link.
1682 out_sections
[i
] = NULL
;
1683 out_section_offsets
[i
] = invalid_address
;
1688 if (is_pass_one
&& parameters
->options().gc_sections())
1690 if (this->is_section_name_included(name
)
1691 || layout
->keep_input_section (this, name
)
1692 || sh_type
== elfcpp::SHT_INIT_ARRAY
1693 || sh_type
== elfcpp::SHT_FINI_ARRAY
)
1695 symtab
->gc()->worklist().push_back(Section_id(this, i
));
1697 // If the section name XXX can be represented as a C identifier
1698 // it cannot be discarded if there are references to
1699 // __start_XXX and __stop_XXX symbols. These need to be
1700 // specially handled.
1701 if (is_cident(name
))
1703 symtab
->gc()->add_cident_section(name
, Section_id(this, i
));
1707 // When doing a relocatable link we are going to copy input
1708 // reloc sections into the output. We only want to copy the
1709 // ones associated with sections which are not being discarded.
1710 // However, we don't know that yet for all sections. So save
1711 // reloc sections and process them later. Garbage collection is
1712 // not triggered when relocatable code is desired.
1714 && (sh_type
== elfcpp::SHT_REL
1715 || sh_type
== elfcpp::SHT_RELA
))
1717 reloc_sections
.push_back(i
);
1721 if (relocatable
&& sh_type
== elfcpp::SHT_GROUP
)
1724 // The .eh_frame section is special. It holds exception frame
1725 // information that we need to read in order to generate the
1726 // exception frame header. We process these after all the other
1727 // sections so that the exception frame reader can reliably
1728 // determine which sections are being discarded, and discard the
1729 // corresponding information.
1730 if (this->check_eh_frame_flags(&shdr
)
1731 && strcmp(name
, ".eh_frame") == 0)
1733 // If the target has a special unwind section type, let's
1734 // canonicalize it here.
1735 sh_type
= unwind_section_type
;
1740 if (this->is_deferred_layout())
1741 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1743 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1744 out_section_offsets
[i
] = invalid_address
;
1746 else if (this->is_deferred_layout())
1748 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1749 out_section_offsets
[i
] = invalid_address
;
1750 this->deferred_layout_
.push_back(
1751 Deferred_layout(i
, name
, sh_type
, pshdrs
,
1752 reloc_shndx
[i
], reloc_type
[i
]));
1755 eh_frame_sections
.push_back(i
);
1760 if (is_pass_two
&& parameters
->options().gc_sections())
1762 // This is executed during the second pass of garbage
1763 // collection. do_layout has been called before and some
1764 // sections have been already discarded. Simply ignore
1765 // such sections this time around.
1766 if (out_sections
[i
] == NULL
)
1768 gold_assert(out_section_offsets
[i
] == invalid_address
);
1771 if (((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1772 && symtab
->gc()->is_section_garbage(this, i
))
1774 if (parameters
->options().print_gc_sections())
1775 gold_info(_("%s: removing unused section from '%s'"
1777 program_name
, this->section_name(i
).c_str(),
1778 this->name().c_str());
1779 out_sections
[i
] = NULL
;
1780 out_section_offsets
[i
] = invalid_address
;
1785 if (is_pass_two
&& parameters
->options().icf_enabled())
1787 if (out_sections
[i
] == NULL
)
1789 gold_assert(out_section_offsets
[i
] == invalid_address
);
1792 if (((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1793 && symtab
->icf()->is_section_folded(this, i
))
1795 if (parameters
->options().print_icf_sections())
1798 symtab
->icf()->get_folded_section(this, i
);
1799 Relobj
* folded_obj
=
1800 reinterpret_cast<Relobj
*>(folded
.first
);
1801 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1802 "into '%s' in file '%s'"),
1803 program_name
, this->section_name(i
).c_str(),
1804 this->name().c_str(),
1805 folded_obj
->section_name(folded
.second
).c_str(),
1806 folded_obj
->name().c_str());
1808 out_sections
[i
] = NULL
;
1809 out_section_offsets
[i
] = invalid_address
;
1814 // Defer layout here if input files are claimed by plugins. When gc
1815 // is turned on this function is called twice; we only want to do this
1816 // on the first pass.
1818 && this->is_deferred_layout()
1819 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1821 this->deferred_layout_
.push_back(Deferred_layout(i
, name
, sh_type
,
1825 // Put dummy values here; real values will be supplied by
1826 // do_layout_deferred_sections.
1827 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1828 out_section_offsets
[i
] = invalid_address
;
1832 // During gc_pass_two if a section that was previously deferred is
1833 // found, do not layout the section as layout_deferred_sections will
1834 // do it later from gold.cc.
1836 && (out_sections
[i
] == reinterpret_cast<Output_section
*>(2)))
1841 // This is during garbage collection. The out_sections are
1842 // assigned in the second call to this function.
1843 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1844 out_section_offsets
[i
] = invalid_address
;
1848 // When garbage collection is switched on the actual layout
1849 // only happens in the second call.
1850 this->layout_section(layout
, i
, name
, shdr
, sh_type
, reloc_shndx
[i
],
1853 // When generating a .gdb_index section, we do additional
1854 // processing of .debug_info and .debug_types sections after all
1855 // the other sections for the same reason as above.
1857 && parameters
->options().gdb_index()
1858 && !(shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1860 if (strcmp(name
, ".debug_info") == 0
1861 || strcmp(name
, ".zdebug_info") == 0)
1862 debug_info_sections
.push_back(i
);
1863 else if (strcmp(name
, ".debug_types") == 0
1864 || strcmp(name
, ".zdebug_types") == 0)
1865 debug_types_sections
.push_back(i
);
1872 layout
->merge_gnu_properties(this);
1873 layout
->layout_gnu_stack(seen_gnu_stack
, gnu_stack_flags
, this);
1876 // Handle the .eh_frame sections after the other sections.
1877 gold_assert(!is_pass_one
|| eh_frame_sections
.empty());
1878 for (std::vector
<unsigned int>::const_iterator p
= eh_frame_sections
.begin();
1879 p
!= eh_frame_sections
.end();
1882 unsigned int i
= *p
;
1883 const unsigned char* pshdr
;
1884 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1885 typename
This::Shdr
shdr(pshdr
);
1887 this->layout_eh_frame_section(layout
,
1898 // When doing a relocatable link handle the reloc sections at the
1899 // end. Garbage collection and Identical Code Folding is not
1900 // turned on for relocatable code.
1902 this->size_relocatable_relocs();
1904 gold_assert(!is_two_pass
|| reloc_sections
.empty());
1906 for (std::vector
<unsigned int>::const_iterator p
= reloc_sections
.begin();
1907 p
!= reloc_sections
.end();
1910 unsigned int i
= *p
;
1911 const unsigned char* pshdr
;
1912 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1913 typename
This::Shdr
shdr(pshdr
);
1915 unsigned int data_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1916 if (data_shndx
>= shnum
)
1918 // We already warned about this above.
1922 Output_section
* data_section
= out_sections
[data_shndx
];
1923 if (data_section
== reinterpret_cast<Output_section
*>(2))
1927 // The layout for the data section was deferred, so we need
1928 // to defer the relocation section, too.
1929 const char* name
= pnames
+ shdr
.get_sh_name();
1930 this->deferred_layout_relocs_
.push_back(
1931 Deferred_layout(i
, name
, shdr
.get_sh_type(), pshdr
, 0,
1933 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1934 out_section_offsets
[i
] = invalid_address
;
1937 if (data_section
== NULL
)
1939 out_sections
[i
] = NULL
;
1940 out_section_offsets
[i
] = invalid_address
;
1944 Relocatable_relocs
* rr
= new Relocatable_relocs();
1945 this->set_relocatable_relocs(i
, rr
);
1947 Output_section
* os
= layout
->layout_reloc(this, i
, shdr
, data_section
,
1949 out_sections
[i
] = os
;
1950 out_section_offsets
[i
] = invalid_address
;
1953 // When building a .gdb_index section, scan the .debug_info and
1954 // .debug_types sections.
1955 gold_assert(!is_pass_one
1956 || (debug_info_sections
.empty() && debug_types_sections
.empty()));
1957 for (std::vector
<unsigned int>::const_iterator p
1958 = debug_info_sections
.begin();
1959 p
!= debug_info_sections
.end();
1962 unsigned int i
= *p
;
1963 layout
->add_to_gdb_index(false, this, symbols_data
, symbols_size
,
1964 i
, reloc_shndx
[i
], reloc_type
[i
]);
1966 for (std::vector
<unsigned int>::const_iterator p
1967 = debug_types_sections
.begin();
1968 p
!= debug_types_sections
.end();
1971 unsigned int i
= *p
;
1972 layout
->add_to_gdb_index(true, this, symbols_data
, symbols_size
,
1973 i
, reloc_shndx
[i
], reloc_type
[i
]);
1978 delete[] gc_sd
->section_headers_data
;
1979 delete[] gc_sd
->section_names_data
;
1980 delete[] gc_sd
->symbols_data
;
1981 delete[] gc_sd
->symbol_names_data
;
1982 this->set_symbols_data(NULL
);
1986 delete sd
->section_headers
;
1987 sd
->section_headers
= NULL
;
1988 delete sd
->section_names
;
1989 sd
->section_names
= NULL
;
1993 // Layout sections whose layout was deferred while waiting for
1994 // input files from a plugin.
1996 template<int size
, bool big_endian
>
1998 Sized_relobj_file
<size
, big_endian
>::do_layout_deferred_sections(Layout
* layout
)
2000 typename
std::vector
<Deferred_layout
>::iterator deferred
;
2002 for (deferred
= this->deferred_layout_
.begin();
2003 deferred
!= this->deferred_layout_
.end();
2006 typename
This::Shdr
shdr(deferred
->shdr_data_
);
2008 if (!parameters
->options().relocatable()
2009 && deferred
->name_
== ".eh_frame"
2010 && this->check_eh_frame_flags(&shdr
))
2012 // Checking is_section_included is not reliable for
2013 // .eh_frame sections, because they do not have an output
2014 // section. This is not a problem normally because we call
2015 // layout_eh_frame_section unconditionally, but when
2016 // deferring sections that is not true. We don't want to
2017 // keep all .eh_frame sections because that will cause us to
2018 // keep all sections that they refer to, which is the wrong
2019 // way around. Instead, the eh_frame code will discard
2020 // .eh_frame sections that refer to discarded sections.
2022 // Reading the symbols again here may be slow.
2023 Read_symbols_data sd
;
2024 this->base_read_symbols(&sd
);
2025 this->layout_eh_frame_section(layout
,
2028 sd
.symbol_names
->data(),
2029 sd
.symbol_names_size
,
2032 deferred
->reloc_shndx_
,
2033 deferred
->reloc_type_
);
2037 // If the section is not included, it is because the garbage collector
2038 // decided it is not needed. Avoid reverting that decision.
2039 if (!this->is_section_included(deferred
->shndx_
))
2042 this->layout_section(layout
, deferred
->shndx_
, deferred
->name_
.c_str(),
2043 shdr
, shdr
.get_sh_type(), deferred
->reloc_shndx_
,
2044 deferred
->reloc_type_
);
2047 this->deferred_layout_
.clear();
2049 // Now handle the deferred relocation sections.
2051 Output_sections
& out_sections(this->output_sections());
2052 std::vector
<Address
>& out_section_offsets(this->section_offsets());
2054 for (deferred
= this->deferred_layout_relocs_
.begin();
2055 deferred
!= this->deferred_layout_relocs_
.end();
2058 unsigned int shndx
= deferred
->shndx_
;
2059 typename
This::Shdr
shdr(deferred
->shdr_data_
);
2060 unsigned int data_shndx
= this->adjust_shndx(shdr
.get_sh_info());
2062 Output_section
* data_section
= out_sections
[data_shndx
];
2063 if (data_section
== NULL
)
2065 out_sections
[shndx
] = NULL
;
2066 out_section_offsets
[shndx
] = invalid_address
;
2070 Relocatable_relocs
* rr
= new Relocatable_relocs();
2071 this->set_relocatable_relocs(shndx
, rr
);
2073 Output_section
* os
= layout
->layout_reloc(this, shndx
, shdr
,
2075 out_sections
[shndx
] = os
;
2076 out_section_offsets
[shndx
] = invalid_address
;
2080 // Add the symbols to the symbol table.
2082 template<int size
, bool big_endian
>
2084 Sized_relobj_file
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
2085 Read_symbols_data
* sd
,
2088 if (sd
->symbols
== NULL
)
2090 gold_assert(sd
->symbol_names
== NULL
);
2094 const int sym_size
= This::sym_size
;
2095 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
2097 if (symcount
* sym_size
!= sd
->symbols_size
- sd
->external_symbols_offset
)
2099 this->error(_("size of symbols is not multiple of symbol size"));
2103 this->symbols_
.resize(symcount
);
2105 const char* sym_names
=
2106 reinterpret_cast<const char*>(sd
->symbol_names
->data());
2107 symtab
->add_from_relobj(this,
2108 sd
->symbols
->data() + sd
->external_symbols_offset
,
2109 symcount
, this->local_symbol_count_
,
2110 sym_names
, sd
->symbol_names_size
,
2112 &this->defined_count_
);
2116 delete sd
->symbol_names
;
2117 sd
->symbol_names
= NULL
;
2120 // Find out if this object, that is a member of a lib group, should be included
2121 // in the link. We check every symbol defined by this object. If the symbol
2122 // table has a strong undefined reference to that symbol, we have to include
2125 template<int size
, bool big_endian
>
2126 Archive::Should_include
2127 Sized_relobj_file
<size
, big_endian
>::do_should_include_member(
2128 Symbol_table
* symtab
,
2130 Read_symbols_data
* sd
,
2133 char* tmpbuf
= NULL
;
2134 size_t tmpbuflen
= 0;
2135 const char* sym_names
=
2136 reinterpret_cast<const char*>(sd
->symbol_names
->data());
2137 const unsigned char* syms
=
2138 sd
->symbols
->data() + sd
->external_symbols_offset
;
2139 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2140 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
2143 const unsigned char* p
= syms
;
2145 for (size_t i
= 0; i
< symcount
; ++i
, p
+= sym_size
)
2147 elfcpp::Sym
<size
, big_endian
> sym(p
);
2148 unsigned int st_shndx
= sym
.get_st_shndx();
2149 if (st_shndx
== elfcpp::SHN_UNDEF
)
2152 unsigned int st_name
= sym
.get_st_name();
2153 const char* name
= sym_names
+ st_name
;
2155 Archive::Should_include t
= Archive::should_include_member(symtab
,
2161 if (t
== Archive::SHOULD_INCLUDE_YES
)
2170 return Archive::SHOULD_INCLUDE_UNKNOWN
;
2173 // Iterate over global defined symbols, calling a visitor class V for each.
2175 template<int size
, bool big_endian
>
2177 Sized_relobj_file
<size
, big_endian
>::do_for_all_global_symbols(
2178 Read_symbols_data
* sd
,
2179 Library_base::Symbol_visitor_base
* v
)
2181 const char* sym_names
=
2182 reinterpret_cast<const char*>(sd
->symbol_names
->data());
2183 const unsigned char* syms
=
2184 sd
->symbols
->data() + sd
->external_symbols_offset
;
2185 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2186 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
2188 const unsigned char* p
= syms
;
2190 for (size_t i
= 0; i
< symcount
; ++i
, p
+= sym_size
)
2192 elfcpp::Sym
<size
, big_endian
> sym(p
);
2193 if (sym
.get_st_shndx() != elfcpp::SHN_UNDEF
)
2194 v
->visit(sym_names
+ sym
.get_st_name());
2198 // Return whether the local symbol SYMNDX has a PLT offset.
2200 template<int size
, bool big_endian
>
2202 Sized_relobj_file
<size
, big_endian
>::local_has_plt_offset(
2203 unsigned int symndx
) const
2205 typename
Local_plt_offsets::const_iterator p
=
2206 this->local_plt_offsets_
.find(symndx
);
2207 return p
!= this->local_plt_offsets_
.end();
2210 // Get the PLT offset of a local symbol.
2212 template<int size
, bool big_endian
>
2214 Sized_relobj_file
<size
, big_endian
>::do_local_plt_offset(
2215 unsigned int symndx
) const
2217 typename
Local_plt_offsets::const_iterator p
=
2218 this->local_plt_offsets_
.find(symndx
);
2219 gold_assert(p
!= this->local_plt_offsets_
.end());
2223 // Set the PLT offset of a local symbol.
2225 template<int size
, bool big_endian
>
2227 Sized_relobj_file
<size
, big_endian
>::set_local_plt_offset(
2228 unsigned int symndx
, unsigned int plt_offset
)
2230 std::pair
<typename
Local_plt_offsets::iterator
, bool> ins
=
2231 this->local_plt_offsets_
.insert(std::make_pair(symndx
, plt_offset
));
2232 gold_assert(ins
.second
);
2235 // First pass over the local symbols. Here we add their names to
2236 // *POOL and *DYNPOOL, and we store the symbol value in
2237 // THIS->LOCAL_VALUES_. This function is always called from a
2238 // singleton thread. This is followed by a call to
2239 // finalize_local_symbols.
2241 template<int size
, bool big_endian
>
2243 Sized_relobj_file
<size
, big_endian
>::do_count_local_symbols(Stringpool
* pool
,
2244 Stringpool
* dynpool
)
2246 gold_assert(this->symtab_shndx_
!= -1U);
2247 if (this->symtab_shndx_
== 0)
2249 // This object has no symbols. Weird but legal.
2253 // Read the symbol table section header.
2254 const unsigned int symtab_shndx
= this->symtab_shndx_
;
2255 typename
This::Shdr
symtabshdr(this,
2256 this->elf_file_
.section_header(symtab_shndx
));
2257 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
2259 // Read the local symbols.
2260 const int sym_size
= This::sym_size
;
2261 const unsigned int loccount
= this->local_symbol_count_
;
2262 gold_assert(loccount
== symtabshdr
.get_sh_info());
2263 off_t locsize
= loccount
* sym_size
;
2264 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
2265 locsize
, true, true);
2267 // Read the symbol names.
2268 const unsigned int strtab_shndx
=
2269 this->adjust_shndx(symtabshdr
.get_sh_link());
2270 section_size_type strtab_size
;
2271 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
2274 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
2276 // Loop over the local symbols.
2278 const Output_sections
& out_sections(this->output_sections());
2279 std::vector
<Address
>& out_section_offsets(this->section_offsets());
2280 unsigned int shnum
= this->shnum();
2281 unsigned int count
= 0;
2282 unsigned int dyncount
= 0;
2283 // Skip the first, dummy, symbol.
2285 bool strip_all
= parameters
->options().strip_all();
2286 bool discard_all
= parameters
->options().discard_all();
2287 bool discard_locals
= parameters
->options().discard_locals();
2288 bool discard_sec_merge
= parameters
->options().discard_sec_merge();
2289 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
2291 elfcpp::Sym
<size
, big_endian
> sym(psyms
);
2293 Symbol_value
<size
>& lv(this->local_values_
[i
]);
2296 unsigned int shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
2298 lv
.set_input_shndx(shndx
, is_ordinary
);
2300 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
2301 lv
.set_is_section_symbol();
2302 else if (sym
.get_st_type() == elfcpp::STT_TLS
)
2303 lv
.set_is_tls_symbol();
2304 else if (sym
.get_st_type() == elfcpp::STT_GNU_IFUNC
)
2305 lv
.set_is_ifunc_symbol();
2307 // Save the input symbol value for use in do_finalize_local_symbols().
2308 lv
.set_input_value(sym
.get_st_value());
2310 // Decide whether this symbol should go into the output file.
2314 && (out_sections
[shndx
] == NULL
2315 || (out_sections
[shndx
]->order() == ORDER_EHFRAME
2316 && out_section_offsets
[shndx
] == invalid_address
)))
2318 // This is either a discarded section or an optimized .eh_frame
2320 lv
.set_no_output_symtab_entry();
2321 gold_assert(!lv
.needs_output_dynsym_entry());
2325 if (sym
.get_st_type() == elfcpp::STT_SECTION
2326 || !this->adjust_local_symbol(&lv
))
2328 lv
.set_no_output_symtab_entry();
2329 gold_assert(!lv
.needs_output_dynsym_entry());
2333 if (sym
.get_st_name() >= strtab_size
)
2335 this->error(_("local symbol %u section name out of range: %u >= %u"),
2336 i
, sym
.get_st_name(),
2337 static_cast<unsigned int>(strtab_size
));
2338 lv
.set_no_output_symtab_entry();
2342 const char* name
= pnames
+ sym
.get_st_name();
2344 // If needed, add the symbol to the dynamic symbol table string pool.
2345 if (lv
.needs_output_dynsym_entry())
2347 dynpool
->add(name
, true, NULL
);
2352 || (discard_all
&& lv
.may_be_discarded_from_output_symtab()))
2354 lv
.set_no_output_symtab_entry();
2358 // By default, discard temporary local symbols in merge sections.
2359 // If --discard-locals option is used, discard all temporary local
2360 // symbols. These symbols start with system-specific local label
2361 // prefixes, typically .L for ELF system. We want to be compatible
2362 // with GNU ld so here we essentially use the same check in
2363 // bfd_is_local_label(). The code is different because we already
2366 // - the symbol is local and thus cannot have global or weak binding.
2367 // - the symbol is not a section symbol.
2368 // - the symbol has a name.
2370 // We do not discard a symbol if it needs a dynamic symbol entry.
2372 || (discard_sec_merge
2374 && out_section_offsets
[shndx
] == invalid_address
))
2375 && sym
.get_st_type() != elfcpp::STT_FILE
2376 && !lv
.needs_output_dynsym_entry()
2377 && lv
.may_be_discarded_from_output_symtab()
2378 && parameters
->target().is_local_label_name(name
))
2380 lv
.set_no_output_symtab_entry();
2384 // Discard the local symbol if -retain_symbols_file is specified
2385 // and the local symbol is not in that file.
2386 if (!parameters
->options().should_retain_symbol(name
))
2388 lv
.set_no_output_symtab_entry();
2392 // Add the symbol to the symbol table string pool.
2393 pool
->add(name
, true, NULL
);
2397 this->output_local_symbol_count_
= count
;
2398 this->output_local_dynsym_count_
= dyncount
;
2401 // Compute the final value of a local symbol.
2403 template<int size
, bool big_endian
>
2404 typename Sized_relobj_file
<size
, big_endian
>::Compute_final_local_value_status
2405 Sized_relobj_file
<size
, big_endian
>::compute_final_local_value_internal(
2407 const Symbol_value
<size
>* lv_in
,
2408 Symbol_value
<size
>* lv_out
,
2410 const Output_sections
& out_sections
,
2411 const std::vector
<Address
>& out_offsets
,
2412 const Symbol_table
* symtab
)
2414 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2415 // we may have a memory leak.
2416 gold_assert(lv_out
->has_output_value());
2419 unsigned int shndx
= lv_in
->input_shndx(&is_ordinary
);
2421 // Set the output symbol value.
2425 if (shndx
== elfcpp::SHN_ABS
|| Symbol::is_common_shndx(shndx
))
2426 lv_out
->set_output_value(lv_in
->input_value());
2429 this->error(_("unknown section index %u for local symbol %u"),
2431 lv_out
->set_output_value(0);
2432 return This::CFLV_ERROR
;
2437 if (shndx
>= this->shnum())
2439 this->error(_("local symbol %u section index %u out of range"),
2441 lv_out
->set_output_value(0);
2442 return This::CFLV_ERROR
;
2445 Output_section
* os
= out_sections
[shndx
];
2446 Address secoffset
= out_offsets
[shndx
];
2447 if (symtab
->is_section_folded(this, shndx
))
2449 gold_assert(os
== NULL
&& secoffset
== invalid_address
);
2450 // Get the os of the section it is folded onto.
2451 Section_id folded
= symtab
->icf()->get_folded_section(this,
2453 gold_assert(folded
.first
!= NULL
);
2454 Sized_relobj_file
<size
, big_endian
>* folded_obj
= reinterpret_cast
2455 <Sized_relobj_file
<size
, big_endian
>*>(folded
.first
);
2456 os
= folded_obj
->output_section(folded
.second
);
2457 gold_assert(os
!= NULL
);
2458 secoffset
= folded_obj
->get_output_section_offset(folded
.second
);
2460 // This could be a relaxed input section.
2461 if (secoffset
== invalid_address
)
2463 const Output_relaxed_input_section
* relaxed_section
=
2464 os
->find_relaxed_input_section(folded_obj
, folded
.second
);
2465 gold_assert(relaxed_section
!= NULL
);
2466 secoffset
= relaxed_section
->address() - os
->address();
2472 // This local symbol belongs to a section we are discarding.
2473 // In some cases when applying relocations later, we will
2474 // attempt to match it to the corresponding kept section,
2475 // so we leave the input value unchanged here.
2476 return This::CFLV_DISCARDED
;
2478 else if (secoffset
== invalid_address
)
2482 // This is a SHF_MERGE section or one which otherwise
2483 // requires special handling.
2484 if (os
->order() == ORDER_EHFRAME
)
2486 // This local symbol belongs to a discarded or optimized
2487 // .eh_frame section. Just treat it like the case in which
2488 // os == NULL above.
2489 gold_assert(this->has_eh_frame_
);
2490 return This::CFLV_DISCARDED
;
2492 else if (!lv_in
->is_section_symbol())
2494 // This is not a section symbol. We can determine
2495 // the final value now.
2497 os
->output_address(this, shndx
, lv_in
->input_value());
2499 value
-= os
->address();
2500 lv_out
->set_output_value(value
);
2502 else if (!os
->find_starting_output_address(this, shndx
, &start
))
2504 // This is a section symbol, but apparently not one in a
2505 // merged section. First check to see if this is a relaxed
2506 // input section. If so, use its address. Otherwise just
2507 // use the start of the output section. This happens with
2508 // relocatable links when the input object has section
2509 // symbols for arbitrary non-merge sections.
2510 const Output_section_data
* posd
=
2511 os
->find_relaxed_input_section(this, shndx
);
2514 uint64_t value
= posd
->address();
2516 value
-= os
->address();
2517 lv_out
->set_output_value(value
);
2520 lv_out
->set_output_value(os
->address());
2524 // We have to consider the addend to determine the
2525 // value to use in a relocation. START is the start
2526 // of this input section. If we are doing a relocatable
2527 // link, use offset from start output section instead of
2529 Address adjusted_start
=
2530 relocatable
? start
- os
->address() : start
;
2531 Merged_symbol_value
<size
>* msv
=
2532 new Merged_symbol_value
<size
>(lv_in
->input_value(),
2534 lv_out
->set_merged_symbol_value(msv
);
2537 else if (lv_in
->is_tls_symbol()
2538 || (lv_in
->is_section_symbol()
2539 && (os
->flags() & elfcpp::SHF_TLS
)))
2540 lv_out
->set_output_value(os
->tls_offset()
2542 + lv_in
->input_value());
2544 lv_out
->set_output_value((relocatable
? 0 : os
->address())
2546 + lv_in
->input_value());
2548 return This::CFLV_OK
;
2551 // Compute final local symbol value. R_SYM is the index of a local
2552 // symbol in symbol table. LV points to a symbol value, which is
2553 // expected to hold the input value and to be over-written by the
2554 // final value. SYMTAB points to a symbol table. Some targets may want
2555 // to know would-be-finalized local symbol values in relaxation.
2556 // Hence we provide this method. Since this method updates *LV, a
2557 // callee should make a copy of the original local symbol value and
2558 // use the copy instead of modifying an object's local symbols before
2559 // everything is finalized. The caller should also free up any allocated
2560 // memory in the return value in *LV.
2561 template<int size
, bool big_endian
>
2562 typename Sized_relobj_file
<size
, big_endian
>::Compute_final_local_value_status
2563 Sized_relobj_file
<size
, big_endian
>::compute_final_local_value(
2565 const Symbol_value
<size
>* lv_in
,
2566 Symbol_value
<size
>* lv_out
,
2567 const Symbol_table
* symtab
)
2569 // This is just a wrapper of compute_final_local_value_internal.
2570 const bool relocatable
= parameters
->options().relocatable();
2571 const Output_sections
& out_sections(this->output_sections());
2572 const std::vector
<Address
>& out_offsets(this->section_offsets());
2573 return this->compute_final_local_value_internal(r_sym
, lv_in
, lv_out
,
2574 relocatable
, out_sections
,
2575 out_offsets
, symtab
);
2578 // Finalize the local symbols. Here we set the final value in
2579 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2580 // This function is always called from a singleton thread. The actual
2581 // output of the local symbols will occur in a separate task.
2583 template<int size
, bool big_endian
>
2585 Sized_relobj_file
<size
, big_endian
>::do_finalize_local_symbols(
2588 Symbol_table
* symtab
)
2590 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
2592 const unsigned int loccount
= this->local_symbol_count_
;
2593 this->local_symbol_offset_
= off
;
2595 const bool relocatable
= parameters
->options().relocatable();
2596 const Output_sections
& out_sections(this->output_sections());
2597 const std::vector
<Address
>& out_offsets(this->section_offsets());
2599 for (unsigned int i
= 1; i
< loccount
; ++i
)
2601 Symbol_value
<size
>* lv
= &this->local_values_
[i
];
2603 Compute_final_local_value_status cflv_status
=
2604 this->compute_final_local_value_internal(i
, lv
, lv
, relocatable
,
2605 out_sections
, out_offsets
,
2607 switch (cflv_status
)
2610 if (!lv
->is_output_symtab_index_set())
2612 lv
->set_output_symtab_index(index
);
2616 case CFLV_DISCARDED
:
2627 // Set the output dynamic symbol table indexes for the local variables.
2629 template<int size
, bool big_endian
>
2631 Sized_relobj_file
<size
, big_endian
>::do_set_local_dynsym_indexes(
2634 const unsigned int loccount
= this->local_symbol_count_
;
2635 for (unsigned int i
= 1; i
< loccount
; ++i
)
2637 Symbol_value
<size
>& lv(this->local_values_
[i
]);
2638 if (lv
.needs_output_dynsym_entry())
2640 lv
.set_output_dynsym_index(index
);
2647 // Set the offset where local dynamic symbol information will be stored.
2648 // Returns the count of local symbols contributed to the symbol table by
2651 template<int size
, bool big_endian
>
2653 Sized_relobj_file
<size
, big_endian
>::do_set_local_dynsym_offset(off_t off
)
2655 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
2656 this->local_dynsym_offset_
= off
;
2657 return this->output_local_dynsym_count_
;
2660 // If Symbols_data is not NULL get the section flags from here otherwise
2661 // get it from the file.
2663 template<int size
, bool big_endian
>
2665 Sized_relobj_file
<size
, big_endian
>::do_section_flags(unsigned int shndx
)
2667 Symbols_data
* sd
= this->get_symbols_data();
2670 const unsigned char* pshdrs
= sd
->section_headers_data
2671 + This::shdr_size
* shndx
;
2672 typename
This::Shdr
shdr(pshdrs
);
2673 return shdr
.get_sh_flags();
2675 // If sd is NULL, read the section header from the file.
2676 return this->elf_file_
.section_flags(shndx
);
2679 // Get the section's ent size from Symbols_data. Called by get_section_contents
2682 template<int size
, bool big_endian
>
2684 Sized_relobj_file
<size
, big_endian
>::do_section_entsize(unsigned int shndx
)
2686 Symbols_data
* sd
= this->get_symbols_data();
2687 gold_assert(sd
!= NULL
);
2689 const unsigned char* pshdrs
= sd
->section_headers_data
2690 + This::shdr_size
* shndx
;
2691 typename
This::Shdr
shdr(pshdrs
);
2692 return shdr
.get_sh_entsize();
2695 // Write out the local symbols.
2697 template<int size
, bool big_endian
>
2699 Sized_relobj_file
<size
, big_endian
>::write_local_symbols(
2701 const Stringpool
* sympool
,
2702 const Stringpool
* dynpool
,
2703 Output_symtab_xindex
* symtab_xindex
,
2704 Output_symtab_xindex
* dynsym_xindex
,
2707 const bool strip_all
= parameters
->options().strip_all();
2710 if (this->output_local_dynsym_count_
== 0)
2712 this->output_local_symbol_count_
= 0;
2715 gold_assert(this->symtab_shndx_
!= -1U);
2716 if (this->symtab_shndx_
== 0)
2718 // This object has no symbols. Weird but legal.
2722 // Read the symbol table section header.
2723 const unsigned int symtab_shndx
= this->symtab_shndx_
;
2724 typename
This::Shdr
symtabshdr(this,
2725 this->elf_file_
.section_header(symtab_shndx
));
2726 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
2727 const unsigned int loccount
= this->local_symbol_count_
;
2728 gold_assert(loccount
== symtabshdr
.get_sh_info());
2730 // Read the local symbols.
2731 const int sym_size
= This::sym_size
;
2732 off_t locsize
= loccount
* sym_size
;
2733 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
2734 locsize
, true, false);
2736 // Read the symbol names.
2737 const unsigned int strtab_shndx
=
2738 this->adjust_shndx(symtabshdr
.get_sh_link());
2739 section_size_type strtab_size
;
2740 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
2743 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
2745 // Get views into the output file for the portions of the symbol table
2746 // and the dynamic symbol table that we will be writing.
2747 off_t output_size
= this->output_local_symbol_count_
* sym_size
;
2748 unsigned char* oview
= NULL
;
2749 if (output_size
> 0)
2750 oview
= of
->get_output_view(symtab_off
+ this->local_symbol_offset_
,
2753 off_t dyn_output_size
= this->output_local_dynsym_count_
* sym_size
;
2754 unsigned char* dyn_oview
= NULL
;
2755 if (dyn_output_size
> 0)
2756 dyn_oview
= of
->get_output_view(this->local_dynsym_offset_
,
2759 const Output_sections
& out_sections(this->output_sections());
2761 gold_assert(this->local_values_
.size() == loccount
);
2763 unsigned char* ov
= oview
;
2764 unsigned char* dyn_ov
= dyn_oview
;
2766 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
2768 elfcpp::Sym
<size
, big_endian
> isym(psyms
);
2770 Symbol_value
<size
>& lv(this->local_values_
[i
]);
2773 unsigned int st_shndx
= this->adjust_sym_shndx(i
, isym
.get_st_shndx(),
2777 gold_assert(st_shndx
< out_sections
.size());
2778 if (out_sections
[st_shndx
] == NULL
)
2780 st_shndx
= out_sections
[st_shndx
]->out_shndx();
2781 if (st_shndx
>= elfcpp::SHN_LORESERVE
)
2783 if (lv
.has_output_symtab_entry())
2784 symtab_xindex
->add(lv
.output_symtab_index(), st_shndx
);
2785 if (lv
.has_output_dynsym_entry())
2786 dynsym_xindex
->add(lv
.output_dynsym_index(), st_shndx
);
2787 st_shndx
= elfcpp::SHN_XINDEX
;
2791 // Write the symbol to the output symbol table.
2792 if (lv
.has_output_symtab_entry())
2794 elfcpp::Sym_write
<size
, big_endian
> osym(ov
);
2796 gold_assert(isym
.get_st_name() < strtab_size
);
2797 const char* name
= pnames
+ isym
.get_st_name();
2798 osym
.put_st_name(sympool
->get_offset(name
));
2799 osym
.put_st_value(lv
.value(this, 0));
2800 osym
.put_st_size(isym
.get_st_size());
2801 osym
.put_st_info(isym
.get_st_info());
2802 osym
.put_st_other(isym
.get_st_other());
2803 osym
.put_st_shndx(st_shndx
);
2808 // Write the symbol to the output dynamic symbol table.
2809 if (lv
.has_output_dynsym_entry())
2811 gold_assert(dyn_ov
< dyn_oview
+ dyn_output_size
);
2812 elfcpp::Sym_write
<size
, big_endian
> osym(dyn_ov
);
2814 gold_assert(isym
.get_st_name() < strtab_size
);
2815 const char* name
= pnames
+ isym
.get_st_name();
2816 osym
.put_st_name(dynpool
->get_offset(name
));
2817 osym
.put_st_value(lv
.value(this, 0));
2818 osym
.put_st_size(isym
.get_st_size());
2819 osym
.put_st_info(isym
.get_st_info());
2820 osym
.put_st_other(isym
.get_st_other());
2821 osym
.put_st_shndx(st_shndx
);
2828 if (output_size
> 0)
2830 gold_assert(ov
- oview
== output_size
);
2831 of
->write_output_view(symtab_off
+ this->local_symbol_offset_
,
2832 output_size
, oview
);
2835 if (dyn_output_size
> 0)
2837 gold_assert(dyn_ov
- dyn_oview
== dyn_output_size
);
2838 of
->write_output_view(this->local_dynsym_offset_
, dyn_output_size
,
2843 // Set *INFO to symbolic information about the offset OFFSET in the
2844 // section SHNDX. Return true if we found something, false if we
2847 template<int size
, bool big_endian
>
2849 Sized_relobj_file
<size
, big_endian
>::get_symbol_location_info(
2852 Symbol_location_info
* info
)
2854 if (this->symtab_shndx_
== 0)
2857 section_size_type symbols_size
;
2858 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
2862 unsigned int symbol_names_shndx
=
2863 this->adjust_shndx(this->section_link(this->symtab_shndx_
));
2864 section_size_type names_size
;
2865 const unsigned char* symbol_names_u
=
2866 this->section_contents(symbol_names_shndx
, &names_size
, false);
2867 const char* symbol_names
= reinterpret_cast<const char*>(symbol_names_u
);
2869 const int sym_size
= This::sym_size
;
2870 const size_t count
= symbols_size
/ sym_size
;
2872 const unsigned char* p
= symbols
;
2873 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
2875 elfcpp::Sym
<size
, big_endian
> sym(p
);
2877 if (sym
.get_st_type() == elfcpp::STT_FILE
)
2879 if (sym
.get_st_name() >= names_size
)
2880 info
->source_file
= "(invalid)";
2882 info
->source_file
= symbol_names
+ sym
.get_st_name();
2887 unsigned int st_shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
2890 && st_shndx
== shndx
2891 && static_cast<off_t
>(sym
.get_st_value()) <= offset
2892 && (static_cast<off_t
>(sym
.get_st_value() + sym
.get_st_size())
2895 info
->enclosing_symbol_type
= sym
.get_st_type();
2896 if (sym
.get_st_name() > names_size
)
2897 info
->enclosing_symbol_name
= "(invalid)";
2900 info
->enclosing_symbol_name
= symbol_names
+ sym
.get_st_name();
2901 if (parameters
->options().do_demangle())
2903 char* demangled_name
= cplus_demangle(
2904 info
->enclosing_symbol_name
.c_str(),
2905 DMGL_ANSI
| DMGL_PARAMS
);
2906 if (demangled_name
!= NULL
)
2908 info
->enclosing_symbol_name
.assign(demangled_name
);
2909 free(demangled_name
);
2920 // Look for a kept section corresponding to the given discarded section,
2921 // and return its output address. This is used only for relocations in
2922 // debugging sections. If we can't find the kept section, return 0.
2924 template<int size
, bool big_endian
>
2925 typename Sized_relobj_file
<size
, big_endian
>::Address
2926 Sized_relobj_file
<size
, big_endian
>::map_to_kept_section(
2928 std::string
& section_name
,
2931 Kept_section
* kept_section
;
2934 unsigned int symndx
;
2937 if (this->get_kept_comdat_section(shndx
, &is_comdat
, &symndx
, &sh_size
,
2940 Relobj
* kept_object
= kept_section
->object();
2941 unsigned int kept_shndx
= 0;
2942 if (!kept_section
->is_comdat())
2944 // The kept section is a linkonce section.
2945 if (sh_size
== kept_section
->linkonce_size())
2952 // Find the corresponding kept section.
2953 // Since we're using this mapping for relocation processing,
2954 // we don't want to match sections unless they have the same
2956 uint64_t kept_size
= 0;
2957 if (kept_section
->find_comdat_section(section_name
, &kept_shndx
,
2960 if (sh_size
== kept_size
)
2966 uint64_t kept_size
= 0;
2967 if (kept_section
->find_single_comdat_section(&kept_shndx
,
2969 && sh_size
== kept_size
)
2976 Sized_relobj_file
<size
, big_endian
>* kept_relobj
=
2977 static_cast<Sized_relobj_file
<size
, big_endian
>*>(kept_object
);
2978 Output_section
* os
= kept_relobj
->output_section(kept_shndx
);
2979 Address offset
= kept_relobj
->get_output_section_offset(kept_shndx
);
2980 if (os
!= NULL
&& offset
!= invalid_address
)
2983 return os
->address() + offset
;
2991 // Look for a kept section corresponding to the given discarded section,
2992 // and return its object file.
2994 template<int size
, bool big_endian
>
2996 Sized_relobj_file
<size
, big_endian
>::find_kept_section_object(
2997 unsigned int shndx
, unsigned int *symndx_p
) const
2999 Kept_section
* kept_section
;
3002 if (this->get_kept_comdat_section(shndx
, &is_comdat
, symndx_p
, &sh_size
,
3004 return kept_section
->object();
3008 // Return the name of symbol SYMNDX.
3010 template<int size
, bool big_endian
>
3012 Sized_relobj_file
<size
, big_endian
>::get_symbol_name(unsigned int symndx
)
3014 if (this->symtab_shndx_
== 0)
3017 section_size_type symbols_size
;
3018 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
3022 unsigned int symbol_names_shndx
=
3023 this->adjust_shndx(this->section_link(this->symtab_shndx_
));
3024 section_size_type names_size
;
3025 const unsigned char* symbol_names_u
=
3026 this->section_contents(symbol_names_shndx
, &names_size
, false);
3027 const char* symbol_names
= reinterpret_cast<const char*>(symbol_names_u
);
3029 const unsigned char* p
= symbols
+ symndx
* This::sym_size
;
3031 if (p
>= symbols
+ symbols_size
)
3034 elfcpp::Sym
<size
, big_endian
> sym(p
);
3036 return symbol_names
+ sym
.get_st_name();
3039 // Get symbol counts.
3041 template<int size
, bool big_endian
>
3043 Sized_relobj_file
<size
, big_endian
>::do_get_global_symbol_counts(
3044 const Symbol_table
*,
3048 *defined
= this->defined_count_
;
3050 for (typename
Symbols::const_iterator p
= this->symbols_
.begin();
3051 p
!= this->symbols_
.end();
3054 && (*p
)->source() == Symbol::FROM_OBJECT
3055 && (*p
)->object() == this
3056 && (*p
)->is_defined())
3061 // Return a view of the decompressed contents of a section. Set *PLEN
3062 // to the size. Set *IS_NEW to true if the contents need to be freed
3065 const unsigned char*
3066 Object::decompressed_section_contents(
3068 section_size_type
* plen
,
3072 section_size_type buffer_size
;
3073 const unsigned char* buffer
= this->do_section_contents(shndx
, &buffer_size
,
3076 if (this->compressed_sections_
== NULL
)
3078 *plen
= buffer_size
;
3083 Compressed_section_map::const_iterator p
=
3084 this->compressed_sections_
->find(shndx
);
3085 if (p
== this->compressed_sections_
->end())
3087 *plen
= buffer_size
;
3092 section_size_type uncompressed_size
= p
->second
.size
;
3093 if (p
->second
.contents
!= NULL
)
3095 *plen
= uncompressed_size
;
3098 *palign
= p
->second
.addralign
;
3099 return p
->second
.contents
;
3102 unsigned char* uncompressed_data
= new unsigned char[uncompressed_size
];
3103 if (!decompress_input_section(buffer
,
3110 this->error(_("could not decompress section %s"),
3111 this->do_section_name(shndx
).c_str());
3113 // We could cache the results in p->second.contents and store
3114 // false in *IS_NEW, but build_compressed_section_map() would
3115 // have done so if it had expected it to be profitable. If
3116 // we reach this point, we expect to need the contents only
3117 // once in this pass.
3118 *plen
= uncompressed_size
;
3121 *palign
= p
->second
.addralign
;
3122 return uncompressed_data
;
3125 // Discard any buffers of uncompressed sections. This is done
3126 // at the end of the Add_symbols task.
3129 Object::discard_decompressed_sections()
3131 if (this->compressed_sections_
== NULL
)
3134 for (Compressed_section_map::iterator p
= this->compressed_sections_
->begin();
3135 p
!= this->compressed_sections_
->end();
3138 if (p
->second
.contents
!= NULL
)
3140 delete[] p
->second
.contents
;
3141 p
->second
.contents
= NULL
;
3146 // Input_objects methods.
3148 // Add a regular relocatable object to the list. Return false if this
3149 // object should be ignored.
3152 Input_objects::add_object(Object
* obj
)
3154 // Print the filename if the -t/--trace option is selected.
3155 if (parameters
->options().trace())
3156 gold_info("%s", obj
->name().c_str());
3158 if (!obj
->is_dynamic())
3159 this->relobj_list_
.push_back(static_cast<Relobj
*>(obj
));
3162 // See if this is a duplicate SONAME.
3163 Dynobj
* dynobj
= static_cast<Dynobj
*>(obj
);
3164 const char* soname
= dynobj
->soname();
3166 Unordered_map
<std::string
, Object
*>::value_type
val(soname
, obj
);
3167 std::pair
<Unordered_map
<std::string
, Object
*>::iterator
, bool> ins
=
3168 this->sonames_
.insert(val
);
3171 // We have already seen a dynamic object with this soname.
3172 // If any instances of this object on the command line have
3173 // the --no-as-needed flag, make sure the one we keep is
3175 if (!obj
->as_needed())
3177 gold_assert(ins
.first
->second
!= NULL
);
3178 ins
.first
->second
->clear_as_needed();
3183 this->dynobj_list_
.push_back(dynobj
);
3186 // Add this object to the cross-referencer if requested.
3187 if (parameters
->options().user_set_print_symbol_counts()
3188 || parameters
->options().cref())
3190 if (this->cref_
== NULL
)
3191 this->cref_
= new Cref();
3192 this->cref_
->add_object(obj
);
3198 // For each dynamic object, record whether we've seen all of its
3199 // explicit dependencies.
3202 Input_objects::check_dynamic_dependencies() const
3204 bool issued_copy_dt_needed_error
= false;
3205 for (Dynobj_list::const_iterator p
= this->dynobj_list_
.begin();
3206 p
!= this->dynobj_list_
.end();
3209 const Dynobj::Needed
& needed((*p
)->needed());
3210 bool found_all
= true;
3211 Dynobj::Needed::const_iterator pneeded
;
3212 for (pneeded
= needed
.begin(); pneeded
!= needed
.end(); ++pneeded
)
3214 if (this->sonames_
.find(*pneeded
) == this->sonames_
.end())
3220 (*p
)->set_has_unknown_needed_entries(!found_all
);
3222 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3223 // that gold does not support. However, they cause no trouble
3224 // unless there is a DT_NEEDED entry that we don't know about;
3225 // warn only in that case.
3227 && !issued_copy_dt_needed_error
3228 && (parameters
->options().copy_dt_needed_entries()
3229 || parameters
->options().add_needed()))
3231 const char* optname
;
3232 if (parameters
->options().copy_dt_needed_entries())
3233 optname
= "--copy-dt-needed-entries";
3235 optname
= "--add-needed";
3236 gold_error(_("%s is not supported but is required for %s in %s"),
3237 optname
, (*pneeded
).c_str(), (*p
)->name().c_str());
3238 issued_copy_dt_needed_error
= true;
3243 // Start processing an archive.
3246 Input_objects::archive_start(Archive
* archive
)
3248 if (parameters
->options().user_set_print_symbol_counts()
3249 || parameters
->options().cref())
3251 if (this->cref_
== NULL
)
3252 this->cref_
= new Cref();
3253 this->cref_
->add_archive_start(archive
);
3257 // Stop processing an archive.
3260 Input_objects::archive_stop(Archive
* archive
)
3262 if (parameters
->options().user_set_print_symbol_counts()
3263 || parameters
->options().cref())
3264 this->cref_
->add_archive_stop(archive
);
3267 // Print symbol counts
3270 Input_objects::print_symbol_counts(const Symbol_table
* symtab
) const
3272 if (parameters
->options().user_set_print_symbol_counts()
3273 && this->cref_
!= NULL
)
3274 this->cref_
->print_symbol_counts(symtab
);
3277 // Print a cross reference table.
3280 Input_objects::print_cref(const Symbol_table
* symtab
, FILE* f
) const
3282 if (parameters
->options().cref() && this->cref_
!= NULL
)
3283 this->cref_
->print_cref(symtab
, f
);
3286 // Relocate_info methods.
3288 // Return a string describing the location of a relocation when file
3289 // and lineno information is not available. This is only used in
3292 template<int size
, bool big_endian
>
3294 Relocate_info
<size
, big_endian
>::location(size_t, off_t offset
) const
3296 Sized_dwarf_line_info
<size
, big_endian
> line_info(this->object
);
3297 std::string ret
= line_info
.addr2line(this->data_shndx
, offset
, NULL
);
3301 ret
= this->object
->name();
3303 Symbol_location_info info
;
3304 if (this->object
->get_symbol_location_info(this->data_shndx
, offset
, &info
))
3306 if (!info
.source_file
.empty())
3309 ret
+= info
.source_file
;
3312 if (info
.enclosing_symbol_type
== elfcpp::STT_FUNC
)
3313 ret
+= _("function ");
3314 ret
+= info
.enclosing_symbol_name
;
3319 ret
+= this->object
->section_name(this->data_shndx
);
3321 snprintf(buf
, sizeof buf
, "+0x%lx)", static_cast<long>(offset
));
3326 } // End namespace gold.
3331 using namespace gold
;
3333 // Read an ELF file with the header and return the appropriate
3334 // instance of Object.
3336 template<int size
, bool big_endian
>
3338 make_elf_sized_object(const std::string
& name
, Input_file
* input_file
,
3339 off_t offset
, const elfcpp::Ehdr
<size
, big_endian
>& ehdr
,
3340 bool* punconfigured
)
3342 Target
* target
= select_target(input_file
, offset
,
3343 ehdr
.get_e_machine(), size
, big_endian
,
3344 ehdr
.get_e_ident()[elfcpp::EI_OSABI
],
3345 ehdr
.get_e_ident()[elfcpp::EI_ABIVERSION
]);
3347 gold_fatal(_("%s: unsupported ELF machine number %d"),
3348 name
.c_str(), ehdr
.get_e_machine());
3350 if (!parameters
->target_valid())
3351 set_parameters_target(target
);
3352 else if (target
!= ¶meters
->target())
3354 if (punconfigured
!= NULL
)
3355 *punconfigured
= true;
3357 gold_error(_("%s: incompatible target"), name
.c_str());
3361 return target
->make_elf_object
<size
, big_endian
>(name
, input_file
, offset
,
3365 } // End anonymous namespace.
3370 // Return whether INPUT_FILE is an ELF object.
3373 is_elf_object(Input_file
* input_file
, off_t offset
,
3374 const unsigned char** start
, int* read_size
)
3376 off_t filesize
= input_file
->file().filesize();
3377 int want
= elfcpp::Elf_recognizer::max_header_size
;
3378 if (filesize
- offset
< want
)
3379 want
= filesize
- offset
;
3381 const unsigned char* p
= input_file
->file().get_view(offset
, 0, want
,
3386 return elfcpp::Elf_recognizer::is_elf_file(p
, want
);
3389 // Read an ELF file and return the appropriate instance of Object.
3392 make_elf_object(const std::string
& name
, Input_file
* input_file
, off_t offset
,
3393 const unsigned char* p
, section_offset_type bytes
,
3394 bool* punconfigured
)
3396 if (punconfigured
!= NULL
)
3397 *punconfigured
= false;
3400 bool big_endian
= false;
3402 if (!elfcpp::Elf_recognizer::is_valid_header(p
, bytes
, &size
,
3403 &big_endian
, &error
))
3405 gold_error(_("%s: %s"), name
.c_str(), error
.c_str());
3413 #ifdef HAVE_TARGET_32_BIG
3414 elfcpp::Ehdr
<32, true> ehdr(p
);
3415 return make_elf_sized_object
<32, true>(name
, input_file
,
3416 offset
, ehdr
, punconfigured
);
3418 if (punconfigured
!= NULL
)
3419 *punconfigured
= true;
3421 gold_error(_("%s: not configured to support "
3422 "32-bit big-endian object"),
3429 #ifdef HAVE_TARGET_32_LITTLE
3430 elfcpp::Ehdr
<32, false> ehdr(p
);
3431 return make_elf_sized_object
<32, false>(name
, input_file
,
3432 offset
, ehdr
, punconfigured
);
3434 if (punconfigured
!= NULL
)
3435 *punconfigured
= true;
3437 gold_error(_("%s: not configured to support "
3438 "32-bit little-endian object"),
3444 else if (size
== 64)
3448 #ifdef HAVE_TARGET_64_BIG
3449 elfcpp::Ehdr
<64, true> ehdr(p
);
3450 return make_elf_sized_object
<64, true>(name
, input_file
,
3451 offset
, ehdr
, punconfigured
);
3453 if (punconfigured
!= NULL
)
3454 *punconfigured
= true;
3456 gold_error(_("%s: not configured to support "
3457 "64-bit big-endian object"),
3464 #ifdef HAVE_TARGET_64_LITTLE
3465 elfcpp::Ehdr
<64, false> ehdr(p
);
3466 return make_elf_sized_object
<64, false>(name
, input_file
,
3467 offset
, ehdr
, punconfigured
);
3469 if (punconfigured
!= NULL
)
3470 *punconfigured
= true;
3472 gold_error(_("%s: not configured to support "
3473 "64-bit little-endian object"),
3483 // Instantiate the templates we need.
3485 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3488 Relobj::initialize_input_to_output_map
<64>(unsigned int shndx
,
3489 elfcpp::Elf_types
<64>::Elf_Addr starting_address
,
3490 Unordered_map
<section_offset_type
,
3491 elfcpp::Elf_types
<64>::Elf_Addr
>* output_addresses
) const;
3494 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3497 Relobj::initialize_input_to_output_map
<32>(unsigned int shndx
,
3498 elfcpp::Elf_types
<32>::Elf_Addr starting_address
,
3499 Unordered_map
<section_offset_type
,
3500 elfcpp::Elf_types
<32>::Elf_Addr
>* output_addresses
) const;
3503 #ifdef HAVE_TARGET_32_LITTLE
3506 Object::read_section_data
<32, false>(elfcpp::Elf_file
<32, false, Object
>*,
3507 Read_symbols_data
*);
3509 const unsigned char*
3510 Object::find_shdr
<32,false>(const unsigned char*, const char*, const char*,
3511 section_size_type
, const unsigned char*) const;
3514 #ifdef HAVE_TARGET_32_BIG
3517 Object::read_section_data
<32, true>(elfcpp::Elf_file
<32, true, Object
>*,
3518 Read_symbols_data
*);
3520 const unsigned char*
3521 Object::find_shdr
<32,true>(const unsigned char*, const char*, const char*,
3522 section_size_type
, const unsigned char*) const;
3525 #ifdef HAVE_TARGET_64_LITTLE
3528 Object::read_section_data
<64, false>(elfcpp::Elf_file
<64, false, Object
>*,
3529 Read_symbols_data
*);
3531 const unsigned char*
3532 Object::find_shdr
<64,false>(const unsigned char*, const char*, const char*,
3533 section_size_type
, const unsigned char*) const;
3536 #ifdef HAVE_TARGET_64_BIG
3539 Object::read_section_data
<64, true>(elfcpp::Elf_file
<64, true, Object
>*,
3540 Read_symbols_data
*);
3542 const unsigned char*
3543 Object::find_shdr
<64,true>(const unsigned char*, const char*, const char*,
3544 section_size_type
, const unsigned char*) const;
3547 #ifdef HAVE_TARGET_32_LITTLE
3549 class Sized_relobj
<32, false>;
3552 class Sized_relobj_file
<32, false>;
3555 #ifdef HAVE_TARGET_32_BIG
3557 class Sized_relobj
<32, true>;
3560 class Sized_relobj_file
<32, true>;
3563 #ifdef HAVE_TARGET_64_LITTLE
3565 class Sized_relobj
<64, false>;
3568 class Sized_relobj_file
<64, false>;
3571 #ifdef HAVE_TARGET_64_BIG
3573 class Sized_relobj
<64, true>;
3576 class Sized_relobj_file
<64, true>;
3579 #ifdef HAVE_TARGET_32_LITTLE
3581 struct Relocate_info
<32, false>;
3584 #ifdef HAVE_TARGET_32_BIG
3586 struct Relocate_info
<32, true>;
3589 #ifdef HAVE_TARGET_64_LITTLE
3591 struct Relocate_info
<64, false>;
3594 #ifdef HAVE_TARGET_64_BIG
3596 struct Relocate_info
<64, true>;
3599 #ifdef HAVE_TARGET_32_LITTLE
3602 Xindex::initialize_symtab_xindex
<32, false>(Object
*, unsigned int);
3606 Xindex::read_symtab_xindex
<32, false>(Object
*, unsigned int,
3607 const unsigned char*);
3610 #ifdef HAVE_TARGET_32_BIG
3613 Xindex::initialize_symtab_xindex
<32, true>(Object
*, unsigned int);
3617 Xindex::read_symtab_xindex
<32, true>(Object
*, unsigned int,
3618 const unsigned char*);
3621 #ifdef HAVE_TARGET_64_LITTLE
3624 Xindex::initialize_symtab_xindex
<64, false>(Object
*, unsigned int);
3628 Xindex::read_symtab_xindex
<64, false>(Object
*, unsigned int,
3629 const unsigned char*);
3632 #ifdef HAVE_TARGET_64_BIG
3635 Xindex::initialize_symtab_xindex
<64, true>(Object
*, unsigned int);
3639 Xindex::read_symtab_xindex
<64, true>(Object
*, unsigned int,
3640 const unsigned char*);
3643 #ifdef HAVE_TARGET_32_LITTLE
3645 Compressed_section_map
*
3646 build_compressed_section_map
<32, false>(const unsigned char*, unsigned int,
3647 const char*, section_size_type
,
3651 #ifdef HAVE_TARGET_32_BIG
3653 Compressed_section_map
*
3654 build_compressed_section_map
<32, true>(const unsigned char*, unsigned int,
3655 const char*, section_size_type
,
3659 #ifdef HAVE_TARGET_64_LITTLE
3661 Compressed_section_map
*
3662 build_compressed_section_map
<64, false>(const unsigned char*, unsigned int,
3663 const char*, section_size_type
,
3667 #ifdef HAVE_TARGET_64_BIG
3669 Compressed_section_map
*
3670 build_compressed_section_map
<64, true>(const unsigned char*, unsigned int,
3671 const char*, section_size_type
,
3675 } // End namespace gold.