[PATCH 25/57][Arm][GAS] Add support for MVE instruction: vmvn, vqabs and vqneg
[binutils-gdb.git] / gold / symtab.h
bloba9e8dd3278374b920ec002642de5c0434fcaaf64
1 // symtab.h -- the gold symbol table -*- C++ -*-
3 // Copyright (C) 2006-2019 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 // Symbol_table
24 // The symbol table.
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
29 #include <string>
30 #include <utility>
31 #include <vector>
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
38 namespace gold
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 template<int size, bool big_endian>
52 class Sized_incrobj;
53 class Versions;
54 class Version_script_info;
55 class Input_objects;
56 class Output_data;
57 class Output_section;
58 class Output_segment;
59 class Output_file;
60 class Output_symtab_xindex;
61 class Garbage_collection;
62 class Icf;
64 // The base class of an entry in the symbol table. The symbol table
65 // can have a lot of entries, so we don't want this class too big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol. Targets may support their own derived classes.
69 class Symbol
71 public:
72 // Because we want the class to be small, we don't use any virtual
73 // functions. But because symbols can be defined in different
74 // places, we need to classify them. This enum is the different
75 // sources of symbols we support.
76 enum Source
78 // Symbol defined in a relocatable or dynamic input file--this is
79 // the most common case.
80 FROM_OBJECT,
81 // Symbol defined in an Output_data, a special section created by
82 // the target.
83 IN_OUTPUT_DATA,
84 // Symbol defined in an Output_segment, with no associated
85 // section.
86 IN_OUTPUT_SEGMENT,
87 // Symbol value is constant.
88 IS_CONSTANT,
89 // Symbol is undefined.
90 IS_UNDEFINED
93 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94 // the offset means.
95 enum Segment_offset_base
97 // From the start of the segment.
98 SEGMENT_START,
99 // From the end of the segment.
100 SEGMENT_END,
101 // From the filesz of the segment--i.e., after the loaded bytes
102 // but before the bytes which are allocated but zeroed.
103 SEGMENT_BSS
106 // Return the symbol name.
107 const char*
108 name() const
109 { return this->name_; }
111 // Return the (ANSI) demangled version of the name, if
112 // parameters.demangle() is true. Otherwise, return the name. This
113 // is intended to be used only for logging errors, so it's not
114 // super-efficient.
115 std::string
116 demangled_name() const;
118 // Return the symbol version. This will return NULL for an
119 // unversioned symbol.
120 const char*
121 version() const
122 { return this->version_; }
124 void
125 clear_version()
126 { this->version_ = NULL; }
128 // Return whether this version is the default for this symbol name
129 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
130 // meaningful for versioned symbols.
131 bool
132 is_default() const
134 gold_assert(this->version_ != NULL);
135 return this->is_def_;
138 // Set that this version is the default for this symbol name.
139 void
140 set_is_default()
141 { this->is_def_ = true; }
143 // Set that this version is not the default for this symbol name.
144 void
145 set_is_not_default()
146 { this->is_def_ = false; }
148 // Return the symbol's name as name@version (or name@@version).
149 std::string
150 versioned_name() const;
152 // Return the symbol source.
153 Source
154 source() const
155 { return this->source_; }
157 // Return the object with which this symbol is associated.
158 Object*
159 object() const
161 gold_assert(this->source_ == FROM_OBJECT);
162 return this->u1_.object;
165 // Return the index of the section in the input relocatable or
166 // dynamic object file.
167 unsigned int
168 shndx(bool* is_ordinary) const
170 gold_assert(this->source_ == FROM_OBJECT);
171 *is_ordinary = this->is_ordinary_shndx_;
172 return this->u2_.shndx;
175 // Return the output data section with which this symbol is
176 // associated, if the symbol was specially defined with respect to
177 // an output data section.
178 Output_data*
179 output_data() const
181 gold_assert(this->source_ == IN_OUTPUT_DATA);
182 return this->u1_.output_data;
185 // If this symbol was defined with respect to an output data
186 // section, return whether the value is an offset from end.
187 bool
188 offset_is_from_end() const
190 gold_assert(this->source_ == IN_OUTPUT_DATA);
191 return this->u2_.offset_is_from_end;
194 // Return the output segment with which this symbol is associated,
195 // if the symbol was specially defined with respect to an output
196 // segment.
197 Output_segment*
198 output_segment() const
200 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
201 return this->u1_.output_segment;
204 // If this symbol was defined with respect to an output segment,
205 // return the offset base.
206 Segment_offset_base
207 offset_base() const
209 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
210 return this->u2_.offset_base;
213 // Return the symbol binding.
214 elfcpp::STB
215 binding() const
216 { return this->binding_; }
218 // Return the symbol type.
219 elfcpp::STT
220 type() const
221 { return this->type_; }
223 // Set the symbol type.
224 void
225 set_type(elfcpp::STT type)
226 { this->type_ = type; }
228 // Return true for function symbol.
229 bool
230 is_func() const
232 return (this->type_ == elfcpp::STT_FUNC
233 || this->type_ == elfcpp::STT_GNU_IFUNC);
236 // Return the symbol visibility.
237 elfcpp::STV
238 visibility() const
239 { return this->visibility_; }
241 // Set the visibility.
242 void
243 set_visibility(elfcpp::STV visibility)
244 { this->visibility_ = visibility; }
246 // Override symbol visibility.
247 void
248 override_visibility(elfcpp::STV);
250 // Set whether the symbol was originally a weak undef or a regular undef
251 // when resolved by a dynamic def or by a special symbol.
252 inline void
253 set_undef_binding(elfcpp::STB bind)
255 if (!this->undef_binding_set_ || this->undef_binding_weak_)
257 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
258 this->undef_binding_set_ = true;
262 // Return TRUE if a weak undef was resolved by a dynamic def or
263 // by a special symbol.
264 inline bool
265 is_undef_binding_weak() const
266 { return this->undef_binding_weak_; }
268 // Return the non-visibility part of the st_other field.
269 unsigned char
270 nonvis() const
271 { return this->nonvis_; }
273 // Set the non-visibility part of the st_other field.
274 void
275 set_nonvis(unsigned int nonvis)
276 { this->nonvis_ = nonvis; }
278 // Return whether this symbol is a forwarder. This will never be
279 // true of a symbol found in the hash table, but may be true of
280 // symbol pointers attached to object files.
281 bool
282 is_forwarder() const
283 { return this->is_forwarder_; }
285 // Mark this symbol as a forwarder.
286 void
287 set_forwarder()
288 { this->is_forwarder_ = true; }
290 // Return whether this symbol has an alias in the weak aliases table
291 // in Symbol_table.
292 bool
293 has_alias() const
294 { return this->has_alias_; }
296 // Mark this symbol as having an alias.
297 void
298 set_has_alias()
299 { this->has_alias_ = true; }
301 // Return whether this symbol needs an entry in the dynamic symbol
302 // table.
303 bool
304 needs_dynsym_entry() const
306 return (this->needs_dynsym_entry_
307 || (this->in_reg()
308 && this->in_dyn()
309 && this->is_externally_visible()));
312 // Mark this symbol as needing an entry in the dynamic symbol table.
313 void
314 set_needs_dynsym_entry()
315 { this->needs_dynsym_entry_ = true; }
317 // Return whether this symbol should be added to the dynamic symbol
318 // table.
319 bool
320 should_add_dynsym_entry(Symbol_table*) const;
322 // Return whether this symbol has been seen in a regular object.
323 bool
324 in_reg() const
325 { return this->in_reg_; }
327 // Mark this symbol as having been seen in a regular object.
328 void
329 set_in_reg()
330 { this->in_reg_ = true; }
332 // Forget this symbol was seen in a regular object.
333 void
334 clear_in_reg()
335 { this->in_reg_ = false; }
337 // Return whether this symbol has been seen in a dynamic object.
338 bool
339 in_dyn() const
340 { return this->in_dyn_; }
342 // Mark this symbol as having been seen in a dynamic object.
343 void
344 set_in_dyn()
345 { this->in_dyn_ = true; }
347 // Return whether this symbol is defined in a dynamic object.
348 bool
349 from_dyn() const
350 { return this->source_ == FROM_OBJECT && this->object()->is_dynamic(); }
352 // Return whether this symbol has been seen in a real ELF object.
353 // (IN_REG will return TRUE if the symbol has been seen in either
354 // a real ELF object or an object claimed by a plugin.)
355 bool
356 in_real_elf() const
357 { return this->in_real_elf_; }
359 // Mark this symbol as having been seen in a real ELF object.
360 void
361 set_in_real_elf()
362 { this->in_real_elf_ = true; }
364 // Return whether this symbol was defined in a section that was
365 // discarded from the link. This is used to control some error
366 // reporting.
367 bool
368 is_defined_in_discarded_section() const
369 { return this->is_defined_in_discarded_section_; }
371 // Mark this symbol as having been defined in a discarded section.
372 void
373 set_is_defined_in_discarded_section()
374 { this->is_defined_in_discarded_section_ = true; }
376 // Return the index of this symbol in the output file symbol table.
377 // A value of -1U means that this symbol is not going into the
378 // output file. This starts out as zero, and is set to a non-zero
379 // value by Symbol_table::finalize. It is an error to ask for the
380 // symbol table index before it has been set.
381 unsigned int
382 symtab_index() const
384 gold_assert(this->symtab_index_ != 0);
385 return this->symtab_index_;
388 // Set the index of the symbol in the output file symbol table.
389 void
390 set_symtab_index(unsigned int index)
392 gold_assert(index != 0);
393 this->symtab_index_ = index;
396 // Return whether this symbol already has an index in the output
397 // file symbol table.
398 bool
399 has_symtab_index() const
400 { return this->symtab_index_ != 0; }
402 // Return the index of this symbol in the dynamic symbol table. A
403 // value of -1U means that this symbol is not going into the dynamic
404 // symbol table. This starts out as zero, and is set to a non-zero
405 // during Layout::finalize. It is an error to ask for the dynamic
406 // symbol table index before it has been set.
407 unsigned int
408 dynsym_index() const
410 gold_assert(this->dynsym_index_ != 0);
411 return this->dynsym_index_;
414 // Set the index of the symbol in the dynamic symbol table.
415 void
416 set_dynsym_index(unsigned int index)
418 gold_assert(index != 0);
419 this->dynsym_index_ = index;
422 // Return whether this symbol already has an index in the dynamic
423 // symbol table.
424 bool
425 has_dynsym_index() const
426 { return this->dynsym_index_ != 0; }
428 // Return whether this symbol has an entry in the GOT section.
429 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
430 bool
431 has_got_offset(unsigned int got_type) const
432 { return this->got_offsets_.get_offset(got_type) != -1U; }
434 // Return the offset into the GOT section of this symbol.
435 unsigned int
436 got_offset(unsigned int got_type) const
438 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
439 gold_assert(got_offset != -1U);
440 return got_offset;
443 // Set the GOT offset of this symbol.
444 void
445 set_got_offset(unsigned int got_type, unsigned int got_offset)
446 { this->got_offsets_.set_offset(got_type, got_offset); }
448 // Return the GOT offset list.
449 const Got_offset_list*
450 got_offset_list() const
451 { return this->got_offsets_.get_list(); }
453 // Return whether this symbol has an entry in the PLT section.
454 bool
455 has_plt_offset() const
456 { return this->plt_offset_ != -1U; }
458 // Return the offset into the PLT section of this symbol.
459 unsigned int
460 plt_offset() const
462 gold_assert(this->has_plt_offset());
463 return this->plt_offset_;
466 // Set the PLT offset of this symbol.
467 void
468 set_plt_offset(unsigned int plt_offset)
470 gold_assert(plt_offset != -1U);
471 this->plt_offset_ = plt_offset;
474 // Return whether this dynamic symbol needs a special value in the
475 // dynamic symbol table.
476 bool
477 needs_dynsym_value() const
478 { return this->needs_dynsym_value_; }
480 // Set that this dynamic symbol needs a special value in the dynamic
481 // symbol table.
482 void
483 set_needs_dynsym_value()
485 gold_assert(this->object()->is_dynamic());
486 this->needs_dynsym_value_ = true;
489 // Return true if the final value of this symbol is known at link
490 // time.
491 bool
492 final_value_is_known() const;
494 // Return true if SHNDX represents a common symbol. This depends on
495 // the target.
496 static bool
497 is_common_shndx(unsigned int shndx);
499 // Return whether this is a defined symbol (not undefined or
500 // common).
501 bool
502 is_defined() const
504 bool is_ordinary;
505 if (this->source_ != FROM_OBJECT)
506 return this->source_ != IS_UNDEFINED;
507 unsigned int shndx = this->shndx(&is_ordinary);
508 return (is_ordinary
509 ? shndx != elfcpp::SHN_UNDEF
510 : !Symbol::is_common_shndx(shndx));
513 // Return true if this symbol is from a dynamic object.
514 bool
515 is_from_dynobj() const
517 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
520 // Return whether this is a placeholder symbol from a plugin object.
521 bool
522 is_placeholder() const
524 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
527 // Return whether this is an undefined symbol.
528 bool
529 is_undefined() const
531 bool is_ordinary;
532 return ((this->source_ == FROM_OBJECT
533 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
534 && is_ordinary)
535 || this->source_ == IS_UNDEFINED);
538 // Return whether this is a weak undefined symbol.
539 bool
540 is_weak_undefined() const
542 return (this->is_undefined()
543 && (this->binding() == elfcpp::STB_WEAK
544 || this->is_undef_binding_weak()
545 || parameters->options().weak_unresolved_symbols()));
548 // Return whether this is a strong undefined symbol.
549 bool
550 is_strong_undefined() const
552 return (this->is_undefined()
553 && this->binding() != elfcpp::STB_WEAK
554 && !this->is_undef_binding_weak()
555 && !parameters->options().weak_unresolved_symbols());
558 // Return whether this is an absolute symbol.
559 bool
560 is_absolute() const
562 bool is_ordinary;
563 return ((this->source_ == FROM_OBJECT
564 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
565 && !is_ordinary)
566 || this->source_ == IS_CONSTANT);
569 // Return whether this is a common symbol.
570 bool
571 is_common() const
573 if (this->source_ != FROM_OBJECT)
574 return false;
575 bool is_ordinary;
576 unsigned int shndx = this->shndx(&is_ordinary);
577 return !is_ordinary && Symbol::is_common_shndx(shndx);
580 // Return whether this symbol can be seen outside this object.
581 bool
582 is_externally_visible() const
584 return ((this->visibility_ == elfcpp::STV_DEFAULT
585 || this->visibility_ == elfcpp::STV_PROTECTED)
586 && !this->is_forced_local_);
589 // Return true if this symbol can be preempted by a definition in
590 // another link unit.
591 bool
592 is_preemptible() const
594 // It doesn't make sense to ask whether a symbol defined in
595 // another object is preemptible.
596 gold_assert(!this->is_from_dynobj());
598 // It doesn't make sense to ask whether an undefined symbol
599 // is preemptible.
600 gold_assert(!this->is_undefined());
602 // If a symbol does not have default visibility, it can not be
603 // seen outside this link unit and therefore is not preemptible.
604 if (this->visibility_ != elfcpp::STV_DEFAULT)
605 return false;
607 // If this symbol has been forced to be a local symbol by a
608 // version script, then it is not visible outside this link unit
609 // and is not preemptible.
610 if (this->is_forced_local_)
611 return false;
613 // If we are not producing a shared library, then nothing is
614 // preemptible.
615 if (!parameters->options().shared())
616 return false;
618 // If the symbol was named in a --dynamic-list script, it is preemptible.
619 if (parameters->options().in_dynamic_list(this->name()))
620 return true;
622 // If the user used -Bsymbolic, then nothing (else) is preemptible.
623 if (parameters->options().Bsymbolic())
624 return false;
626 // If the user used -Bsymbolic-functions, then functions are not
627 // preemptible. We explicitly check for not being STT_OBJECT,
628 // rather than for being STT_FUNC, because that is what the GNU
629 // linker does.
630 if (this->type() != elfcpp::STT_OBJECT
631 && parameters->options().Bsymbolic_functions())
632 return false;
634 // Otherwise the symbol is preemptible.
635 return true;
638 // Return true if this symbol is a function that needs a PLT entry.
639 bool
640 needs_plt_entry() const
642 // An undefined symbol from an executable does not need a PLT entry.
643 if (this->is_undefined() && !parameters->options().shared())
644 return false;
646 // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
647 // doing a static link.
648 if (this->type() == elfcpp::STT_GNU_IFUNC)
649 return true;
651 // We only need a PLT entry for a function.
652 if (!this->is_func())
653 return false;
655 // If we're doing a static link or a -pie link, we don't create
656 // PLT entries.
657 if (parameters->doing_static_link()
658 || parameters->options().pie())
659 return false;
661 // We need a PLT entry if the function is defined in a dynamic
662 // object, or is undefined when building a shared object, or if it
663 // is subject to pre-emption.
664 return (this->is_from_dynobj()
665 || this->is_undefined()
666 || this->is_preemptible());
669 // When determining whether a reference to a symbol needs a dynamic
670 // relocation, we need to know several things about the reference.
671 // These flags may be or'ed together. 0 means that the symbol
672 // isn't referenced at all.
673 enum Reference_flags
675 // A reference to the symbol's absolute address. This includes
676 // references that cause an absolute address to be stored in the GOT.
677 ABSOLUTE_REF = 1,
678 // A reference that calculates the offset of the symbol from some
679 // anchor point, such as the PC or GOT.
680 RELATIVE_REF = 2,
681 // A TLS-related reference.
682 TLS_REF = 4,
683 // A reference that can always be treated as a function call.
684 FUNCTION_CALL = 8,
685 // When set, says that dynamic relocations are needed even if a
686 // symbol has a plt entry.
687 FUNC_DESC_ABI = 16,
690 // Given a direct absolute or pc-relative static relocation against
691 // the global symbol, this function returns whether a dynamic relocation
692 // is needed.
694 bool
695 needs_dynamic_reloc(int flags) const
697 // No dynamic relocations in a static link!
698 if (parameters->doing_static_link())
699 return false;
701 // A reference to an undefined symbol from an executable should be
702 // statically resolved to 0, and does not need a dynamic relocation.
703 // This matches gnu ld behavior.
704 if (this->is_undefined() && !parameters->options().shared())
705 return false;
707 // A reference to an absolute symbol does not need a dynamic relocation.
708 if (this->is_absolute())
709 return false;
711 // An absolute reference within a position-independent output file
712 // will need a dynamic relocation.
713 if ((flags & ABSOLUTE_REF)
714 && parameters->options().output_is_position_independent())
715 return true;
717 // A function call that can branch to a local PLT entry does not need
718 // a dynamic relocation.
719 if ((flags & FUNCTION_CALL) && this->has_plt_offset())
720 return false;
722 // A reference to any PLT entry in a non-position-independent executable
723 // does not need a dynamic relocation.
724 if (!(flags & FUNC_DESC_ABI)
725 && !parameters->options().output_is_position_independent()
726 && this->has_plt_offset())
727 return false;
729 // A reference to a symbol defined in a dynamic object or to a
730 // symbol that is preemptible will need a dynamic relocation.
731 if (this->is_from_dynobj()
732 || this->is_undefined()
733 || this->is_preemptible())
734 return true;
736 // For all other cases, return FALSE.
737 return false;
740 // Whether we should use the PLT offset associated with a symbol for
741 // a relocation. FLAGS is a set of Reference_flags.
743 bool
744 use_plt_offset(int flags) const
746 // If the symbol doesn't have a PLT offset, then naturally we
747 // don't want to use it.
748 if (!this->has_plt_offset())
749 return false;
751 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
752 if (this->type() == elfcpp::STT_GNU_IFUNC)
753 return true;
755 // If we are going to generate a dynamic relocation, then we will
756 // wind up using that, so no need to use the PLT entry.
757 if (this->needs_dynamic_reloc(flags))
758 return false;
760 // If the symbol is from a dynamic object, we need to use the PLT
761 // entry.
762 if (this->is_from_dynobj())
763 return true;
765 // If we are generating a shared object, and this symbol is
766 // undefined or preemptible, we need to use the PLT entry.
767 if (parameters->options().shared()
768 && (this->is_undefined() || this->is_preemptible()))
769 return true;
771 // If this is a call to a weak undefined symbol, we need to use
772 // the PLT entry; the symbol may be defined by a library loaded
773 // at runtime.
774 if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
775 return true;
777 // Otherwise we can use the regular definition.
778 return false;
781 // Given a direct absolute static relocation against
782 // the global symbol, where a dynamic relocation is needed, this
783 // function returns whether a relative dynamic relocation can be used.
784 // The caller must determine separately whether the static relocation
785 // is compatible with a relative relocation.
787 bool
788 can_use_relative_reloc(bool is_function_call) const
790 // A function call that can branch to a local PLT entry can
791 // use a RELATIVE relocation.
792 if (is_function_call && this->has_plt_offset())
793 return true;
795 // A reference to a symbol defined in a dynamic object or to a
796 // symbol that is preemptible can not use a RELATIVE relocation.
797 if (this->is_from_dynobj()
798 || this->is_undefined()
799 || this->is_preemptible())
800 return false;
802 // For all other cases, return TRUE.
803 return true;
806 // Return the output section where this symbol is defined. Return
807 // NULL if the symbol has an absolute value.
808 Output_section*
809 output_section() const;
811 // Set the symbol's output section. This is used for symbols
812 // defined in scripts. This should only be called after the symbol
813 // table has been finalized.
814 void
815 set_output_section(Output_section*);
817 // Set the symbol's output segment. This is used for pre-defined
818 // symbols whose segments aren't known until after layout is done
819 // (e.g., __ehdr_start).
820 void
821 set_output_segment(Output_segment*, Segment_offset_base);
823 // Set the symbol to undefined. This is used for pre-defined
824 // symbols whose segments aren't known until after layout is done
825 // (e.g., __ehdr_start).
826 void
827 set_undefined();
829 // Return whether there should be a warning for references to this
830 // symbol.
831 bool
832 has_warning() const
833 { return this->has_warning_; }
835 // Mark this symbol as having a warning.
836 void
837 set_has_warning()
838 { this->has_warning_ = true; }
840 // Return whether this symbol is defined by a COPY reloc from a
841 // dynamic object.
842 bool
843 is_copied_from_dynobj() const
844 { return this->is_copied_from_dynobj_; }
846 // Mark this symbol as defined by a COPY reloc.
847 void
848 set_is_copied_from_dynobj()
849 { this->is_copied_from_dynobj_ = true; }
851 // Return whether this symbol is forced to visibility STB_LOCAL
852 // by a "local:" entry in a version script.
853 bool
854 is_forced_local() const
855 { return this->is_forced_local_; }
857 // Mark this symbol as forced to STB_LOCAL visibility.
858 void
859 set_is_forced_local()
860 { this->is_forced_local_ = true; }
862 // Return true if this may need a COPY relocation.
863 // References from an executable object to non-function symbols
864 // defined in a dynamic object may need a COPY relocation.
865 bool
866 may_need_copy_reloc() const
868 return (parameters->options().copyreloc()
869 && this->is_from_dynobj()
870 && !this->is_func());
873 // Return true if this symbol was predefined by the linker.
874 bool
875 is_predefined() const
876 { return this->is_predefined_; }
878 // Return true if this is a C++ vtable symbol.
879 bool
880 is_cxx_vtable() const
881 { return is_prefix_of("_ZTV", this->name_); }
883 // Return true if this symbol is protected in a shared object.
884 // This is not the same as checking if visibility() == elfcpp::STV_PROTECTED,
885 // because the visibility_ field reflects the symbol's visibility from
886 // outside the shared object.
887 bool
888 is_protected() const
889 { return this->is_protected_; }
891 // Mark this symbol as protected in a shared object.
892 void
893 set_is_protected()
894 { this->is_protected_ = true; }
896 // Return state of PowerPC64 ELFv2 specific flag.
897 bool
898 non_zero_localentry() const
899 { return this->non_zero_localentry_; }
901 // Set PowerPC64 ELFv2 specific flag.
902 void
903 set_non_zero_localentry()
904 { this->non_zero_localentry_ = true; }
906 // Completely override existing symbol. Everything bar name_,
907 // version_, and is_forced_local_ flag are copied. version_ is
908 // cleared if from->version_ is clear. Returns true if this symbol
909 // should be forced local.
910 bool
911 clone(const Symbol* from);
913 protected:
914 // Instances of this class should always be created at a specific
915 // size.
916 Symbol()
917 { memset(static_cast<void*>(this), 0, sizeof *this); }
919 // Initialize the general fields.
920 void
921 init_fields(const char* name, const char* version,
922 elfcpp::STT type, elfcpp::STB binding,
923 elfcpp::STV visibility, unsigned char nonvis);
925 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
926 // section index, IS_ORDINARY is whether it is a normal section
927 // index rather than a special code.
928 template<int size, bool big_endian>
929 void
930 init_base_object(const char* name, const char* version, Object* object,
931 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
932 bool is_ordinary);
934 // Initialize fields for an Output_data.
935 void
936 init_base_output_data(const char* name, const char* version, Output_data*,
937 elfcpp::STT, elfcpp::STB, elfcpp::STV,
938 unsigned char nonvis, bool offset_is_from_end,
939 bool is_predefined);
941 // Initialize fields for an Output_segment.
942 void
943 init_base_output_segment(const char* name, const char* version,
944 Output_segment* os, elfcpp::STT type,
945 elfcpp::STB binding, elfcpp::STV visibility,
946 unsigned char nonvis,
947 Segment_offset_base offset_base,
948 bool is_predefined);
950 // Initialize fields for a constant.
951 void
952 init_base_constant(const char* name, const char* version, elfcpp::STT type,
953 elfcpp::STB binding, elfcpp::STV visibility,
954 unsigned char nonvis, bool is_predefined);
956 // Initialize fields for an undefined symbol.
957 void
958 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
959 elfcpp::STB binding, elfcpp::STV visibility,
960 unsigned char nonvis);
962 // Override existing symbol.
963 template<int size, bool big_endian>
964 void
965 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
966 bool is_ordinary, Object* object, const char* version);
968 // Override existing symbol with a special symbol.
969 void
970 override_base_with_special(const Symbol* from);
972 // Override symbol version.
973 void
974 override_version(const char* version);
976 // Allocate a common symbol by giving it a location in the output
977 // file.
978 void
979 allocate_base_common(Output_data*);
981 private:
982 Symbol(const Symbol&);
983 Symbol& operator=(const Symbol&);
985 // Symbol name (expected to point into a Stringpool).
986 const char* name_;
987 // Symbol version (expected to point into a Stringpool). This may
988 // be NULL.
989 const char* version_;
991 union
993 // This is used if SOURCE_ == FROM_OBJECT.
994 // Object in which symbol is defined, or in which it was first
995 // seen.
996 Object* object;
998 // This is used if SOURCE_ == IN_OUTPUT_DATA.
999 // Output_data in which symbol is defined. Before
1000 // Layout::finalize the symbol's value is an offset within the
1001 // Output_data.
1002 Output_data* output_data;
1004 // This is used if SOURCE_ == IN_OUTPUT_SEGMENT.
1005 // Output_segment in which the symbol is defined. Before
1006 // Layout::finalize the symbol's value is an offset.
1007 Output_segment* output_segment;
1008 } u1_;
1010 union
1012 // This is used if SOURCE_ == FROM_OBJECT.
1013 // Section number in object in which symbol is defined.
1014 unsigned int shndx;
1016 // This is used if SOURCE_ == IN_OUTPUT_DATA.
1017 // True if the offset is from the end, false if the offset is
1018 // from the beginning.
1019 bool offset_is_from_end;
1021 // This is used if SOURCE_ == IN_OUTPUT_SEGMENT.
1022 // The base to use for the offset before Layout::finalize.
1023 Segment_offset_base offset_base;
1024 } u2_;
1026 // The index of this symbol in the output file. If the symbol is
1027 // not going into the output file, this value is -1U. This field
1028 // starts as always holding zero. It is set to a non-zero value by
1029 // Symbol_table::finalize.
1030 unsigned int symtab_index_;
1032 // The index of this symbol in the dynamic symbol table. If the
1033 // symbol is not going into the dynamic symbol table, this value is
1034 // -1U. This field starts as always holding zero. It is set to a
1035 // non-zero value during Layout::finalize.
1036 unsigned int dynsym_index_;
1038 // If this symbol has an entry in the PLT section, then this is the
1039 // offset from the start of the PLT section. This is -1U if there
1040 // is no PLT entry.
1041 unsigned int plt_offset_;
1043 // The GOT section entries for this symbol. A symbol may have more
1044 // than one GOT offset (e.g., when mixing modules compiled with two
1045 // different TLS models), but will usually have at most one.
1046 Got_offset_list got_offsets_;
1048 // Symbol type (bits 0 to 3).
1049 elfcpp::STT type_ : 4;
1050 // Symbol binding (bits 4 to 7).
1051 elfcpp::STB binding_ : 4;
1052 // Symbol visibility (bits 8 to 9).
1053 elfcpp::STV visibility_ : 2;
1054 // Rest of symbol st_other field (bits 10 to 15).
1055 unsigned int nonvis_ : 6;
1056 // The type of symbol (bits 16 to 18).
1057 Source source_ : 3;
1058 // True if this is the default version of the symbol (bit 19).
1059 bool is_def_ : 1;
1060 // True if this symbol really forwards to another symbol. This is
1061 // used when we discover after the fact that two different entries
1062 // in the hash table really refer to the same symbol. This will
1063 // never be set for a symbol found in the hash table, but may be set
1064 // for a symbol found in the list of symbols attached to an Object.
1065 // It forwards to the symbol found in the forwarders_ map of
1066 // Symbol_table (bit 20).
1067 bool is_forwarder_ : 1;
1068 // True if the symbol has an alias in the weak_aliases table in
1069 // Symbol_table (bit 21).
1070 bool has_alias_ : 1;
1071 // True if this symbol needs to be in the dynamic symbol table (bit
1072 // 22).
1073 bool needs_dynsym_entry_ : 1;
1074 // True if we've seen this symbol in a regular object (bit 23).
1075 bool in_reg_ : 1;
1076 // True if we've seen this symbol in a dynamic object (bit 24).
1077 bool in_dyn_ : 1;
1078 // True if this is a dynamic symbol which needs a special value in
1079 // the dynamic symbol table (bit 25).
1080 bool needs_dynsym_value_ : 1;
1081 // True if there is a warning for this symbol (bit 26).
1082 bool has_warning_ : 1;
1083 // True if we are using a COPY reloc for this symbol, so that the
1084 // real definition lives in a dynamic object (bit 27).
1085 bool is_copied_from_dynobj_ : 1;
1086 // True if this symbol was forced to local visibility by a version
1087 // script (bit 28).
1088 bool is_forced_local_ : 1;
1089 // True if the field u2_.shndx is an ordinary section
1090 // index, not one of the special codes from SHN_LORESERVE to
1091 // SHN_HIRESERVE (bit 29).
1092 bool is_ordinary_shndx_ : 1;
1093 // True if we've seen this symbol in a "real" ELF object (bit 30).
1094 // If the symbol has been seen in a relocatable, non-IR, object file,
1095 // it's known to be referenced from outside the IR. A reference from
1096 // a dynamic object doesn't count as a "real" ELF, and we'll simply
1097 // mark the symbol as "visible" from outside the IR. The compiler
1098 // can use this distinction to guide its handling of COMDAT symbols.
1099 bool in_real_elf_ : 1;
1100 // True if this symbol is defined in a section which was discarded
1101 // (bit 31).
1102 bool is_defined_in_discarded_section_ : 1;
1103 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1104 bool undef_binding_set_ : 1;
1105 // True if this symbol was a weak undef resolved by a dynamic def
1106 // or by a special symbol (bit 33).
1107 bool undef_binding_weak_ : 1;
1108 // True if this symbol is a predefined linker symbol (bit 34).
1109 bool is_predefined_ : 1;
1110 // True if this symbol has protected visibility in a shared object (bit 35).
1111 // The visibility_ field will be STV_DEFAULT in this case because we
1112 // must treat it as such from outside the shared object.
1113 bool is_protected_ : 1;
1114 // Used by PowerPC64 ELFv2 to track st_other localentry (bit 36).
1115 bool non_zero_localentry_ : 1;
1118 // The parts of a symbol which are size specific. Using a template
1119 // derived class like this helps us use less space on a 32-bit system.
1121 template<int size>
1122 class Sized_symbol : public Symbol
1124 public:
1125 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1126 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1128 Sized_symbol()
1131 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
1132 // section index, IS_ORDINARY is whether it is a normal section
1133 // index rather than a special code.
1134 template<bool big_endian>
1135 void
1136 init_object(const char* name, const char* version, Object* object,
1137 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1138 bool is_ordinary);
1140 // Initialize fields for an Output_data.
1141 void
1142 init_output_data(const char* name, const char* version, Output_data*,
1143 Value_type value, Size_type symsize, elfcpp::STT,
1144 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1145 bool offset_is_from_end, bool is_predefined);
1147 // Initialize fields for an Output_segment.
1148 void
1149 init_output_segment(const char* name, const char* version, Output_segment*,
1150 Value_type value, Size_type symsize, elfcpp::STT,
1151 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1152 Segment_offset_base offset_base, bool is_predefined);
1154 // Initialize fields for a constant.
1155 void
1156 init_constant(const char* name, const char* version, Value_type value,
1157 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1158 unsigned char nonvis, bool is_predefined);
1160 // Initialize fields for an undefined symbol.
1161 void
1162 init_undefined(const char* name, const char* version, Value_type value,
1163 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1165 // Override existing symbol.
1166 template<bool big_endian>
1167 void
1168 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1169 bool is_ordinary, Object* object, const char* version);
1171 // Override existing symbol with a special symbol.
1172 void
1173 override_with_special(const Sized_symbol<size>*);
1175 // Return the symbol's value.
1176 Value_type
1177 value() const
1178 { return this->value_; }
1180 // Return the symbol's size (we can't call this 'size' because that
1181 // is a template parameter).
1182 Size_type
1183 symsize() const
1184 { return this->symsize_; }
1186 // Set the symbol size. This is used when resolving common symbols.
1187 void
1188 set_symsize(Size_type symsize)
1189 { this->symsize_ = symsize; }
1191 // Set the symbol value. This is called when we store the final
1192 // values of the symbols into the symbol table.
1193 void
1194 set_value(Value_type value)
1195 { this->value_ = value; }
1197 // Allocate a common symbol by giving it a location in the output
1198 // file.
1199 void
1200 allocate_common(Output_data*, Value_type value);
1202 // Completely override existing symbol. Everything bar name_,
1203 // version_, and is_forced_local_ flag are copied. version_ is
1204 // cleared if from->version_ is clear. Returns true if this symbol
1205 // should be forced local.
1206 bool
1207 clone(const Sized_symbol<size>* from);
1209 private:
1210 Sized_symbol(const Sized_symbol&);
1211 Sized_symbol& operator=(const Sized_symbol&);
1213 // Symbol value. Before Layout::finalize this is the offset in the
1214 // input section. This is set to the final value during
1215 // Layout::finalize.
1216 Value_type value_;
1217 // Symbol size.
1218 Size_type symsize_;
1221 // A struct describing a symbol defined by the linker, where the value
1222 // of the symbol is defined based on an output section. This is used
1223 // for symbols defined by the linker, like "_init_array_start".
1225 struct Define_symbol_in_section
1227 // The symbol name.
1228 const char* name;
1229 // The name of the output section with which this symbol should be
1230 // associated. If there is no output section with that name, the
1231 // symbol will be defined as zero.
1232 const char* output_section;
1233 // The offset of the symbol within the output section. This is an
1234 // offset from the start of the output section, unless start_at_end
1235 // is true, in which case this is an offset from the end of the
1236 // output section.
1237 uint64_t value;
1238 // The size of the symbol.
1239 uint64_t size;
1240 // The symbol type.
1241 elfcpp::STT type;
1242 // The symbol binding.
1243 elfcpp::STB binding;
1244 // The symbol visibility.
1245 elfcpp::STV visibility;
1246 // The rest of the st_other field.
1247 unsigned char nonvis;
1248 // If true, the value field is an offset from the end of the output
1249 // section.
1250 bool offset_is_from_end;
1251 // If true, this symbol is defined only if we see a reference to it.
1252 bool only_if_ref;
1255 // A struct describing a symbol defined by the linker, where the value
1256 // of the symbol is defined based on a segment. This is used for
1257 // symbols defined by the linker, like "_end". We describe the
1258 // segment with which the symbol should be associated by its
1259 // characteristics. If no segment meets these characteristics, the
1260 // symbol will be defined as zero. If there is more than one segment
1261 // which meets these characteristics, we will use the first one.
1263 struct Define_symbol_in_segment
1265 // The symbol name.
1266 const char* name;
1267 // The segment type where the symbol should be defined, typically
1268 // PT_LOAD.
1269 elfcpp::PT segment_type;
1270 // Bitmask of segment flags which must be set.
1271 elfcpp::PF segment_flags_set;
1272 // Bitmask of segment flags which must be clear.
1273 elfcpp::PF segment_flags_clear;
1274 // The offset of the symbol within the segment. The offset is
1275 // calculated from the position set by offset_base.
1276 uint64_t value;
1277 // The size of the symbol.
1278 uint64_t size;
1279 // The symbol type.
1280 elfcpp::STT type;
1281 // The symbol binding.
1282 elfcpp::STB binding;
1283 // The symbol visibility.
1284 elfcpp::STV visibility;
1285 // The rest of the st_other field.
1286 unsigned char nonvis;
1287 // The base from which we compute the offset.
1288 Symbol::Segment_offset_base offset_base;
1289 // If true, this symbol is defined only if we see a reference to it.
1290 bool only_if_ref;
1293 // Specify an object/section/offset location. Used by ODR code.
1295 struct Symbol_location
1297 // Object where the symbol is defined.
1298 Object* object;
1299 // Section-in-object where the symbol is defined.
1300 unsigned int shndx;
1301 // For relocatable objects, offset-in-section where the symbol is defined.
1302 // For dynamic objects, address where the symbol is defined.
1303 off_t offset;
1304 bool operator==(const Symbol_location& that) const
1306 return (this->object == that.object
1307 && this->shndx == that.shndx
1308 && this->offset == that.offset);
1312 // A map from symbol name (as a pointer into the namepool) to all
1313 // the locations the symbols is (weakly) defined (and certain other
1314 // conditions are met). This map will be used later to detect
1315 // possible One Definition Rule (ODR) violations.
1316 struct Symbol_location_hash
1318 size_t operator()(const Symbol_location& loc) const
1319 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1322 // This class manages warnings. Warnings are a GNU extension. When
1323 // we see a section named .gnu.warning.SYM in an object file, and if
1324 // we wind using the definition of SYM from that object file, then we
1325 // will issue a warning for any relocation against SYM from a
1326 // different object file. The text of the warning is the contents of
1327 // the section. This is not precisely the definition used by the old
1328 // GNU linker; the old GNU linker treated an occurrence of
1329 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1330 // would trigger a warning on any reference. However, it was
1331 // inconsistent in that a warning in a dynamic object only triggered
1332 // if there was no definition in a regular object. This linker is
1333 // different in that we only issue a warning if we use the symbol
1334 // definition from the same object file as the warning section.
1336 class Warnings
1338 public:
1339 Warnings()
1340 : warnings_()
1343 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1344 // of the warning.
1345 void
1346 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1347 const std::string& warning);
1349 // For each symbol for which we should give a warning, make a note
1350 // on the symbol.
1351 void
1352 note_warnings(Symbol_table* symtab);
1354 // Issue a warning for a reference to SYM at RELINFO's location.
1355 template<int size, bool big_endian>
1356 void
1357 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1358 size_t relnum, off_t reloffset) const;
1360 private:
1361 Warnings(const Warnings&);
1362 Warnings& operator=(const Warnings&);
1364 // What we need to know to get the warning text.
1365 struct Warning_location
1367 // The object the warning is in.
1368 Object* object;
1369 // The warning text.
1370 std::string text;
1372 Warning_location()
1373 : object(NULL), text()
1376 void
1377 set(Object* o, const std::string& t)
1379 this->object = o;
1380 this->text = t;
1384 // A mapping from warning symbol names (canonicalized in
1385 // Symbol_table's namepool_ field) to warning information.
1386 typedef Unordered_map<const char*, Warning_location> Warning_table;
1388 Warning_table warnings_;
1391 // The main linker symbol table.
1393 class Symbol_table
1395 public:
1396 // The different places where a symbol definition can come from.
1397 enum Defined
1399 // Defined in an object file--the normal case.
1400 OBJECT,
1401 // Defined for a COPY reloc.
1402 COPY,
1403 // Defined on the command line using --defsym.
1404 DEFSYM,
1405 // Defined (so to speak) on the command line using -u.
1406 UNDEFINED,
1407 // Defined in a linker script.
1408 SCRIPT,
1409 // Predefined by the linker.
1410 PREDEFINED,
1411 // Defined by the linker during an incremental base link, but not
1412 // a predefined symbol (e.g., common, defined in script).
1413 INCREMENTAL_BASE,
1416 // The order in which we sort common symbols.
1417 enum Sort_commons_order
1419 SORT_COMMONS_BY_SIZE_DESCENDING,
1420 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1421 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1424 // COUNT is an estimate of how many symbols will be inserted in the
1425 // symbol table. It's ok to put 0 if you don't know; a correct
1426 // guess will just save some CPU by reducing hashtable resizes.
1427 Symbol_table(unsigned int count, const Version_script_info& version_script);
1429 ~Symbol_table();
1431 void
1432 set_icf(Icf* icf)
1433 { this->icf_ = icf;}
1435 Icf*
1436 icf() const
1437 { return this->icf_; }
1439 // Returns true if ICF determined that this is a duplicate section.
1440 bool
1441 is_section_folded(Relobj* obj, unsigned int shndx) const;
1443 void
1444 set_gc(Garbage_collection* gc)
1445 { this->gc_ = gc; }
1447 Garbage_collection*
1448 gc() const
1449 { return this->gc_; }
1451 // During garbage collection, this keeps undefined symbols.
1452 void
1453 gc_mark_undef_symbols(Layout*);
1455 // This tells garbage collection that this symbol is referenced.
1456 void
1457 gc_mark_symbol(Symbol* sym);
1459 // During garbage collection, this keeps sections that correspond to
1460 // symbols seen in dynamic objects.
1461 inline void
1462 gc_mark_dyn_syms(Symbol* sym);
1464 // Add COUNT external symbols from the relocatable object RELOBJ to
1465 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1466 // offset in the symbol table of the first symbol, SYM_NAMES is
1467 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1468 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1469 // *DEFINED to the number of defined symbols.
1470 template<int size, bool big_endian>
1471 void
1472 add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1473 const unsigned char* syms, size_t count,
1474 size_t symndx_offset, const char* sym_names,
1475 size_t sym_name_size,
1476 typename Sized_relobj_file<size, big_endian>::Symbols*,
1477 size_t* defined);
1479 // Add one external symbol from the plugin object OBJ to the symbol table.
1480 // Returns a pointer to the resolved symbol in the symbol table.
1481 template<int size, bool big_endian>
1482 Symbol*
1483 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1484 const char* name, const char* ver,
1485 elfcpp::Sym<size, big_endian>* sym);
1487 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1488 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1489 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1490 // symbol version data.
1491 template<int size, bool big_endian>
1492 void
1493 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1494 const unsigned char* syms, size_t count,
1495 const char* sym_names, size_t sym_name_size,
1496 const unsigned char* versym, size_t versym_size,
1497 const std::vector<const char*>*,
1498 typename Sized_relobj_file<size, big_endian>::Symbols*,
1499 size_t* defined);
1501 // Add one external symbol from the incremental object OBJ to the symbol
1502 // table. Returns a pointer to the resolved symbol in the symbol table.
1503 template<int size, bool big_endian>
1504 Sized_symbol<size>*
1505 add_from_incrobj(Object* obj, const char* name,
1506 const char* ver, elfcpp::Sym<size, big_endian>* sym);
1508 // Define a special symbol based on an Output_data. It is a
1509 // multiple definition error if this symbol is already defined.
1510 Symbol*
1511 define_in_output_data(const char* name, const char* version, Defined,
1512 Output_data*, uint64_t value, uint64_t symsize,
1513 elfcpp::STT type, elfcpp::STB binding,
1514 elfcpp::STV visibility, unsigned char nonvis,
1515 bool offset_is_from_end, bool only_if_ref);
1517 // Define a special symbol based on an Output_segment. It is a
1518 // multiple definition error if this symbol is already defined.
1519 Symbol*
1520 define_in_output_segment(const char* name, const char* version, Defined,
1521 Output_segment*, uint64_t value, uint64_t symsize,
1522 elfcpp::STT type, elfcpp::STB binding,
1523 elfcpp::STV visibility, unsigned char nonvis,
1524 Symbol::Segment_offset_base, bool only_if_ref);
1526 // Define a special symbol with a constant value. It is a multiple
1527 // definition error if this symbol is already defined.
1528 Symbol*
1529 define_as_constant(const char* name, const char* version, Defined,
1530 uint64_t value, uint64_t symsize, elfcpp::STT type,
1531 elfcpp::STB binding, elfcpp::STV visibility,
1532 unsigned char nonvis, bool only_if_ref,
1533 bool force_override);
1535 // Define a set of symbols in output sections. If ONLY_IF_REF is
1536 // true, only define them if they are referenced.
1537 void
1538 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1539 bool only_if_ref);
1541 // Define a set of symbols in output segments. If ONLY_IF_REF is
1542 // true, only defined them if they are referenced.
1543 void
1544 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1545 bool only_if_ref);
1547 // Add a target-specific global symbol.
1548 // (Used by SPARC backend to add STT_SPARC_REGISTER symbols.)
1549 void
1550 add_target_global_symbol(Symbol* sym)
1551 { this->target_symbols_.push_back(sym); }
1553 // Define SYM using a COPY reloc. POSD is the Output_data where the
1554 // symbol should be defined--typically a .dyn.bss section. VALUE is
1555 // the offset within POSD.
1556 template<int size>
1557 void
1558 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1559 typename elfcpp::Elf_types<size>::Elf_Addr);
1561 // Look up a symbol.
1562 Symbol*
1563 lookup(const char*, const char* version = NULL) const;
1565 // Return the real symbol associated with the forwarder symbol FROM.
1566 Symbol*
1567 resolve_forwards(const Symbol* from) const;
1569 // Return the sized version of a symbol in this table.
1570 template<int size>
1571 Sized_symbol<size>*
1572 get_sized_symbol(Symbol*) const;
1574 template<int size>
1575 const Sized_symbol<size>*
1576 get_sized_symbol(const Symbol*) const;
1578 // Return the count of undefined symbols seen.
1579 size_t
1580 saw_undefined() const
1581 { return this->saw_undefined_; }
1583 // Allocate the common symbols
1584 void
1585 allocate_commons(Layout*, Mapfile*);
1587 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1588 // of the warning.
1589 void
1590 add_warning(const char* name, Object* obj, const std::string& warning)
1591 { this->warnings_.add_warning(this, name, obj, warning); }
1593 // Canonicalize a symbol name for use in the hash table.
1594 const char*
1595 canonicalize_name(const char* name)
1596 { return this->namepool_.add(name, true, NULL); }
1598 // Possibly issue a warning for a reference to SYM at LOCATION which
1599 // is in OBJ.
1600 template<int size, bool big_endian>
1601 void
1602 issue_warning(const Symbol* sym,
1603 const Relocate_info<size, big_endian>* relinfo,
1604 size_t relnum, off_t reloffset) const
1605 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1607 // Check candidate_odr_violations_ to find symbols with the same name
1608 // but apparently different definitions (different source-file/line-no).
1609 void
1610 detect_odr_violations(const Task*, const char* output_file_name) const;
1612 // Add any undefined symbols named on the command line to the symbol
1613 // table.
1614 void
1615 add_undefined_symbols_from_command_line(Layout*);
1617 // SYM is defined using a COPY reloc. Return the dynamic object
1618 // where the original definition was found.
1619 Dynobj*
1620 get_copy_source(const Symbol* sym) const;
1622 // Set the dynamic symbol indexes. INDEX is the index of the first
1623 // global dynamic symbol. Return the count of forced-local symbols in
1624 // *PFORCED_LOCAL_COUNT. Pointers to the symbols are stored into
1625 // the vector. The names are stored into the Stringpool. This
1626 // returns an updated dynamic symbol index.
1627 unsigned int
1628 set_dynsym_indexes(unsigned int index, unsigned int* pforced_local_count,
1629 std::vector<Symbol*>*, Stringpool*, Versions*);
1631 // Finalize the symbol table after we have set the final addresses
1632 // of all the input sections. This sets the final symbol indexes,
1633 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1634 // index of the first global symbol. OFF is the file offset of the
1635 // global symbol table, DYNOFF is the offset of the globals in the
1636 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1637 // global dynamic symbol, and DYNCOUNT is the number of global
1638 // dynamic symbols. This records the parameters, and returns the
1639 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1640 // local symbols.
1641 off_t
1642 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1643 Stringpool* pool, unsigned int* plocal_symcount);
1645 // Set the final file offset of the symbol table.
1646 void
1647 set_file_offset(off_t off)
1648 { this->offset_ = off; }
1650 // Status code of Symbol_table::compute_final_value.
1651 enum Compute_final_value_status
1653 // No error.
1654 CFVS_OK,
1655 // Unsupported symbol section.
1656 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1657 // No output section.
1658 CFVS_NO_OUTPUT_SECTION
1661 // Compute the final value of SYM and store status in location PSTATUS.
1662 // During relaxation, this may be called multiple times for a symbol to
1663 // compute its would-be final value in each relaxation pass.
1665 template<int size>
1666 typename Sized_symbol<size>::Value_type
1667 compute_final_value(const Sized_symbol<size>* sym,
1668 Compute_final_value_status* pstatus) const;
1670 // Return the index of the first global symbol.
1671 unsigned int
1672 first_global_index() const
1673 { return this->first_global_index_; }
1675 // Return the total number of symbols in the symbol table.
1676 unsigned int
1677 output_count() const
1678 { return this->output_count_; }
1680 // Write out the global symbols.
1681 void
1682 write_globals(const Stringpool*, const Stringpool*,
1683 Output_symtab_xindex*, Output_symtab_xindex*,
1684 Output_file*) const;
1686 // Write out a section symbol. Return the updated offset.
1687 void
1688 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1689 Output_file*, off_t) const;
1691 // Loop over all symbols, applying the function F to each.
1692 template<int size, typename F>
1693 void
1694 for_all_symbols(F f) const
1696 for (Symbol_table_type::const_iterator p = this->table_.begin();
1697 p != this->table_.end();
1698 ++p)
1700 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1701 f(sym);
1705 // Dump statistical information to stderr.
1706 void
1707 print_stats() const;
1709 // Return the version script information.
1710 const Version_script_info&
1711 version_script() const
1712 { return version_script_; }
1714 // Completely override existing symbol.
1715 template<int size>
1716 void
1717 clone(Sized_symbol<size>* to, const Sized_symbol<size>* from)
1719 if (to->clone(from))
1720 this->force_local(to);
1723 private:
1724 Symbol_table(const Symbol_table&);
1725 Symbol_table& operator=(const Symbol_table&);
1727 // The type of the list of common symbols.
1728 typedef std::vector<Symbol*> Commons_type;
1730 // The type of the symbol hash table.
1732 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1734 // The hash function. The key values are Stringpool keys.
1735 struct Symbol_table_hash
1737 inline size_t
1738 operator()(const Symbol_table_key& key) const
1740 return key.first ^ key.second;
1744 struct Symbol_table_eq
1746 bool
1747 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1750 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1751 Symbol_table_eq> Symbol_table_type;
1753 typedef Unordered_map<const char*,
1754 Unordered_set<Symbol_location, Symbol_location_hash> >
1755 Odr_map;
1757 // Make FROM a forwarder symbol to TO.
1758 void
1759 make_forwarder(Symbol* from, Symbol* to);
1761 // Add a symbol.
1762 template<int size, bool big_endian>
1763 Sized_symbol<size>*
1764 add_from_object(Object*, const char* name, Stringpool::Key name_key,
1765 const char* version, Stringpool::Key version_key,
1766 bool def, const elfcpp::Sym<size, big_endian>& sym,
1767 unsigned int st_shndx, bool is_ordinary,
1768 unsigned int orig_st_shndx);
1770 // Define a default symbol.
1771 template<int size, bool big_endian>
1772 void
1773 define_default_version(Sized_symbol<size>*, bool,
1774 Symbol_table_type::iterator);
1776 // Resolve symbols.
1777 template<int size, bool big_endian>
1778 void
1779 resolve(Sized_symbol<size>* to,
1780 const elfcpp::Sym<size, big_endian>& sym,
1781 unsigned int st_shndx, bool is_ordinary,
1782 unsigned int orig_st_shndx,
1783 Object*, const char* version,
1784 bool is_default_version);
1786 template<int size, bool big_endian>
1787 void
1788 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1790 // Record that a symbol is forced to be local by a version script or
1791 // by visibility.
1792 void
1793 force_local(Symbol*);
1795 // Adjust NAME and *NAME_KEY for wrapping.
1796 const char*
1797 wrap_symbol(const char* name, Stringpool::Key* name_key);
1799 // Whether we should override a symbol, based on flags in
1800 // resolve.cc.
1801 static bool
1802 should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1803 Object*, bool*, bool*, bool);
1805 // Report a problem in symbol resolution.
1806 static void
1807 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1808 Defined, Object* object);
1810 // Override a symbol.
1811 template<int size, bool big_endian>
1812 void
1813 override(Sized_symbol<size>* tosym,
1814 const elfcpp::Sym<size, big_endian>& fromsym,
1815 unsigned int st_shndx, bool is_ordinary,
1816 Object* object, const char* version);
1818 // Whether we should override a symbol with a special symbol which
1819 // is automatically defined by the linker.
1820 static bool
1821 should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1823 // Override a symbol with a special symbol.
1824 template<int size>
1825 void
1826 override_with_special(Sized_symbol<size>* tosym,
1827 const Sized_symbol<size>* fromsym);
1829 // Record all weak alias sets for a dynamic object.
1830 template<int size>
1831 void
1832 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1834 // Define a special symbol.
1835 template<int size, bool big_endian>
1836 Sized_symbol<size>*
1837 define_special_symbol(const char** pname, const char** pversion,
1838 bool only_if_ref, elfcpp::STV visibility,
1839 Sized_symbol<size>** poldsym,
1840 bool* resolve_oldsym, bool is_forced_local);
1842 // Define a symbol in an Output_data, sized version.
1843 template<int size>
1844 Sized_symbol<size>*
1845 do_define_in_output_data(const char* name, const char* version, Defined,
1846 Output_data*,
1847 typename elfcpp::Elf_types<size>::Elf_Addr value,
1848 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1849 elfcpp::STT type, elfcpp::STB binding,
1850 elfcpp::STV visibility, unsigned char nonvis,
1851 bool offset_is_from_end, bool only_if_ref);
1853 // Define a symbol in an Output_segment, sized version.
1854 template<int size>
1855 Sized_symbol<size>*
1856 do_define_in_output_segment(
1857 const char* name, const char* version, Defined, Output_segment* os,
1858 typename elfcpp::Elf_types<size>::Elf_Addr value,
1859 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1860 elfcpp::STT type, elfcpp::STB binding,
1861 elfcpp::STV visibility, unsigned char nonvis,
1862 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1864 // Define a symbol as a constant, sized version.
1865 template<int size>
1866 Sized_symbol<size>*
1867 do_define_as_constant(
1868 const char* name, const char* version, Defined,
1869 typename elfcpp::Elf_types<size>::Elf_Addr value,
1870 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1871 elfcpp::STT type, elfcpp::STB binding,
1872 elfcpp::STV visibility, unsigned char nonvis,
1873 bool only_if_ref, bool force_override);
1875 // Add any undefined symbols named on the command line to the symbol
1876 // table, sized version.
1877 template<int size>
1878 void
1879 do_add_undefined_symbols_from_command_line(Layout*);
1881 // Add one undefined symbol.
1882 template<int size>
1883 void
1884 add_undefined_symbol_from_command_line(const char* name);
1886 // Types of common symbols.
1888 enum Commons_section_type
1890 COMMONS_NORMAL,
1891 COMMONS_TLS,
1892 COMMONS_SMALL,
1893 COMMONS_LARGE
1896 // Allocate the common symbols, sized version.
1897 template<int size>
1898 void
1899 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1901 // Allocate the common symbols from one list.
1902 template<int size>
1903 void
1904 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1905 Mapfile*, Sort_commons_order);
1907 // Returns all of the lines attached to LOC, not just the one the
1908 // instruction actually came from. This helps the ODR checker avoid
1909 // false positives.
1910 static std::vector<std::string>
1911 linenos_from_loc(const Task* task, const Symbol_location& loc);
1913 // Implement detect_odr_violations.
1914 template<int size, bool big_endian>
1915 void
1916 sized_detect_odr_violations() const;
1918 // Finalize symbols specialized for size.
1919 template<int size>
1920 off_t
1921 sized_finalize(off_t, Stringpool*, unsigned int*);
1923 // Finalize a symbol. Return whether it should be added to the
1924 // symbol table.
1925 template<int size>
1926 bool
1927 sized_finalize_symbol(Symbol*);
1929 // Add a symbol the final symtab by setting its index.
1930 template<int size>
1931 void
1932 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1934 // Write globals specialized for size and endianness.
1935 template<int size, bool big_endian>
1936 void
1937 sized_write_globals(const Stringpool*, const Stringpool*,
1938 Output_symtab_xindex*, Output_symtab_xindex*,
1939 Output_file*) const;
1941 // Write out a symbol to P.
1942 template<int size, bool big_endian>
1943 void
1944 sized_write_symbol(Sized_symbol<size>*,
1945 typename elfcpp::Elf_types<size>::Elf_Addr value,
1946 unsigned int shndx, elfcpp::STB,
1947 const Stringpool*, unsigned char* p) const;
1949 // Possibly warn about an undefined symbol from a dynamic object.
1950 void
1951 warn_about_undefined_dynobj_symbol(Symbol*) const;
1953 // Write out a section symbol, specialized for size and endianness.
1954 template<int size, bool big_endian>
1955 void
1956 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1957 Output_file*, off_t) const;
1959 // The type of the list of symbols which have been forced local.
1960 typedef std::vector<Symbol*> Forced_locals;
1962 // A map from symbols with COPY relocs to the dynamic objects where
1963 // they are defined.
1964 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1966 // We increment this every time we see a new undefined symbol, for
1967 // use in archive groups.
1968 size_t saw_undefined_;
1969 // The index of the first global symbol in the output file.
1970 unsigned int first_global_index_;
1971 // The file offset within the output symtab section where we should
1972 // write the table.
1973 off_t offset_;
1974 // The number of global symbols we want to write out.
1975 unsigned int output_count_;
1976 // The file offset of the global dynamic symbols, or 0 if none.
1977 off_t dynamic_offset_;
1978 // The index of the first global dynamic symbol (including
1979 // forced-local symbols).
1980 unsigned int first_dynamic_global_index_;
1981 // The number of global dynamic symbols (including forced-local symbols),
1982 // or 0 if none.
1983 unsigned int dynamic_count_;
1984 // The symbol hash table.
1985 Symbol_table_type table_;
1986 // A pool of symbol names. This is used for all global symbols.
1987 // Entries in the hash table point into this pool.
1988 Stringpool namepool_;
1989 // Forwarding symbols.
1990 Unordered_map<const Symbol*, Symbol*> forwarders_;
1991 // Weak aliases. A symbol in this list points to the next alias.
1992 // The aliases point to each other in a circular list.
1993 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1994 // We don't expect there to be very many common symbols, so we keep
1995 // a list of them. When we find a common symbol we add it to this
1996 // list. It is possible that by the time we process the list the
1997 // symbol is no longer a common symbol. It may also have become a
1998 // forwarder.
1999 Commons_type commons_;
2000 // This is like the commons_ field, except that it holds TLS common
2001 // symbols.
2002 Commons_type tls_commons_;
2003 // This is for small common symbols.
2004 Commons_type small_commons_;
2005 // This is for large common symbols.
2006 Commons_type large_commons_;
2007 // A list of symbols which have been forced to be local. We don't
2008 // expect there to be very many of them, so we keep a list of them
2009 // rather than walking the whole table to find them.
2010 Forced_locals forced_locals_;
2011 // Manage symbol warnings.
2012 Warnings warnings_;
2013 // Manage potential One Definition Rule (ODR) violations.
2014 Odr_map candidate_odr_violations_;
2016 // When we emit a COPY reloc for a symbol, we define it in an
2017 // Output_data. When it's time to emit version information for it,
2018 // we need to know the dynamic object in which we found the original
2019 // definition. This maps symbols with COPY relocs to the dynamic
2020 // object where they were defined.
2021 Copied_symbol_dynobjs copied_symbol_dynobjs_;
2022 // Information parsed from the version script, if any.
2023 const Version_script_info& version_script_;
2024 Garbage_collection* gc_;
2025 Icf* icf_;
2026 // Target-specific symbols, if any.
2027 std::vector<Symbol*> target_symbols_;
2030 // We inline get_sized_symbol for efficiency.
2032 template<int size>
2033 Sized_symbol<size>*
2034 Symbol_table::get_sized_symbol(Symbol* sym) const
2036 gold_assert(size == parameters->target().get_size());
2037 return static_cast<Sized_symbol<size>*>(sym);
2040 template<int size>
2041 const Sized_symbol<size>*
2042 Symbol_table::get_sized_symbol(const Symbol* sym) const
2044 gold_assert(size == parameters->target().get_size());
2045 return static_cast<const Sized_symbol<size>*>(sym);
2048 } // End namespace gold.
2050 #endif // !defined(GOLD_SYMTAB_H)