[binutils, ARM, 8/16] BFL infrastructure with new global reloc R_ARM_THM_BF18
[binutils-gdb.git] / opcodes / s12z-opc.c
blob1f02f5dc6a452a45fcd579f10d968832d586e43a
1 /* s12z-decode.c -- Freescale S12Z disassembly
2 Copyright (C) 2018 Free Software Foundation, Inc.
4 This file is part of the GNU opcodes library.
6 This library is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 It is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
21 #include "sysdep.h"
22 #include <stdio.h>
23 #include <stdint.h>
24 #include <stdbool.h>
25 #include <assert.h>
27 #include "opcode/s12z.h"
29 #include "bfd.h"
31 #include "s12z-opc.h"
34 typedef int (* insn_bytes_f) (struct mem_read_abstraction_base *);
36 typedef void (*operands_f) (struct mem_read_abstraction_base *,
37 int *n_operands, struct operand **operand);
39 typedef enum optr (*discriminator_f) (struct mem_read_abstraction_base *,
40 enum optr hint);
42 enum OPR_MODE
44 OPR_IMMe4,
45 OPR_REG,
46 OPR_OFXYS,
47 OPR_XY_PRE_INC,
48 OPR_XY_POST_INC,
49 OPR_XY_PRE_DEC,
50 OPR_XY_POST_DEC,
51 OPR_S_PRE_DEC,
52 OPR_S_POST_INC,
53 OPR_REG_DIRECT,
54 OPR_REG_INDIRECT,
55 OPR_IDX_DIRECT,
56 OPR_IDX_INDIRECT,
57 OPR_EXT1,
58 OPR_IDX2_REG,
59 OPR_IDX3_DIRECT,
60 OPR_IDX3_INDIRECT,
62 OPR_EXT18,
63 OPR_IDX3_DIRECT_REG,
64 OPR_EXT3_DIRECT,
65 OPR_EXT3_INDIRECT
68 struct opr_pb
70 uint8_t mask;
71 uint8_t value;
72 int n_operands;
73 enum OPR_MODE mode;
76 static const struct opr_pb opr_pb[] = {
77 {0xF0, 0x70, 1, OPR_IMMe4},
78 {0xF8, 0xB8, 1, OPR_REG},
79 {0xC0, 0x40, 1, OPR_OFXYS},
80 {0xEF, 0xE3, 1, OPR_XY_PRE_INC},
81 {0xEF, 0xE7, 1, OPR_XY_POST_INC},
82 {0xEF, 0xC3, 1, OPR_XY_PRE_DEC},
83 {0xEF, 0xC7, 1, OPR_XY_POST_DEC},
84 {0xFF, 0xFB, 1, OPR_S_PRE_DEC},
85 {0xFF, 0xFF, 1, OPR_S_POST_INC},
86 {0xC8, 0x88, 1, OPR_REG_DIRECT},
87 {0xE8, 0xC8, 1, OPR_REG_INDIRECT},
89 {0xCE, 0xC0, 2, OPR_IDX_DIRECT},
90 {0xCE, 0xC4, 2, OPR_IDX_INDIRECT},
91 {0xC0, 0x00, 2, OPR_EXT1},
93 {0xC8, 0x80, 3, OPR_IDX2_REG},
94 {0xFA, 0xF8, 3, OPR_EXT18},
96 {0xCF, 0xC2, 4, OPR_IDX3_DIRECT},
97 {0xCF, 0xC6, 4, OPR_IDX3_INDIRECT},
99 {0xF8, 0xE8, 4, OPR_IDX3_DIRECT_REG},
100 {0xFF, 0xFA, 4, OPR_EXT3_DIRECT},
101 {0xFF, 0xFE, 4, OPR_EXT3_INDIRECT},
104 /* Return the number of bytes in a OPR operand, including the XB postbyte.
105 It does not include any preceeding opcodes. */
106 static int
107 x_opr_n_bytes (struct mem_read_abstraction_base *mra, int offset)
109 bfd_byte xb;
110 int status = mra->read (mra, offset, 1, &xb);
111 if (status < 0)
112 return status;
114 size_t i;
115 for (i = 0; i < sizeof (opr_pb) / sizeof (opr_pb[0]); ++i)
117 const struct opr_pb *pb = opr_pb + i;
118 if ((xb & pb->mask) == pb->value)
120 return pb->n_operands;
124 return 1;
127 static int
128 opr_n_bytes_p1 (struct mem_read_abstraction_base *mra)
130 return 1 + x_opr_n_bytes (mra, 0);
133 static int
134 opr_n_bytes2 (struct mem_read_abstraction_base *mra)
136 int s = x_opr_n_bytes (mra, 0);
137 s += x_opr_n_bytes (mra, s);
138 return s + 1;
141 enum BB_MODE
143 BB_REG_REG_REG,
144 BB_REG_REG_IMM,
145 BB_REG_OPR_REG,
146 BB_OPR_REG_REG,
147 BB_REG_OPR_IMM,
148 BB_OPR_REG_IMM
151 struct opr_bb
153 uint8_t mask;
154 uint8_t value;
155 int n_operands;
156 bool opr;
157 enum BB_MODE mode;
160 static const struct opr_bb bb_modes[] =
162 {0x60, 0x00, 2, false, BB_REG_REG_REG},
163 {0x60, 0x20, 3, false, BB_REG_REG_IMM},
164 {0x70, 0x40, 2, true, BB_REG_OPR_REG},
165 {0x70, 0x50, 2, true, BB_OPR_REG_REG},
166 {0x70, 0x60, 3, true, BB_REG_OPR_IMM},
167 {0x70, 0x70, 3, true, BB_OPR_REG_IMM}
170 static int
171 bfextins_n_bytes (struct mem_read_abstraction_base *mra)
173 bfd_byte bb;
174 int status = mra->read (mra, 0, 1, &bb);
175 if (status < 0)
176 return status;
178 size_t i;
179 const struct opr_bb *bbs = 0;
180 for (i = 0; i < sizeof (bb_modes) / sizeof (bb_modes[0]); ++i)
182 bbs = bb_modes + i;
183 if ((bb & bbs->mask) == bbs->value)
185 break;
189 int n = bbs->n_operands;
190 if (bbs->opr)
191 n += x_opr_n_bytes (mra, n - 1);
193 return n;
196 static int
197 single (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED)
199 return 1;
202 static int
203 two (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED)
205 return 2;
208 static int
209 three (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED)
211 return 3;
214 static int
215 four (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED)
217 return 4;
220 static int
221 five (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED)
223 return 5;
226 static int
227 pcrel_15bit (struct mem_read_abstraction_base *mra)
229 bfd_byte byte;
230 int status = mra->read (mra, 0, 1, &byte);
231 if (status < 0)
232 return status;
233 return (byte & 0x80) ? 3 : 2;
238 static int
239 xysp_reg_from_postbyte (uint8_t postbyte)
241 int reg = -1;
242 switch ((postbyte & 0x30) >> 4)
244 case 0:
245 reg = REG_X;
246 break;
247 case 1:
248 reg = REG_Y;
249 break;
250 case 2:
251 reg = REG_S;
252 break;
253 default:
254 reg = REG_P;
256 return reg;
259 static struct operand * create_immediate_operand (int value)
261 struct immediate_operand *op = malloc (sizeof (*op));
263 ((struct operand *)op)->cl = OPND_CL_IMMEDIATE;
264 op->value = value;
265 ((struct operand *)op)->osize = -1;
267 return (struct operand *) op;
270 static struct operand * create_bitfield_operand (int width, int offset)
272 struct bitfield_operand *op = malloc (sizeof (*op));
274 ((struct operand *)op)->cl = OPND_CL_BIT_FIELD;
275 op->width = width;
276 op->offset = offset;
277 ((struct operand *)op)->osize = -1;
279 return (struct operand *) op;
282 static struct operand *
283 create_register_operand_with_size (int reg, short osize)
285 struct register_operand *op = malloc (sizeof (*op));
287 ((struct operand *)op)->cl = OPND_CL_REGISTER;
288 op->reg = reg;
289 ((struct operand *)op)->osize = osize;
291 return (struct operand *) op;
294 static struct operand *
295 create_register_operand (int reg)
297 return create_register_operand_with_size (reg, -1);
300 static struct operand * create_register_all_operand (void)
302 struct register_operand *op = malloc (sizeof (*op));
304 ((struct operand *)op)->cl = OPND_CL_REGISTER_ALL;
305 ((struct operand *)op)->osize = -1;
307 return (struct operand *) op;
310 static struct operand * create_register_all16_operand (void)
312 struct register_operand *op = malloc (sizeof (*op));
314 ((struct operand *)op)->cl = OPND_CL_REGISTER_ALL16;
315 ((struct operand *)op)->osize = -1;
317 return (struct operand *) op;
321 static struct operand *
322 create_simple_memory_operand (bfd_vma addr, bfd_vma base, bool relative)
324 struct simple_memory_operand *op = malloc (sizeof (*op));
326 ((struct operand *)op)->cl = OPND_CL_SIMPLE_MEMORY;
327 op->addr = addr;
328 op->base = base;
329 op->relative = relative;
330 ((struct operand *)op)->osize = -1;
332 assert (relative || base == 0);
334 return (struct operand *) op;
337 static struct operand *
338 create_memory_operand (bool indirect, int base, int n_regs, int reg0, int reg1)
340 struct memory_operand *op = malloc (sizeof (*op));
342 ((struct operand *)op)->cl = OPND_CL_MEMORY;
343 op->indirect = indirect;
344 op->base_offset = base;
345 op->mutation = OPND_RM_NONE;
346 op->n_regs = n_regs;
347 op->regs[0] = reg0;
348 op->regs[1] = reg1;
349 ((struct operand *)op)->osize = -1;
351 return (struct operand *) op;
354 static struct operand *
355 create_memory_auto_operand (enum op_reg_mutation mutation, int reg)
357 struct memory_operand *op = malloc (sizeof (*op));
359 ((struct operand *)op)->cl = OPND_CL_MEMORY;
360 op->indirect = false;
361 op->base_offset = 0;
362 op->mutation = mutation;
363 op->n_regs = 1;
364 op->regs[0] = reg;
365 op->regs[1] = -1;
366 ((struct operand *)op)->osize = -1;
368 return (struct operand *) op;
373 static void
374 z_ext24_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand)
376 uint8_t buffer[3];
377 int status = mra->read (mra, 0, 3, buffer);
378 if (status < 0)
379 return;
381 int i;
382 uint32_t addr = 0;
383 for (i = 0; i < 3; ++i)
385 addr <<= 8;
386 addr |= buffer[i];
389 operand[(*n_operands)++] = create_simple_memory_operand (addr, 0, false);
393 static uint32_t
394 z_decode_signed_value (struct mem_read_abstraction_base *mra, int offset, short size)
396 assert (size >0);
397 assert (size <= 4);
398 bfd_byte buffer[4];
399 if (0 > mra->read (mra, offset, size, buffer))
401 return 0;
404 int i;
405 uint32_t value = 0;
406 for (i = 0; i < size; ++i)
408 value |= buffer[i] << (8 * (size - i - 1));
411 if (buffer[0] & 0x80)
413 /* Deal with negative values */
414 value -= 0x1UL << (size * 8);
416 return value;
419 static uint32_t
420 decode_signed_value (struct mem_read_abstraction_base *mra, short size)
422 return z_decode_signed_value (mra, 0, size);
425 static void
426 x_imm1 (struct mem_read_abstraction_base *mra,
427 int offset,
428 int *n_operands, struct operand **operand)
430 bfd_byte byte;
431 int status = mra->read (mra, offset, 1, &byte);
432 if (status < 0)
433 return;
435 operand[(*n_operands)++] = create_immediate_operand (byte);
438 /* An eight bit immediate operand. */
439 static void
440 imm1_decode (struct mem_read_abstraction_base *mra,
441 int *n_operands, struct operand **operand)
443 x_imm1 (mra, 0, n_operands, operand);
446 static void
447 trap_decode (struct mem_read_abstraction_base *mra,
448 int *n_operands, struct operand **operand)
450 x_imm1 (mra, -1, n_operands, operand);
454 static struct operand *
455 x_opr_decode_with_size (struct mem_read_abstraction_base *mra, int offset,
456 short osize)
458 bfd_byte postbyte;
459 int status = mra->read (mra, offset, 1, &postbyte);
460 if (status < 0)
461 return NULL;
462 offset++;
464 enum OPR_MODE mode = -1;
465 size_t i;
466 for (i = 0; i < sizeof (opr_pb) / sizeof (opr_pb[0]); ++i)
468 const struct opr_pb *pb = opr_pb + i;
469 if ((postbyte & pb->mask) == pb->value)
471 mode = pb->mode;
472 break;
476 struct operand *operand = NULL;
477 switch (mode)
479 case OPR_IMMe4:
481 int n;
482 uint8_t x = (postbyte & 0x0F);
483 if (x == 0)
484 n = -1;
485 else
486 n = x;
488 operand = create_immediate_operand (n);
489 break;
491 case OPR_REG:
493 uint8_t x = (postbyte & 0x07);
494 operand = create_register_operand (x);
495 break;
497 case OPR_OFXYS:
499 operand = create_memory_operand (false, postbyte & 0x0F, 1,
500 xysp_reg_from_postbyte (postbyte), -1);
501 break;
503 case OPR_REG_DIRECT:
505 operand = create_memory_operand (false, 0, 2, postbyte & 0x07,
506 xysp_reg_from_postbyte (postbyte));
507 break;
509 case OPR_REG_INDIRECT:
511 operand = create_memory_operand (true, 0, 2, postbyte & 0x07,
512 (postbyte & 0x10) ? REG_Y : REG_X);
513 break;
516 case OPR_IDX_INDIRECT:
518 uint8_t x1;
519 mra->read (mra, offset, 1, &x1);
520 int idx = x1;
522 if (postbyte & 0x01)
524 /* Deal with negative values */
525 idx -= 0x1UL << 8;
528 operand = create_memory_operand (true, idx, 1,
529 xysp_reg_from_postbyte (postbyte), -1);
530 break;
533 case OPR_IDX3_DIRECT:
535 uint8_t x[3];
536 mra->read (mra, offset, 3, x);
537 int idx = x[0] << 16 | x[1] << 8 | x[2];
539 if (x[0] & 0x80)
541 /* Deal with negative values */
542 idx -= 0x1UL << 24;
545 operand = create_memory_operand (false, idx, 1,
546 xysp_reg_from_postbyte (postbyte), -1);
547 break;
550 case OPR_IDX3_DIRECT_REG:
552 uint8_t x[3];
553 mra->read (mra, offset, 3, x);
554 int idx = x[0] << 16 | x[1] << 8 | x[2];
556 if (x[0] & 0x80)
558 /* Deal with negative values */
559 idx -= 0x1UL << 24;
562 operand = create_memory_operand (false, idx, 1, postbyte & 0x07, -1);
563 break;
566 case OPR_IDX3_INDIRECT:
568 uint8_t x[3];
569 mra->read (mra, offset, 3, x);
570 int idx = x[0] << 16 | x[1] << 8 | x[2];
572 if (x[0] & 0x80)
574 /* Deal with negative values */
575 idx -= 0x1UL << 24;
578 operand = create_memory_operand (true, idx, 1,
579 xysp_reg_from_postbyte (postbyte), -1);
580 break;
583 case OPR_IDX_DIRECT:
585 uint8_t x1;
586 mra->read (mra, offset, 1, &x1);
587 int idx = x1;
589 if (postbyte & 0x01)
591 /* Deal with negative values */
592 idx -= 0x1UL << 8;
595 operand = create_memory_operand (false, idx, 1,
596 xysp_reg_from_postbyte (postbyte), -1);
597 break;
600 case OPR_IDX2_REG:
602 uint8_t x[2];
603 mra->read (mra, offset, 2, x);
604 uint32_t idx = x[1] | x[0] << 8 ;
605 idx |= (postbyte & 0x30) << 12;
607 operand = create_memory_operand (false, idx, 1, postbyte & 0x07, -1);
608 break;
611 case OPR_XY_PRE_INC:
613 operand = create_memory_auto_operand (OPND_RM_PRE_INC,
614 (postbyte & 0x10) ? REG_Y: REG_X);
615 break;
617 case OPR_XY_POST_INC:
619 operand = create_memory_auto_operand (OPND_RM_POST_INC,
620 (postbyte & 0x10) ? REG_Y: REG_X);
621 break;
623 case OPR_XY_PRE_DEC:
625 operand = create_memory_auto_operand (OPND_RM_PRE_DEC,
626 (postbyte & 0x10) ? REG_Y: REG_X);
627 break;
629 case OPR_XY_POST_DEC:
631 operand = create_memory_auto_operand (OPND_RM_POST_DEC,
632 (postbyte & 0x10) ? REG_Y: REG_X);
633 break;
635 case OPR_S_PRE_DEC:
637 operand = create_memory_auto_operand (OPND_RM_PRE_DEC, REG_S);
638 break;
640 case OPR_S_POST_INC:
642 operand = create_memory_auto_operand (OPND_RM_POST_INC, REG_S);
643 break;
646 case OPR_EXT18:
648 const size_t size = 2;
649 bfd_byte buffer[4];
650 status = mra->read (mra, offset, size, buffer);
651 if (status < 0)
652 operand = NULL;
654 uint32_t ext18 = 0;
655 for (i = 0; i < size; ++i)
657 ext18 <<= 8;
658 ext18 |= buffer[i];
661 ext18 |= (postbyte & 0x01) << 16;
662 ext18 |= (postbyte & 0x04) << 15;
664 operand = create_simple_memory_operand (ext18, 0, false);
665 break;
668 case OPR_EXT1:
670 uint8_t x1 = 0;
671 mra->read (mra, offset, 1, &x1);
672 int16_t addr;
673 addr = x1;
674 addr |= (postbyte & 0x3f) << 8;
676 operand = create_simple_memory_operand (addr, 0, false);
677 break;
680 case OPR_EXT3_DIRECT:
682 const size_t size = 3;
683 bfd_byte buffer[4];
684 status = mra->read (mra, offset, size, buffer);
685 if (status < 0)
686 operand = NULL;
688 uint32_t ext24 = 0;
689 for (i = 0; i < size; ++i)
691 ext24 |= buffer[i] << (8 * (size - i - 1));
694 operand = create_simple_memory_operand (ext24, 0, false);
695 break;
698 case OPR_EXT3_INDIRECT:
700 const size_t size = 3;
701 bfd_byte buffer[4];
702 status = mra->read (mra, offset, size, buffer);
703 if (status < 0)
704 operand = NULL;
706 uint32_t ext24 = 0;
707 for (i = 0; i < size; ++i)
709 ext24 |= buffer[i] << (8 * (size - i - 1));
712 operand = create_memory_operand (true, ext24, 0, -1, -1);
713 break;
716 default:
717 printf ("Unknown OPR mode #0x%x (%d)", postbyte, mode);
718 abort ();
721 operand->osize = osize;
723 return operand;
726 static struct operand *
727 x_opr_decode (struct mem_read_abstraction_base *mra, int offset)
729 return x_opr_decode_with_size (mra, offset, -1);
732 static void
733 z_opr_decode (struct mem_read_abstraction_base *mra,
734 int *n_operands, struct operand **operand)
736 operand[(*n_operands)++] = x_opr_decode (mra, 0);
739 static void
740 z_opr_decode2 (struct mem_read_abstraction_base *mra,
741 int *n_operands, struct operand **operand)
743 int n = x_opr_n_bytes (mra, 0);
745 operand[(*n_operands)++] = x_opr_decode (mra, 0);
746 operand[(*n_operands)++] = x_opr_decode (mra, n);
749 static void
750 imm1234 (struct mem_read_abstraction_base *mra, int base,
751 int *n_operands, struct operand **operand)
753 bfd_byte opcode;
754 int status = mra->read (mra, -1, 1, &opcode);
755 if (status < 0)
756 return;
758 opcode -= base;
760 int size = registers[opcode & 0xF].bytes;
762 uint32_t imm = decode_signed_value (mra, size);
764 operand[(*n_operands)++] = create_immediate_operand (imm);
768 /* Special case of LD and CMP with register S and IMM operand */
769 static void
770 reg_s_imm (struct mem_read_abstraction_base *mra, int *n_operands,
771 struct operand **operand)
773 operand[(*n_operands)++] = create_register_operand (REG_S);
775 uint32_t imm = decode_signed_value (mra, 3);
776 operand[(*n_operands)++] = create_immediate_operand (imm);
779 /* Special case of LD, CMP and ST with register S and OPR operand */
780 static void
781 reg_s_opr (struct mem_read_abstraction_base *mra, int *n_operands,
782 struct operand **operand)
784 operand[(*n_operands)++] = create_register_operand (REG_S);
785 operand[(*n_operands)++] = x_opr_decode (mra, 0);
788 static void
789 z_imm1234_8base (struct mem_read_abstraction_base *mra, int *n_operands,
790 struct operand **operand)
792 imm1234 (mra, 8, n_operands, operand);
795 static void
796 z_imm1234_0base (struct mem_read_abstraction_base *mra, int *n_operands,
797 struct operand **operand)
799 imm1234 (mra, 0, n_operands, operand);
803 static void
804 z_tfr (struct mem_read_abstraction_base *mra, int *n_operands,
805 struct operand **operand)
807 bfd_byte byte;
808 int status = mra->read (mra, 0, 1, &byte);
809 if (status < 0)
810 return;
812 operand[(*n_operands)++] = create_register_operand (byte >> 4);
813 operand[(*n_operands)++] = create_register_operand (byte & 0x0F);
816 static void
817 z_reg (struct mem_read_abstraction_base *mra, int *n_operands,
818 struct operand **operand)
820 bfd_byte byte;
821 int status = mra->read (mra, -1, 1, &byte);
822 if (status < 0)
823 return;
825 operand[(*n_operands)++] = create_register_operand (byte & 0x07);
829 static void
830 reg_xy (struct mem_read_abstraction_base *mra,
831 int *n_operands, struct operand **operand)
833 bfd_byte byte;
834 int status = mra->read (mra, -1, 1, &byte);
835 if (status < 0)
836 return;
838 operand[(*n_operands)++] =
839 create_register_operand ((byte & 0x01) ? REG_Y : REG_X);
842 static void
843 lea_reg_xys_opr (struct mem_read_abstraction_base *mra,
844 int *n_operands, struct operand **operand)
846 bfd_byte byte;
847 int status = mra->read (mra, -1, 1, &byte);
848 if (status < 0)
849 return;
851 int reg_xys = -1;
852 switch (byte & 0x03)
854 case 0x00:
855 reg_xys = REG_X;
856 break;
857 case 0x01:
858 reg_xys = REG_Y;
859 break;
860 case 0x02:
861 reg_xys = REG_S;
862 break;
865 operand[(*n_operands)++] = create_register_operand (reg_xys);
866 operand[(*n_operands)++] = x_opr_decode (mra, 0);
869 static void
870 lea_reg_xys (struct mem_read_abstraction_base *mra,
871 int *n_operands, struct operand **operand)
873 bfd_byte byte;
874 int status = mra->read (mra, -1, 1, &byte);
875 if (status < 0)
876 return;
878 int reg_n = -1;
879 switch (byte & 0x03)
881 case 0x00:
882 reg_n = REG_X;
883 break;
884 case 0x01:
885 reg_n = REG_Y;
886 break;
887 case 0x02:
888 reg_n = REG_S;
889 break;
892 status = mra->read (mra, 0, 1, &byte);
893 if (status < 0)
894 return;
896 operand[(*n_operands)++] = create_register_operand (reg_n);
897 operand[(*n_operands)++] = create_memory_operand (false, (int8_t) byte,
898 1, reg_n, -1);
902 /* PC Relative offsets of size 15 or 7 bits */
903 static void
904 rel_15_7 (struct mem_read_abstraction_base *mra, int offset,
905 int *n_operands, struct operand **operands)
907 bfd_byte upper;
908 int status = mra->read (mra, offset - 1, 1, &upper);
909 if (status < 0)
910 return;
912 bool rel_size = (upper & 0x80);
914 int16_t addr = upper;
915 if (rel_size)
917 /* 15 bits. Get the next byte */
918 bfd_byte lower;
919 status = mra->read (mra, offset, 1, &lower);
920 if (status < 0)
921 return;
923 addr <<= 8;
924 addr |= lower;
925 addr &= 0x7FFF;
927 bool negative = (addr & 0x4000);
928 addr &= 0x3FFF;
929 if (negative)
930 addr = addr - 0x4000;
932 else
934 /* 7 bits. */
935 bool negative = (addr & 0x40);
936 addr &= 0x3F;
937 if (negative)
938 addr = addr - 0x40;
941 operands[(*n_operands)++] =
942 create_simple_memory_operand (addr, mra->posn (mra) - 1, true);
946 /* PC Relative offsets of size 15 or 7 bits */
947 static void
948 decode_rel_15_7 (struct mem_read_abstraction_base *mra,
949 int *n_operands, struct operand **operand)
951 rel_15_7 (mra, 1, n_operands, operand);
954 static int shift_n_bytes (struct mem_read_abstraction_base *);
955 static int mov_imm_opr_n_bytes (struct mem_read_abstraction_base *);
956 static int loop_prim_n_bytes (struct mem_read_abstraction_base *);
957 static int bm_rel_n_bytes (struct mem_read_abstraction_base *);
958 static int mul_n_bytes (struct mem_read_abstraction_base *);
959 static int bm_n_bytes (struct mem_read_abstraction_base *);
961 static void psh_pul_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
962 static void shift_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
963 static void mul_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
964 static void bm_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
965 static void bm_rel_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
966 static void mov_imm_opr (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
967 static void loop_primitive_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operands);
968 static void bit_field_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operands);
969 static void exg_sex_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operands);
972 static enum optr shift_discrim (struct mem_read_abstraction_base *mra, enum optr hint);
973 static enum optr psh_pul_discrim (struct mem_read_abstraction_base *mra, enum optr hint);
974 static enum optr mul_discrim (struct mem_read_abstraction_base *mra, enum optr hint);
975 static enum optr loop_primitive_discrim (struct mem_read_abstraction_base *mra, enum optr hint);
976 static enum optr bit_field_discrim (struct mem_read_abstraction_base *mra, enum optr hint);
977 static enum optr exg_sex_discrim (struct mem_read_abstraction_base *mra, enum optr hint);
980 static void
981 cmp_xy (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED,
982 int *n_operands, struct operand **operand)
984 operand[(*n_operands)++] = create_register_operand (REG_X);
985 operand[(*n_operands)++] = create_register_operand (REG_Y);
988 static void
989 sub_d6_x_y (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED,
990 int *n_operands, struct operand **operand)
992 operand[(*n_operands)++] = create_register_operand (REG_D6);
993 operand[(*n_operands)++] = create_register_operand (REG_X);
994 operand[(*n_operands)++] = create_register_operand (REG_Y);
997 static void
998 sub_d6_y_x (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED,
999 int *n_operands, struct operand **operand)
1001 operand[(*n_operands)++] = create_register_operand (REG_D6);
1002 operand[(*n_operands)++] = create_register_operand (REG_Y);
1003 operand[(*n_operands)++] = create_register_operand (REG_X);
1006 static void ld_18bit_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
1008 static enum optr
1009 mul_discrim (struct mem_read_abstraction_base *mra, enum optr hint)
1011 uint8_t mb;
1012 int status = mra->read (mra, 0, 1, &mb);
1013 if (status < 0)
1014 return OP_INVALID;
1016 bool signed_op = (mb & 0x80);
1018 switch (hint)
1020 case OPBASE_mul:
1021 return signed_op ? OP_muls : OP_mulu;
1022 break;
1023 case OPBASE_div:
1024 return signed_op ? OP_divs : OP_divu;
1025 break;
1026 case OPBASE_mod:
1027 return signed_op ? OP_mods : OP_modu;
1028 break;
1029 case OPBASE_mac:
1030 return signed_op ? OP_macs : OP_macu;
1031 break;
1032 case OPBASE_qmul:
1033 return signed_op ? OP_qmuls : OP_qmulu;
1034 break;
1035 default:
1036 abort ();
1039 return OP_INVALID;
1042 struct opcode
1044 /* The operation that this opcode performs. */
1045 enum optr operator;
1047 /* The size of this operation. May be -1 if it is implied
1048 in the operands or if size is not applicable. */
1049 short osize;
1051 /* Some operations need this function to work out which operation
1052 is intended. */
1053 discriminator_f discriminator;
1055 /* A function returning the number of bytes in this instruction. */
1056 insn_bytes_f insn_bytes;
1058 operands_f operands;
1059 operands_f operands2;
1062 static const struct opcode page2[] =
1064 [0x00] = {OP_ld, -1, 0, opr_n_bytes_p1, reg_s_opr, 0},
1065 [0x01] = {OP_st, -1, 0, opr_n_bytes_p1, reg_s_opr, 0},
1066 [0x02] = {OP_cmp, -1, 0, opr_n_bytes_p1, reg_s_opr, 0},
1067 [0x03] = {OP_ld, -1, 0, four, reg_s_imm, 0},
1068 [0x04] = {OP_cmp, -1, 0, four, reg_s_imm, 0},
1069 [0x05] = {OP_stop, -1, 0, single, 0, 0},
1070 [0x06] = {OP_wai, -1, 0, single, 0, 0},
1071 [0x07] = {OP_sys, -1, 0, single, 0, 0},
1072 [0x08] = {0xFFFF, -1, bit_field_discrim, bfextins_n_bytes, bit_field_decode, 0}, /* BFEXT / BFINS */
1073 [0x09] = {0xFFFF, -1, bit_field_discrim, bfextins_n_bytes, bit_field_decode, 0},
1074 [0x0a] = {0xFFFF, -1, bit_field_discrim, bfextins_n_bytes, bit_field_decode, 0},
1075 [0x0b] = {0xFFFF, -1, bit_field_discrim, bfextins_n_bytes, bit_field_decode, 0},
1076 [0x0c] = {0xFFFF, -1, bit_field_discrim, bfextins_n_bytes, bit_field_decode, 0},
1077 [0x0d] = {0xFFFF, -1, bit_field_discrim, bfextins_n_bytes, bit_field_decode, 0},
1078 [0x0e] = {0xFFFF, -1, bit_field_discrim, bfextins_n_bytes, bit_field_decode, 0},
1079 [0x0f] = {0xFFFF, -1, bit_field_discrim, bfextins_n_bytes, bit_field_decode, 0},
1080 [0x10] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1081 [0x11] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1082 [0x12] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1083 [0x13] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1084 [0x14] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1085 [0x15] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1086 [0x16] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1087 [0x17] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1088 [0x18] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1089 [0x19] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1090 [0x1a] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1091 [0x1b] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1092 [0x1c] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1093 [0x1d] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1094 [0x1e] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1095 [0x1f] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1096 [0x20] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1097 [0x21] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1098 [0x22] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1099 [0x23] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1100 [0x24] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1101 [0x25] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1102 [0x26] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1103 [0x27] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1104 [0x28] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1105 [0x29] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1106 [0x2a] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1107 [0x2b] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1108 [0x2c] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1109 [0x2d] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1110 [0x2e] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1111 [0x2f] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1112 [0x30] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1113 [0x31] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1114 [0x32] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1115 [0x33] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1116 [0x34] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1117 [0x35] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1118 [0x36] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1119 [0x37] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1120 [0x38] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1121 [0x39] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1122 [0x3a] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1123 [0x3b] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1124 [0x3c] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1125 [0x3d] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1126 [0x3e] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1127 [0x3f] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1128 [0x40] = {OP_abs, -1, 0, single, z_reg, 0},
1129 [0x41] = {OP_abs, -1, 0, single, z_reg, 0},
1130 [0x42] = {OP_abs, -1, 0, single, z_reg, 0},
1131 [0x43] = {OP_abs, -1, 0, single, z_reg, 0},
1132 [0x44] = {OP_abs, -1, 0, single, z_reg, 0},
1133 [0x45] = {OP_abs, -1, 0, single, z_reg, 0},
1134 [0x46] = {OP_abs, -1, 0, single, z_reg, 0},
1135 [0x47] = {OP_abs, -1, 0, single, z_reg, 0},
1136 [0x48] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1137 [0x49] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1138 [0x4a] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1139 [0x4b] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1140 [0x4c] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1141 [0x4d] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1142 [0x4e] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1143 [0x4f] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1144 [0x50] = {OP_adc, -1, 0, three, z_reg, z_imm1234_0base},
1145 [0x51] = {OP_adc, -1, 0, three, z_reg, z_imm1234_0base},
1146 [0x52] = {OP_adc, -1, 0, three, z_reg, z_imm1234_0base},
1147 [0x53] = {OP_adc, -1, 0, three, z_reg, z_imm1234_0base},
1148 [0x54] = {OP_adc, -1, 0, two, z_reg, z_imm1234_0base},
1149 [0x55] = {OP_adc, -1, 0, two, z_reg, z_imm1234_0base},
1150 [0x56] = {OP_adc, -1, 0, five, z_reg, z_imm1234_0base},
1151 [0x57] = {OP_adc, -1, 0, five, z_reg, z_imm1234_0base},
1152 [0x58] = {OP_bit, -1, 0, three, z_reg, z_imm1234_8base},
1153 [0x59] = {OP_bit, -1, 0, three, z_reg, z_imm1234_8base},
1154 [0x5a] = {OP_bit, -1, 0, three, z_reg, z_imm1234_8base},
1155 [0x5b] = {OP_bit, -1, 0, three, z_reg, z_imm1234_8base},
1156 [0x5c] = {OP_bit, -1, 0, two, z_reg, z_imm1234_8base},
1157 [0x5d] = {OP_bit, -1, 0, two, z_reg, z_imm1234_8base},
1158 [0x5e] = {OP_bit, -1, 0, five, z_reg, z_imm1234_8base},
1159 [0x5f] = {OP_bit, -1, 0, five, z_reg, z_imm1234_8base},
1160 [0x60] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1161 [0x61] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1162 [0x62] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1163 [0x63] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1164 [0x64] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1165 [0x65] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1166 [0x66] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1167 [0x67] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1168 [0x68] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1169 [0x69] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1170 [0x6a] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1171 [0x6b] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1172 [0x6c] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1173 [0x6d] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1174 [0x6e] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1175 [0x6f] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1176 [0x70] = {OP_sbc, -1, 0, three, z_reg, z_imm1234_0base},
1177 [0x71] = {OP_sbc, -1, 0, three, z_reg, z_imm1234_0base},
1178 [0x72] = {OP_sbc, -1, 0, three, z_reg, z_imm1234_0base},
1179 [0x73] = {OP_sbc, -1, 0, three, z_reg, z_imm1234_0base},
1180 [0x74] = {OP_sbc, -1, 0, two, z_reg, z_imm1234_0base},
1181 [0x75] = {OP_sbc, -1, 0, two, z_reg, z_imm1234_0base},
1182 [0x76] = {OP_sbc, -1, 0, five, z_reg, z_imm1234_0base},
1183 [0x77] = {OP_sbc, -1, 0, five, z_reg, z_imm1234_0base},
1184 [0x78] = {OP_eor, -1, 0, three, z_reg, z_imm1234_8base},
1185 [0x79] = {OP_eor, -1, 0, three, z_reg, z_imm1234_8base},
1186 [0x7a] = {OP_eor, -1, 0, three, z_reg, z_imm1234_8base},
1187 [0x7b] = {OP_eor, -1, 0, three, z_reg, z_imm1234_8base},
1188 [0x7c] = {OP_eor, -1, 0, two, z_reg, z_imm1234_8base},
1189 [0x7d] = {OP_eor, -1, 0, two, z_reg, z_imm1234_8base},
1190 [0x7e] = {OP_eor, -1, 0, five, z_reg, z_imm1234_8base},
1191 [0x7f] = {OP_eor, -1, 0, five, z_reg, z_imm1234_8base},
1192 [0x80] = {OP_sbc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1193 [0x81] = {OP_sbc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1194 [0x82] = {OP_sbc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1195 [0x83] = {OP_sbc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1196 [0x84] = {OP_sbc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1197 [0x85] = {OP_sbc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1198 [0x86] = {OP_sbc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1199 [0x87] = {OP_sbc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1200 [0x88] = {OP_eor, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1201 [0x89] = {OP_eor, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1202 [0x8a] = {OP_eor, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1203 [0x8b] = {OP_eor, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1204 [0x8c] = {OP_eor, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1205 [0x8d] = {OP_eor, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1206 [0x8e] = {OP_eor, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1207 [0x8f] = {OP_eor, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1208 [0x90] = {OP_rti, -1, 0, single, 0, 0},
1209 [0x91] = {OP_clb, -1, 0, two, z_tfr, 0},
1210 [0x92] = {OP_trap, -1, 0, single, trap_decode, 0},
1211 [0x93] = {OP_trap, -1, 0, single, trap_decode, 0},
1212 [0x94] = {OP_trap, -1, 0, single, trap_decode, 0},
1213 [0x95] = {OP_trap, -1, 0, single, trap_decode, 0},
1214 [0x96] = {OP_trap, -1, 0, single, trap_decode, 0},
1215 [0x97] = {OP_trap, -1, 0, single, trap_decode, 0},
1216 [0x98] = {OP_trap, -1, 0, single, trap_decode, 0},
1217 [0x99] = {OP_trap, -1, 0, single, trap_decode, 0},
1218 [0x9a] = {OP_trap, -1, 0, single, trap_decode, 0},
1219 [0x9b] = {OP_trap, -1, 0, single, trap_decode, 0},
1220 [0x9c] = {OP_trap, -1, 0, single, trap_decode, 0},
1221 [0x9d] = {OP_trap, -1, 0, single, trap_decode, 0},
1222 [0x9e] = {OP_trap, -1, 0, single, trap_decode, 0},
1223 [0x9f] = {OP_trap, -1, 0, single, trap_decode, 0},
1224 [0xa0] = {OP_sat, -1, 0, single, z_reg, 0},
1225 [0xa1] = {OP_sat, -1, 0, single, z_reg, 0},
1226 [0xa2] = {OP_sat, -1, 0, single, z_reg, 0},
1227 [0xa3] = {OP_sat, -1, 0, single, z_reg, 0},
1228 [0xa4] = {OP_sat, -1, 0, single, z_reg, 0},
1229 [0xa5] = {OP_sat, -1, 0, single, z_reg, 0},
1230 [0xa6] = {OP_sat, -1, 0, single, z_reg, 0},
1231 [0xa7] = {OP_sat, -1, 0, single, z_reg, 0},
1232 [0xa8] = {OP_trap, -1, 0, single, trap_decode, 0},
1233 [0xa9] = {OP_trap, -1, 0, single, trap_decode, 0},
1234 [0xaa] = {OP_trap, -1, 0, single, trap_decode, 0},
1235 [0xab] = {OP_trap, -1, 0, single, trap_decode, 0},
1236 [0xac] = {OP_trap, -1, 0, single, trap_decode, 0},
1237 [0xad] = {OP_trap, -1, 0, single, trap_decode, 0},
1238 [0xae] = {OP_trap, -1, 0, single, trap_decode, 0},
1239 [0xaf] = {OP_trap, -1, 0, single, trap_decode, 0},
1240 [0xb0] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1241 [0xb1] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1242 [0xb2] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1243 [0xb3] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1244 [0xb4] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1245 [0xb5] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1246 [0xb6] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1247 [0xb7] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1248 [0xb8] = {OP_trap, -1, 0, single, trap_decode, 0},
1249 [0xb9] = {OP_trap, -1, 0, single, trap_decode, 0},
1250 [0xba] = {OP_trap, -1, 0, single, trap_decode, 0},
1251 [0xbb] = {OP_trap, -1, 0, single, trap_decode, 0},
1252 [0xbc] = {OP_trap, -1, 0, single, trap_decode, 0},
1253 [0xbd] = {OP_trap, -1, 0, single, trap_decode, 0},
1254 [0xbe] = {OP_trap, -1, 0, single, trap_decode, 0},
1255 [0xbf] = {OP_trap, -1, 0, single, trap_decode, 0},
1256 [0xc0] = {OP_trap, -1, 0, single, trap_decode, 0},
1257 [0xc1] = {OP_trap, -1, 0, single, trap_decode, 0},
1258 [0xc2] = {OP_trap, -1, 0, single, trap_decode, 0},
1259 [0xc3] = {OP_trap, -1, 0, single, trap_decode, 0},
1260 [0xc4] = {OP_trap, -1, 0, single, trap_decode, 0},
1261 [0xc5] = {OP_trap, -1, 0, single, trap_decode, 0},
1262 [0xc6] = {OP_trap, -1, 0, single, trap_decode, 0},
1263 [0xc7] = {OP_trap, -1, 0, single, trap_decode, 0},
1264 [0xc8] = {OP_trap, -1, 0, single, trap_decode, 0},
1265 [0xc9] = {OP_trap, -1, 0, single, trap_decode, 0},
1266 [0xca] = {OP_trap, -1, 0, single, trap_decode, 0},
1267 [0xcb] = {OP_trap, -1, 0, single, trap_decode, 0},
1268 [0xcc] = {OP_trap, -1, 0, single, trap_decode, 0},
1269 [0xcd] = {OP_trap, -1, 0, single, trap_decode, 0},
1270 [0xce] = {OP_trap, -1, 0, single, trap_decode, 0},
1271 [0xcf] = {OP_trap, -1, 0, single, trap_decode, 0},
1272 [0xd0] = {OP_trap, -1, 0, single, trap_decode, 0},
1273 [0xd1] = {OP_trap, -1, 0, single, trap_decode, 0},
1274 [0xd2] = {OP_trap, -1, 0, single, trap_decode, 0},
1275 [0xd3] = {OP_trap, -1, 0, single, trap_decode, 0},
1276 [0xd4] = {OP_trap, -1, 0, single, trap_decode, 0},
1277 [0xd5] = {OP_trap, -1, 0, single, trap_decode, 0},
1278 [0xd6] = {OP_trap, -1, 0, single, trap_decode, 0},
1279 [0xd7] = {OP_trap, -1, 0, single, trap_decode, 0},
1280 [0xd8] = {OP_trap, -1, 0, single, trap_decode, 0},
1281 [0xd9] = {OP_trap, -1, 0, single, trap_decode, 0},
1282 [0xda] = {OP_trap, -1, 0, single, trap_decode, 0},
1283 [0xdb] = {OP_trap, -1, 0, single, trap_decode, 0},
1284 [0xdc] = {OP_trap, -1, 0, single, trap_decode, 0},
1285 [0xdd] = {OP_trap, -1, 0, single, trap_decode, 0},
1286 [0xde] = {OP_trap, -1, 0, single, trap_decode, 0},
1287 [0xdf] = {OP_trap, -1, 0, single, trap_decode, 0},
1288 [0xe0] = {OP_trap, -1, 0, single, trap_decode, 0},
1289 [0xe1] = {OP_trap, -1, 0, single, trap_decode, 0},
1290 [0xe2] = {OP_trap, -1, 0, single, trap_decode, 0},
1291 [0xe3] = {OP_trap, -1, 0, single, trap_decode, 0},
1292 [0xe4] = {OP_trap, -1, 0, single, trap_decode, 0},
1293 [0xe5] = {OP_trap, -1, 0, single, trap_decode, 0},
1294 [0xe6] = {OP_trap, -1, 0, single, trap_decode, 0},
1295 [0xe7] = {OP_trap, -1, 0, single, trap_decode, 0},
1296 [0xe8] = {OP_trap, -1, 0, single, trap_decode, 0},
1297 [0xe9] = {OP_trap, -1, 0, single, trap_decode, 0},
1298 [0xea] = {OP_trap, -1, 0, single, trap_decode, 0},
1299 [0xeb] = {OP_trap, -1, 0, single, trap_decode, 0},
1300 [0xec] = {OP_trap, -1, 0, single, trap_decode, 0},
1301 [0xed] = {OP_trap, -1, 0, single, trap_decode, 0},
1302 [0xee] = {OP_trap, -1, 0, single, trap_decode, 0},
1303 [0xef] = {OP_trap, -1, 0, single, trap_decode, 0},
1304 [0xf0] = {OP_trap, -1, 0, single, trap_decode, 0},
1305 [0xf1] = {OP_trap, -1, 0, single, trap_decode, 0},
1306 [0xf2] = {OP_trap, -1, 0, single, trap_decode, 0},
1307 [0xf3] = {OP_trap, -1, 0, single, trap_decode, 0},
1308 [0xf4] = {OP_trap, -1, 0, single, trap_decode, 0},
1309 [0xf5] = {OP_trap, -1, 0, single, trap_decode, 0},
1310 [0xf6] = {OP_trap, -1, 0, single, trap_decode, 0},
1311 [0xf7] = {OP_trap, -1, 0, single, trap_decode, 0},
1312 [0xf8] = {OP_trap, -1, 0, single, trap_decode, 0},
1313 [0xf9] = {OP_trap, -1, 0, single, trap_decode, 0},
1314 [0xfa] = {OP_trap, -1, 0, single, trap_decode, 0},
1315 [0xfb] = {OP_trap, -1, 0, single, trap_decode, 0},
1316 [0xfc] = {OP_trap, -1, 0, single, trap_decode, 0},
1317 [0xfd] = {OP_trap, -1, 0, single, trap_decode, 0},
1318 [0xfe] = {OP_trap, -1, 0, single, trap_decode, 0},
1319 [0xff] = {OP_trap, -1, 0, single, trap_decode, 0},
1322 static const struct opcode page1[] =
1324 [0x00] = {OP_bgnd, -1, 0, single, 0, 0},
1325 [0x01] = {OP_nop, -1, 0, single, 0, 0},
1326 [0x02] = {OP_brclr, -1, 0, bm_rel_n_bytes, bm_rel_decode, 0},
1327 [0x03] = {OP_brset, -1, 0, bm_rel_n_bytes, bm_rel_decode, 0},
1328 [0x04] = {0xFFFF, -1, psh_pul_discrim, two, psh_pul_decode, 0}, /* psh/pul */
1329 [0x05] = {OP_rts, -1, 0, single, 0, 0},
1330 [0x06] = {OP_lea, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1331 [0x07] = {OP_lea, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1332 [0x08] = {OP_lea, -1, 0, opr_n_bytes_p1, lea_reg_xys_opr, 0},
1333 [0x09] = {OP_lea, -1, 0, opr_n_bytes_p1, lea_reg_xys_opr, 0},
1334 [0x0a] = {OP_lea, -1, 0, opr_n_bytes_p1, lea_reg_xys_opr, 0},
1335 [0x0b] = {0xFFFF, -1, loop_primitive_discrim, loop_prim_n_bytes, loop_primitive_decode, 0}, /* Loop primitives TBcc / DBcc */
1336 [0x0c] = {OP_mov, 0, 0, mov_imm_opr_n_bytes, mov_imm_opr, 0},
1337 [0x0d] = {OP_mov, 1, 0, mov_imm_opr_n_bytes, mov_imm_opr, 0},
1338 [0x0e] = {OP_mov, 2, 0, mov_imm_opr_n_bytes, mov_imm_opr, 0},
1339 [0x0f] = {OP_mov, 3, 0, mov_imm_opr_n_bytes, mov_imm_opr, 0},
1340 [0x10] = {0xFFFF, -1, shift_discrim, shift_n_bytes, shift_decode, 0}, /* lsr/lsl/asl/asr/rol/ror */
1341 [0x11] = {0xFFFF, -1, shift_discrim, shift_n_bytes, shift_decode, 0},
1342 [0x12] = {0xFFFF, -1, shift_discrim, shift_n_bytes, shift_decode, 0},
1343 [0x13] = {0xFFFF, -1, shift_discrim, shift_n_bytes, shift_decode, 0},
1344 [0x14] = {0xFFFF, -1, shift_discrim, shift_n_bytes, shift_decode, 0},
1345 [0x15] = {0xFFFF, -1, shift_discrim, shift_n_bytes, shift_decode, 0},
1346 [0x16] = {0xFFFF, -1, shift_discrim, shift_n_bytes, shift_decode, 0},
1347 [0x17] = {0xFFFF, -1, shift_discrim, shift_n_bytes, shift_decode, 0},
1348 [0x18] = {OP_lea, -1, 0, two, lea_reg_xys, NULL},
1349 [0x19] = {OP_lea, -1, 0, two, lea_reg_xys, NULL},
1350 [0x1a] = {OP_lea, -1, 0, two, lea_reg_xys, NULL},
1351 /* 0x1b PG2 */
1352 [0x1c] = {OP_mov, 0, 0, opr_n_bytes2, z_opr_decode2, 0},
1353 [0x1d] = {OP_mov, 1, 0, opr_n_bytes2, z_opr_decode2, 0},
1354 [0x1e] = {OP_mov, 2, 0, opr_n_bytes2, z_opr_decode2, 0},
1355 [0x1f] = {OP_mov, 3, 0, opr_n_bytes2, z_opr_decode2, 0},
1356 [0x20] = {OP_bra, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
1357 [0x21] = {OP_bsr, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
1358 [0x22] = {OP_bhi, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
1359 [0x23] = {OP_bls, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
1360 [0x24] = {OP_bcc, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
1361 [0x25] = {OP_bcs, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
1362 [0x26] = {OP_bne, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
1363 [0x27] = {OP_beq, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
1364 [0x28] = {OP_bvc, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
1365 [0x29] = {OP_bvs, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
1366 [0x2a] = {OP_bpl, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
1367 [0x2b] = {OP_bmi, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
1368 [0x2c] = {OP_bge, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
1369 [0x2d] = {OP_blt, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
1370 [0x2e] = {OP_bgt, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
1371 [0x2f] = {OP_ble, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
1372 [0x30] = {OP_inc, -1, 0, single, z_reg, 0},
1373 [0x31] = {OP_inc, -1, 0, single, z_reg, 0},
1374 [0x32] = {OP_inc, -1, 0, single, z_reg, 0},
1375 [0x33] = {OP_inc, -1, 0, single, z_reg, 0},
1376 [0x34] = {OP_inc, -1, 0, single, z_reg, 0},
1377 [0x35] = {OP_inc, -1, 0, single, z_reg, 0},
1378 [0x36] = {OP_inc, -1, 0, single, z_reg, 0},
1379 [0x37] = {OP_inc, -1, 0, single, z_reg, 0},
1380 [0x38] = {OP_clr, -1, 0, single, z_reg, 0},
1381 [0x39] = {OP_clr, -1, 0, single, z_reg, 0},
1382 [0x3a] = {OP_clr, -1, 0, single, z_reg, 0},
1383 [0x3b] = {OP_clr, -1, 0, single, z_reg, 0},
1384 [0x3c] = {OP_clr, -1, 0, single, z_reg, 0},
1385 [0x3d] = {OP_clr, -1, 0, single, z_reg, 0},
1386 [0x3e] = {OP_clr, -1, 0, single, z_reg, 0},
1387 [0x3f] = {OP_clr, -1, 0, single, z_reg, 0},
1388 [0x40] = {OP_dec, -1, 0, single, z_reg, 0},
1389 [0x41] = {OP_dec, -1, 0, single, z_reg, 0},
1390 [0x42] = {OP_dec, -1, 0, single, z_reg, 0},
1391 [0x43] = {OP_dec, -1, 0, single, z_reg, 0},
1392 [0x44] = {OP_dec, -1, 0, single, z_reg, 0},
1393 [0x45] = {OP_dec, -1, 0, single, z_reg, 0},
1394 [0x46] = {OP_dec, -1, 0, single, z_reg, 0},
1395 [0x47] = {OP_dec, -1, 0, single, z_reg, 0},
1396 [0x48] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1397 [0x49] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1398 [0x4a] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1399 [0x4b] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1400 [0x4c] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1401 [0x4d] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1402 [0x4e] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1403 [0x4f] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
1404 [0x50] = {OP_add, -1, 0, three, z_reg, z_imm1234_0base},
1405 [0x51] = {OP_add, -1, 0, three, z_reg, z_imm1234_0base},
1406 [0x52] = {OP_add, -1, 0, three, z_reg, z_imm1234_0base},
1407 [0x53] = {OP_add, -1, 0, three, z_reg, z_imm1234_0base},
1408 [0x54] = {OP_add, -1, 0, two, z_reg, z_imm1234_0base},
1409 [0x55] = {OP_add, -1, 0, two, z_reg, z_imm1234_0base},
1410 [0x56] = {OP_add, -1, 0, five, z_reg, z_imm1234_0base},
1411 [0x57] = {OP_add, -1, 0, five, z_reg, z_imm1234_0base},
1412 [0x58] = {OP_and, -1, 0, three, z_reg, z_imm1234_8base},
1413 [0x59] = {OP_and, -1, 0, three, z_reg, z_imm1234_8base},
1414 [0x5a] = {OP_and, -1, 0, three, z_reg, z_imm1234_8base},
1415 [0x5b] = {OP_and, -1, 0, three, z_reg, z_imm1234_8base},
1416 [0x5c] = {OP_and, -1, 0, two, z_reg, z_imm1234_8base},
1417 [0x5d] = {OP_and, -1, 0, two, z_reg, z_imm1234_8base},
1418 [0x5e] = {OP_and, -1, 0, five, z_reg, z_imm1234_8base},
1419 [0x5f] = {OP_and, -1, 0, five, z_reg, z_imm1234_8base},
1420 [0x60] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1421 [0x61] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1422 [0x62] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1423 [0x63] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1424 [0x64] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1425 [0x65] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1426 [0x66] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1427 [0x67] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1428 [0x68] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1429 [0x69] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1430 [0x6a] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1431 [0x6b] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1432 [0x6c] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1433 [0x6d] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1434 [0x6e] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1435 [0x6f] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1436 [0x70] = {OP_sub, -1, 0, three, z_reg, z_imm1234_0base},
1437 [0x71] = {OP_sub, -1, 0, three, z_reg, z_imm1234_0base},
1438 [0x72] = {OP_sub, -1, 0, three, z_reg, z_imm1234_0base},
1439 [0x73] = {OP_sub, -1, 0, three, z_reg, z_imm1234_0base},
1440 [0x74] = {OP_sub, -1, 0, two, z_reg, z_imm1234_0base},
1441 [0x75] = {OP_sub, -1, 0, two, z_reg, z_imm1234_0base},
1442 [0x76] = {OP_sub, -1, 0, five, z_reg, z_imm1234_0base},
1443 [0x77] = {OP_sub, -1, 0, five, z_reg, z_imm1234_0base},
1444 [0x78] = {OP_or, -1, 0, three, z_reg, z_imm1234_8base},
1445 [0x79] = {OP_or, -1, 0, three, z_reg, z_imm1234_8base},
1446 [0x7a] = {OP_or, -1, 0, three, z_reg, z_imm1234_8base},
1447 [0x7b] = {OP_or, -1, 0, three, z_reg, z_imm1234_8base},
1448 [0x7c] = {OP_or, -1, 0, two, z_reg, z_imm1234_8base},
1449 [0x7d] = {OP_or, -1, 0, two, z_reg, z_imm1234_8base},
1450 [0x7e] = {OP_or, -1, 0, five, z_reg, z_imm1234_8base},
1451 [0x7f] = {OP_or, -1, 0, five, z_reg, z_imm1234_8base},
1452 [0x80] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1453 [0x81] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1454 [0x82] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1455 [0x83] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1456 [0x84] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1457 [0x85] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1458 [0x86] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1459 [0x87] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1460 [0x88] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1461 [0x89] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1462 [0x8a] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1463 [0x8b] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1464 [0x8c] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1465 [0x8d] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1466 [0x8e] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1467 [0x8f] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1468 [0x90] = {OP_ld, -1, 0, three, z_reg, z_imm1234_0base},
1469 [0x91] = {OP_ld, -1, 0, three, z_reg, z_imm1234_0base},
1470 [0x92] = {OP_ld, -1, 0, three, z_reg, z_imm1234_0base},
1471 [0x93] = {OP_ld, -1, 0, three, z_reg, z_imm1234_0base},
1472 [0x94] = {OP_ld, -1, 0, two, z_reg, z_imm1234_0base},
1473 [0x95] = {OP_ld, -1, 0, two, z_reg, z_imm1234_0base},
1474 [0x96] = {OP_ld, -1, 0, five, z_reg, z_imm1234_0base},
1475 [0x97] = {OP_ld, -1, 0, five, z_reg, z_imm1234_0base},
1476 [0x98] = {OP_ld, -1, 0, four, reg_xy, z_imm1234_0base},
1477 [0x99] = {OP_ld, -1, 0, four, reg_xy, z_imm1234_0base},
1478 [0x9a] = {OP_clr, -1, 0, single, reg_xy, 0},
1479 [0x9b] = {OP_clr, -1, 0, single, reg_xy, 0},
1480 [0x9c] = {OP_inc, 0, 0, opr_n_bytes_p1, z_opr_decode, 0},
1481 [0x9d] = {OP_inc, 1, 0, opr_n_bytes_p1, z_opr_decode, 0},
1482 [0x9e] = {OP_tfr, -1, 0, two, z_tfr, NULL},
1483 [0x9f] = {OP_inc, 3, 0, opr_n_bytes_p1, z_opr_decode, 0},
1484 [0xa0] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1485 [0xa1] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1486 [0xa2] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1487 [0xa3] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1488 [0xa4] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1489 [0xa5] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1490 [0xa6] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1491 [0xa7] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1492 [0xa8] = {OP_ld, -1, 0, opr_n_bytes_p1, reg_xy, z_opr_decode},
1493 [0xa9] = {OP_ld, -1, 0, opr_n_bytes_p1, reg_xy, z_opr_decode},
1494 [0xaa] = {OP_jmp, -1, 0, opr_n_bytes_p1, z_opr_decode, 0},
1495 [0xab] = {OP_jsr, -1, 0, opr_n_bytes_p1, z_opr_decode, 0},
1496 [0xac] = {OP_dec, 0, 0, opr_n_bytes_p1, z_opr_decode, 0},
1497 [0xad] = {OP_dec, 1, 0, opr_n_bytes_p1, z_opr_decode, 0},
1498 [0xae] = {0xFFFF, -1, exg_sex_discrim, two, exg_sex_decode, 0}, /* EXG / SEX */
1499 [0xaf] = {OP_dec, 3, 0, opr_n_bytes_p1, 0, z_opr_decode},
1500 [0xb0] = {OP_ld, -1, 0, four, z_reg, z_ext24_decode},
1501 [0xb1] = {OP_ld, -1, 0, four, z_reg, z_ext24_decode},
1502 [0xb2] = {OP_ld, -1, 0, four, z_reg, z_ext24_decode},
1503 [0xb3] = {OP_ld, -1, 0, four, z_reg, z_ext24_decode},
1504 [0xb4] = {OP_ld, -1, 0, four, z_reg, z_ext24_decode},
1505 [0xb5] = {OP_ld, -1, 0, four, z_reg, z_ext24_decode},
1506 [0xb6] = {OP_ld, -1, 0, four, z_reg, z_ext24_decode},
1507 [0xb7] = {OP_ld, -1, 0, four, z_reg, z_ext24_decode},
1508 [0xb8] = {OP_ld, -1, 0, four, reg_xy, z_ext24_decode},
1509 [0xb9] = {OP_ld, -1, 0, four, reg_xy, z_ext24_decode},
1510 [0xba] = {OP_jmp, -1, 0, four, z_ext24_decode, 0},
1511 [0xbb] = {OP_jsr, -1, 0, four, z_ext24_decode, 0},
1512 [0xbc] = {OP_clr, 0, 0, opr_n_bytes_p1, z_opr_decode, 0},
1513 [0xbd] = {OP_clr, 1, 0, opr_n_bytes_p1, z_opr_decode, 0},
1514 [0xbe] = {OP_clr, 2, 0, opr_n_bytes_p1, z_opr_decode, 0},
1515 [0xbf] = {OP_clr, 3, 0, opr_n_bytes_p1, z_opr_decode, 0},
1516 [0xc0] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1517 [0xc1] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1518 [0xc2] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1519 [0xc3] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1520 [0xc4] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1521 [0xc5] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1522 [0xc6] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1523 [0xc7] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1524 [0xc8] = {OP_st, -1, 0, opr_n_bytes_p1, reg_xy, z_opr_decode},
1525 [0xc9] = {OP_st, -1, 0, opr_n_bytes_p1, reg_xy, z_opr_decode},
1526 [0xca] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
1527 [0xcb] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
1528 [0xcc] = {OP_com, 0, 0, opr_n_bytes_p1, NULL, z_opr_decode},
1529 [0xcd] = {OP_com, 1, 0, opr_n_bytes_p1, NULL, z_opr_decode},
1530 [0xce] = {OP_andcc, -1, 0, two, imm1_decode, 0},
1531 [0xcf] = {OP_com, 3, 0, opr_n_bytes_p1, NULL, z_opr_decode},
1532 [0xd0] = {OP_st, -1, 0, four, z_reg, z_ext24_decode},
1533 [0xd1] = {OP_st, -1, 0, four, z_reg, z_ext24_decode},
1534 [0xd2] = {OP_st, -1, 0, four, z_reg, z_ext24_decode},
1535 [0xd3] = {OP_st, -1, 0, four, z_reg, z_ext24_decode},
1536 [0xd4] = {OP_st, -1, 0, four, z_reg, z_ext24_decode},
1537 [0xd5] = {OP_st, -1, 0, four, z_reg, z_ext24_decode},
1538 [0xd6] = {OP_st, -1, 0, four, z_reg, z_ext24_decode},
1539 [0xd7] = {OP_st, -1, 0, four, z_reg, z_ext24_decode},
1540 [0xd8] = {OP_st, -1, 0, four, reg_xy, z_ext24_decode},
1541 [0xd9] = {OP_st, -1, 0, four, reg_xy, z_ext24_decode},
1542 [0xda] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
1543 [0xdb] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
1544 [0xdc] = {OP_neg, 0, 0, opr_n_bytes_p1, NULL, z_opr_decode},
1545 [0xdd] = {OP_neg, 1, 0, opr_n_bytes_p1, NULL, z_opr_decode},
1546 [0xde] = {OP_orcc, -1, 0, two, imm1_decode, 0},
1547 [0xdf] = {OP_neg, 3, 0, opr_n_bytes_p1, NULL, z_opr_decode},
1548 [0xe0] = {OP_cmp, -1, 0, three, z_reg, z_imm1234_0base},
1549 [0xe1] = {OP_cmp, -1, 0, three, z_reg, z_imm1234_0base},
1550 [0xe2] = {OP_cmp, -1, 0, three, z_reg, z_imm1234_0base},
1551 [0xe3] = {OP_cmp, -1, 0, three, z_reg, z_imm1234_0base},
1552 [0xe4] = {OP_cmp, -1, 0, two, z_reg, z_imm1234_0base},
1553 [0xe5] = {OP_cmp, -1, 0, two, z_reg, z_imm1234_0base},
1554 [0xe6] = {OP_cmp, -1, 0, five, z_reg, z_imm1234_0base},
1555 [0xe7] = {OP_cmp, -1, 0, five, z_reg, z_imm1234_0base},
1556 [0xe8] = {OP_cmp, -1, 0, four, reg_xy, z_imm1234_0base},
1557 [0xe9] = {OP_cmp, -1, 0, four, reg_xy, z_imm1234_0base},
1558 [0xea] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
1559 [0xeb] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
1560 [0xec] = {OP_bclr, -1, 0, bm_n_bytes, bm_decode, 0},
1561 [0xed] = {OP_bset, -1, 0, bm_n_bytes, bm_decode, 0},
1562 [0xee] = {OP_btgl, -1, 0, bm_n_bytes, bm_decode, 0},
1563 [0xef] = {OP_INVALID, -1, 0, NULL, NULL, NULL}, /* SPARE */
1564 [0xf0] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1565 [0xf1] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1566 [0xf2] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1567 [0xf3] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1568 [0xf4] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1569 [0xf5] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1570 [0xf6] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1571 [0xf7] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
1572 [0xf8] = {OP_cmp, -1, 0, opr_n_bytes_p1, reg_xy, z_opr_decode},
1573 [0xf9] = {OP_cmp, -1, 0, opr_n_bytes_p1, reg_xy, z_opr_decode},
1574 [0xfa] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
1575 [0xfb] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
1576 [0xfc] = {OP_cmp, -1, 0, single, cmp_xy, 0},
1577 [0xfd] = {OP_sub, -1, 0, single, sub_d6_x_y, 0},
1578 [0xfe] = {OP_sub, -1, 0, single, sub_d6_y_x, 0},
1579 [0xff] = {OP_swi, -1, 0, single, 0, 0}
1582 static const int oprregs1[] =
1584 REG_D3, REG_D2, REG_D1, REG_D0, REG_CCL, REG_CCH
1587 static const int oprregs2[] =
1589 REG_Y, REG_X, REG_D7, REG_D6, REG_D5, REG_D4
1595 enum MUL_MODE
1597 MUL_REG_REG,
1598 MUL_REG_OPR,
1599 MUL_REG_IMM,
1600 MUL_OPR_OPR
1603 struct mb
1605 uint8_t mask;
1606 uint8_t value;
1607 enum MUL_MODE mode;
1610 static const struct mb mul_table[] = {
1611 {0x40, 0x00, MUL_REG_REG},
1613 {0x47, 0x40, MUL_REG_OPR},
1614 {0x47, 0x41, MUL_REG_OPR},
1615 {0x47, 0x43, MUL_REG_OPR},
1617 {0x47, 0x44, MUL_REG_IMM},
1618 {0x47, 0x45, MUL_REG_IMM},
1619 {0x47, 0x47, MUL_REG_IMM},
1621 {0x43, 0x42, MUL_OPR_OPR},
1625 static void
1626 mul_decode (struct mem_read_abstraction_base *mra,
1627 int *n_operands, struct operand **operand)
1629 uint8_t mb;
1630 int status = mra->read (mra, 0, 1, &mb);
1631 if (status < 0)
1632 return;
1634 uint8_t byte;
1635 status = mra->read (mra, -1, 1, &byte);
1636 if (status < 0)
1637 return;
1639 enum MUL_MODE mode = -1;
1640 size_t i;
1641 for (i = 0; i < sizeof (mul_table) / sizeof (mul_table[0]); ++i)
1643 const struct mb *mm = mul_table + i;
1644 if ((mb & mm->mask) == mm->value)
1646 mode = mm->mode;
1647 break;
1650 operand[(*n_operands)++] = create_register_operand (byte & 0x07);
1652 switch (mode)
1654 case MUL_REG_IMM:
1656 int size = (mb & 0x3);
1657 operand[(*n_operands)++] =
1658 create_register_operand_with_size ((mb & 0x38) >> 3, size);
1659 uint32_t imm = z_decode_signed_value (mra, 1, size + 1);
1660 operand[(*n_operands)++] = create_immediate_operand (imm);
1662 break;
1663 case MUL_REG_REG:
1664 operand[(*n_operands)++] = create_register_operand ((mb & 0x38) >> 3);
1665 operand[(*n_operands)++] = create_register_operand (mb & 0x07);
1666 break;
1667 case MUL_REG_OPR:
1668 operand[(*n_operands)++] = create_register_operand ((mb & 0x38) >> 3);
1669 operand[(*n_operands)++] = x_opr_decode_with_size (mra, 1, mb & 0x3);
1670 break;
1671 case MUL_OPR_OPR:
1673 int first = x_opr_n_bytes (mra, 1);
1674 operand[(*n_operands)++] = x_opr_decode_with_size (mra, 1,
1675 (mb & 0x30) >> 4);
1676 operand[(*n_operands)++] = x_opr_decode_with_size (mra, first + 1,
1677 (mb & 0x0c) >> 2);
1678 break;
1684 static int
1685 mul_n_bytes (struct mem_read_abstraction_base *mra)
1687 int nx = 2;
1688 uint8_t mb;
1689 int status = mra->read (mra, 0, 1, &mb);
1690 if (status < 0)
1691 return 0;
1693 enum MUL_MODE mode = -1;
1694 size_t i;
1695 for (i = 0; i < sizeof (mul_table) / sizeof (mul_table[0]); ++i)
1697 const struct mb *mm = mul_table + i;
1698 if ((mb & mm->mask) == mm->value)
1700 mode = mm->mode;
1701 break;
1705 int size = (mb & 0x3) + 1;
1707 switch (mode)
1709 case MUL_REG_IMM:
1710 nx += size;
1711 break;
1712 case MUL_REG_REG:
1713 break;
1714 case MUL_REG_OPR:
1715 nx += x_opr_n_bytes (mra, 1);
1716 break;
1717 case MUL_OPR_OPR:
1719 int first = x_opr_n_bytes (mra, nx - 1);
1720 nx += first;
1721 int second = x_opr_n_bytes (mra, nx - 1);
1722 nx += second;
1724 break;
1727 return nx;
1731 /* The NXP documentation is vague about BM_RESERVED0 and BM_RESERVED1,
1732 and contains obvious typos.
1733 However the Freescale tools and experiments with the chip itself
1734 seem to indicate that they behave like BM_REG_IMM and BM_OPR_REG
1735 respectively. */
1737 enum BM_MODE
1739 BM_REG_IMM,
1740 BM_RESERVED0,
1741 BM_OPR_B,
1742 BM_OPR_W,
1743 BM_OPR_L,
1744 BM_OPR_REG,
1745 BM_RESERVED1
1748 struct bm
1750 uint8_t mask;
1751 uint8_t value;
1752 enum BM_MODE mode;
1755 static const struct bm bm_table[] = {
1756 { 0xC6, 0x04, BM_REG_IMM},
1757 { 0x84, 0x00, BM_REG_IMM},
1758 { 0x06, 0x06, BM_REG_IMM},
1759 { 0xC6, 0x44, BM_RESERVED0},
1760 // 00
1761 { 0x8F, 0x80, BM_OPR_B},
1762 { 0x8E, 0x82, BM_OPR_W},
1763 { 0x8C, 0x88, BM_OPR_L},
1765 { 0x83, 0x81, BM_OPR_REG},
1766 { 0x87, 0x84, BM_RESERVED1},
1769 static void
1770 bm_decode (struct mem_read_abstraction_base *mra,
1771 int *n_operands, struct operand **operand)
1773 uint8_t bm;
1774 int status = mra->read (mra, 0, 1, &bm);
1775 if (status < 0)
1776 return;
1778 size_t i;
1779 enum BM_MODE mode = -1;
1780 for (i = 0; i < sizeof (bm_table) / sizeof (bm_table[0]); ++i)
1782 const struct bm *bme = bm_table + i;
1783 if ((bm & bme->mask) == bme->value)
1785 mode = bme->mode;
1786 break;
1790 switch (mode)
1792 case BM_REG_IMM:
1793 case BM_RESERVED0:
1794 operand[(*n_operands)++] = create_register_operand (bm & 0x07);
1795 break;
1796 case BM_OPR_B:
1797 operand[(*n_operands)++] = x_opr_decode_with_size (mra, 1, 0);
1798 break;
1799 case BM_OPR_W:
1800 operand[(*n_operands)++] = x_opr_decode_with_size (mra, 1, 1);
1801 break;
1802 case BM_OPR_L:
1803 operand[(*n_operands)++] = x_opr_decode_with_size (mra, 1, 3);
1804 break;
1805 case BM_OPR_REG:
1806 case BM_RESERVED1:
1808 uint8_t xb;
1809 mra->read (mra, 1, 1, &xb);
1810 /* Don't emit a size suffix for register operands */
1811 if ((xb & 0xF8) != 0xB8)
1812 operand[(*n_operands)++] =
1813 x_opr_decode_with_size (mra, 1, (bm & 0x0c) >> 2);
1814 else
1815 operand[(*n_operands)++] = x_opr_decode (mra, 1);
1817 break;
1820 uint8_t imm = 0;
1821 switch (mode)
1823 case BM_REG_IMM:
1824 imm = (bm & 0x38) >> 3;
1825 operand[(*n_operands)++] = create_immediate_operand (imm);
1826 break;
1827 case BM_OPR_L:
1828 imm |= (bm & 0x03) << 3;
1829 /* fallthrough */
1830 case BM_OPR_W:
1831 imm |= (bm & 0x01) << 3;
1832 /* fallthrough */
1833 case BM_OPR_B:
1834 imm |= (bm & 0x70) >> 4;
1835 operand[(*n_operands)++] = create_immediate_operand (imm);
1836 break;
1837 case BM_OPR_REG:
1838 case BM_RESERVED1:
1839 operand[(*n_operands)++] = create_register_operand ((bm & 0x70) >> 4);
1840 break;
1841 case BM_RESERVED0:
1842 assert (0);
1843 break;
1848 static void
1849 bm_rel_decode (struct mem_read_abstraction_base *mra,
1850 int *n_operands, struct operand **operand)
1852 uint8_t bm;
1853 int status = mra->read (mra, 0, 1, &bm);
1854 if (status < 0)
1855 return;
1857 size_t i;
1858 enum BM_MODE mode = -1;
1859 for (i = 0; i < sizeof (bm_table) / sizeof (bm_table[0]); ++i)
1861 const struct bm *bme = bm_table + i;
1862 if ((bm & bme->mask) == bme->value)
1864 mode = bme->mode;
1865 break;
1869 int n = 1;
1870 switch (mode)
1872 case BM_REG_IMM:
1873 case BM_RESERVED0:
1874 operand[(*n_operands)++] = create_register_operand (bm & 0x07);
1875 break;
1876 case BM_OPR_B:
1877 operand[(*n_operands)++] = x_opr_decode_with_size (mra, 1, 0);
1878 n = 1 + x_opr_n_bytes (mra, 1);
1879 break;
1880 case BM_OPR_W:
1881 operand[(*n_operands)++] = x_opr_decode_with_size (mra, 1, 1);
1882 n = 1 + x_opr_n_bytes (mra, 1);
1883 break;
1884 case BM_OPR_L:
1885 operand[(*n_operands)++] = x_opr_decode_with_size (mra, 1, 3);
1886 n = 1 + x_opr_n_bytes (mra, 1);
1887 break;
1888 case BM_OPR_REG:
1889 case BM_RESERVED1:
1891 uint8_t xb;
1892 mra->read (mra, +1, 1, &xb);
1893 /* Don't emit a size suffix for register operands */
1894 if ((xb & 0xF8) != 0xB8)
1896 short os = (bm & 0x0c) >> 2;
1897 operand[(*n_operands)++] = x_opr_decode_with_size (mra, 1, os);
1899 else
1900 operand[(*n_operands)++] = x_opr_decode (mra, 1);
1903 break;
1906 int imm = 0;
1907 switch (mode)
1909 case BM_OPR_L:
1910 imm |= (bm & 0x02) << 3;
1911 /* fall through */
1912 case BM_OPR_W:
1913 imm |= (bm & 0x01) << 3;
1914 /* fall through */
1915 case BM_OPR_B:
1916 imm |= (bm & 0x70) >> 4;
1917 operand[(*n_operands)++] = create_immediate_operand (imm);
1918 break;
1919 case BM_RESERVED0:
1920 imm = (bm & 0x38) >> 3;
1921 operand[(*n_operands)++] = create_immediate_operand (imm);
1922 break;
1923 case BM_REG_IMM:
1924 imm = (bm & 0xF8) >> 3;
1925 operand[(*n_operands)++] = create_immediate_operand (imm);
1926 break;
1927 case BM_OPR_REG:
1928 case BM_RESERVED1:
1929 operand[(*n_operands)++] = create_register_operand ((bm & 0x70) >> 4);
1930 n += x_opr_n_bytes (mra, 1);
1931 break;
1934 rel_15_7 (mra, n + 1, n_operands, operand);
1937 static int
1938 bm_n_bytes (struct mem_read_abstraction_base *mra)
1940 uint8_t bm;
1941 int status = mra->read (mra, 0, 1, &bm);
1942 if (status < 0)
1943 return status;
1945 size_t i;
1946 enum BM_MODE mode = -1;
1947 for (i = 0; i < sizeof (bm_table) / sizeof (bm_table[0]); ++i)
1949 const struct bm *bme = bm_table + i;
1950 if ((bm & bme->mask) == bme->value)
1952 mode = bme->mode;
1953 break;
1957 int n = 2;
1958 switch (mode)
1960 case BM_REG_IMM:
1961 case BM_RESERVED0:
1962 break;
1964 case BM_OPR_B:
1965 case BM_OPR_W:
1966 case BM_OPR_L:
1967 n += x_opr_n_bytes (mra, 1);
1968 break;
1969 case BM_OPR_REG:
1970 case BM_RESERVED1:
1971 n += x_opr_n_bytes (mra, 1);
1972 break;
1975 return n;
1978 static int
1979 bm_rel_n_bytes (struct mem_read_abstraction_base *mra)
1981 int n = 1 + bm_n_bytes (mra);
1983 bfd_byte rb;
1984 int status = mra->read (mra, n - 2, 1, &rb);
1985 if (status != 0)
1986 return status;
1988 if (rb & 0x80)
1989 n++;
1991 return n;
1998 /* shift direction */
1999 enum SB_DIR
2001 SB_LEFT,
2002 SB_RIGHT
2005 enum SB_TYPE
2007 SB_ARITHMETIC,
2008 SB_LOGICAL
2012 enum SB_MODE
2014 SB_REG_REG_N_EFF,
2015 SB_REG_REG_N,
2016 SB_REG_OPR_EFF,
2017 SB_ROT,
2018 SB_REG_OPR_OPR,
2019 SB_OPR_N
2022 struct sb
2024 uint8_t mask;
2025 uint8_t value;
2026 enum SB_MODE mode;
2029 static const struct sb sb_table[] = {
2030 {0x30, 0x00, SB_REG_REG_N_EFF},
2031 {0x30, 0x10, SB_REG_REG_N},
2032 {0x34, 0x20, SB_REG_OPR_EFF},
2033 {0x34, 0x24, SB_ROT},
2034 {0x34, 0x30, SB_REG_OPR_OPR},
2035 {0x34, 0x34, SB_OPR_N},
2038 static int
2039 shift_n_bytes (struct mem_read_abstraction_base *mra)
2041 bfd_byte sb;
2042 int status = mra->read (mra, 0, 1, &sb);
2043 if (status != 0)
2044 return status;
2046 size_t i;
2047 enum SB_MODE mode = -1;
2048 for (i = 0; i < sizeof (sb_table) / sizeof (sb_table[0]); ++i)
2050 const struct sb *sbe = sb_table + i;
2051 if ((sb & sbe->mask) == sbe->value)
2052 mode = sbe->mode;
2055 switch (mode)
2057 case SB_REG_REG_N_EFF:
2058 return 2;
2059 break;
2060 case SB_REG_OPR_EFF:
2061 case SB_ROT:
2062 return 2 + x_opr_n_bytes (mra, 1);
2063 break;
2064 case SB_REG_OPR_OPR:
2066 int opr1 = x_opr_n_bytes (mra, 1);
2067 int opr2 = 0;
2068 if ((sb & 0x30) != 0x20)
2069 opr2 = x_opr_n_bytes (mra, opr1 + 1);
2070 return 2 + opr1 + opr2;
2072 break;
2073 default:
2074 return 3;
2077 /* not reached */
2078 return -1;
2082 static int
2084 mov_imm_opr_n_bytes (struct mem_read_abstraction_base *mra)
2086 bfd_byte byte;
2087 int status = mra->read (mra, -1, 1, &byte);
2088 if (status < 0)
2089 return status;
2091 int size = byte - 0x0c + 1;
2093 return size + x_opr_n_bytes (mra, size) + 1;
2096 static void
2097 mov_imm_opr (struct mem_read_abstraction_base *mra,
2098 int *n_operands, struct operand **operand)
2100 bfd_byte byte;
2101 int status = mra->read (mra, -1, 1, &byte);
2102 if (status < 0)
2103 return ;
2105 int size = byte - 0x0c + 1;
2106 uint32_t imm = decode_signed_value (mra, size);
2108 operand[(*n_operands)++] = create_immediate_operand (imm);
2109 operand[(*n_operands)++] = x_opr_decode (mra, size);
2114 static void
2115 ld_18bit_decode (struct mem_read_abstraction_base *mra,
2116 int *n_operands, struct operand **operand)
2118 size_t size = 3;
2119 bfd_byte buffer[3];
2120 int status = mra->read (mra, 0, 2, buffer + 1);
2121 if (status < 0)
2122 return ;
2124 status = mra->read (mra, -1, 1, buffer);
2125 if (status < 0)
2126 return ;
2128 buffer[0] = (buffer[0] & 0x30) >> 4;
2130 size_t i;
2131 uint32_t imm = 0;
2132 for (i = 0; i < size; ++i)
2134 imm |= buffer[i] << (8 * (size - i - 1));
2137 operand[(*n_operands)++] = create_immediate_operand (imm);
2142 /* Loop Primitives */
2144 enum LP_MODE {
2145 LP_REG,
2146 LP_XY,
2147 LP_OPR
2150 struct lp
2152 uint8_t mask;
2153 uint8_t value;
2154 enum LP_MODE mode;
2157 static const struct lp lp_mode[] = {
2158 {0x08, 0x00, LP_REG},
2159 {0x0C, 0x08, LP_XY},
2160 {0x0C, 0x0C, LP_OPR},
2164 static int
2165 loop_prim_n_bytes (struct mem_read_abstraction_base *mra)
2167 int mx = 0;
2168 uint8_t lb;
2169 mra->read (mra, mx++, 1, &lb);
2171 enum LP_MODE mode = -1;
2172 size_t i;
2173 for (i = 0; i < sizeof (lp_mode) / sizeof (lp_mode[0]); ++i)
2175 const struct lp *pb = lp_mode + i;
2176 if ((lb & pb->mask) == pb->value)
2178 mode = pb->mode;
2179 break;
2183 if (mode == LP_OPR)
2185 mx += x_opr_n_bytes (mra, mx) ;
2188 uint8_t rb;
2189 mra->read (mra, mx++, 1, &rb);
2190 if (rb & 0x80)
2191 mx++;
2193 return mx + 1;
2199 static enum optr
2200 exg_sex_discrim (struct mem_read_abstraction_base *mra, enum optr hint ATTRIBUTE_UNUSED)
2202 uint8_t eb;
2203 int status = mra->read (mra, 0, 1, &eb);
2204 if (status < 0)
2205 return OP_INVALID;
2207 struct operand *op0 = create_register_operand ((eb & 0xf0) >> 4);
2208 struct operand *op1 = create_register_operand (eb & 0xf);
2210 const struct reg *r0 = registers + ((struct register_operand *) op0)->reg;
2211 const struct reg *r1 = registers + ((struct register_operand *) op1)->reg;
2213 enum optr operator = (r0->bytes < r1->bytes) ? OP_sex : OP_exg;
2215 free (op0);
2216 free (op1);
2218 return operator;
2222 static void
2223 exg_sex_decode (struct mem_read_abstraction_base *mra,
2224 int *n_operands, struct operand **operands)
2226 uint8_t eb;
2227 int status = mra->read (mra, 0, 1, &eb);
2228 if (status < 0)
2229 return;
2231 /* Ship out the operands. */
2232 operands[(*n_operands)++] = create_register_operand ((eb & 0xf0) >> 4);
2233 operands[(*n_operands)++] = create_register_operand (eb & 0xf);
2236 static enum optr
2237 loop_primitive_discrim (struct mem_read_abstraction_base *mra,
2238 enum optr hint ATTRIBUTE_UNUSED)
2240 uint8_t lb;
2241 int status = mra->read (mra, 0, 1, &lb);
2242 if (status < 0)
2243 return OP_INVALID;
2245 enum optr opbase = (lb & 0x80) ? OP_dbNE : OP_tbNE;
2246 return opbase + ((lb & 0x70) >> 4);
2249 static void
2250 loop_primitive_decode (struct mem_read_abstraction_base *mra,
2251 int *n_operands, struct operand **operands)
2253 int offs = 1;
2254 uint8_t lb;
2255 int status = mra->read (mra, 0, 1, &lb);
2256 if (status < 0)
2257 return ;
2259 enum LP_MODE mode = -1;
2260 size_t i;
2261 for (i = 0; i < sizeof (lp_mode) / sizeof (lp_mode[0]); ++i)
2263 const struct lp *pb = lp_mode + i;
2264 if ((lb & pb->mask) == pb->value)
2266 mode = pb->mode;
2267 break;
2271 switch (mode)
2273 case LP_REG:
2274 operands[(*n_operands)++] = create_register_operand (lb & 0x07);
2275 break;
2276 case LP_XY:
2277 operands[(*n_operands)++] =
2278 create_register_operand ((lb & 0x01) + REG_X);
2279 break;
2280 case LP_OPR:
2281 offs += x_opr_n_bytes (mra, 1);
2282 operands[(*n_operands)++] = x_opr_decode_with_size (mra, 1, lb & 0x03);
2283 break;
2286 rel_15_7 (mra, offs + 1, n_operands, operands);
2290 static enum optr
2291 shift_discrim (struct mem_read_abstraction_base *mra, enum optr hint ATTRIBUTE_UNUSED)
2293 size_t i;
2294 uint8_t sb;
2295 int status = mra->read (mra, 0, 1, &sb);
2296 if (status < 0)
2297 return status;
2299 enum SB_DIR dir = (sb & 0x40) ? SB_LEFT : SB_RIGHT;
2300 enum SB_TYPE type = (sb & 0x80) ? SB_ARITHMETIC : SB_LOGICAL;
2301 enum SB_MODE mode = -1;
2302 for (i = 0; i < sizeof (sb_table) / sizeof (sb_table[0]); ++i)
2304 const struct sb *sbe = sb_table + i;
2305 if ((sb & sbe->mask) == sbe->value)
2306 mode = sbe->mode;
2309 if (mode == SB_ROT)
2310 return (dir == SB_LEFT) ? OP_rol : OP_ror;
2312 if (type == SB_LOGICAL)
2313 return (dir == SB_LEFT) ? OP_lsl : OP_lsr;
2315 return (dir == SB_LEFT) ? OP_asl : OP_asr;
2319 static void
2320 shift_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operands)
2322 size_t i;
2324 uint8_t byte;
2325 int status = mra->read (mra, -1, 1, &byte);
2326 if (status < 0)
2327 return ;
2329 uint8_t sb;
2330 status = mra->read (mra, 0, 1, &sb);
2331 if (status < 0)
2332 return ;
2334 enum SB_MODE mode = -1;
2335 for (i = 0; i < sizeof (sb_table) / sizeof (sb_table[0]); ++i)
2337 const struct sb *sbe = sb_table + i;
2338 if ((sb & sbe->mask) == sbe->value)
2339 mode = sbe->mode;
2342 short osize = -1;
2343 switch (mode)
2345 case SB_REG_OPR_EFF:
2346 case SB_ROT:
2347 case SB_REG_OPR_OPR:
2348 osize = sb & 0x03;
2349 break;
2350 case SB_OPR_N:
2352 uint8_t xb;
2353 mra->read (mra, 1, 1, &xb);
2354 /* The size suffix is not printed if the OPR operand refers
2355 directly to a register, because the size is implied by the
2356 size of that register. */
2357 if ((xb & 0xF8) != 0xB8)
2358 osize = sb & 0x03;
2360 break;
2361 default:
2362 break;
2365 /* Destination register */
2366 switch (mode)
2368 case SB_REG_REG_N_EFF:
2369 case SB_REG_REG_N:
2370 operands[(*n_operands)++] = create_register_operand (byte & 0x07);
2371 break;
2372 case SB_REG_OPR_EFF:
2373 case SB_REG_OPR_OPR:
2374 operands[(*n_operands)++] = create_register_operand (byte & 0x07);
2375 break;
2377 case SB_ROT:
2378 operands[(*n_operands)++] = x_opr_decode_with_size (mra, 1, osize);
2379 break;
2381 default:
2382 break;
2385 /* Source register */
2386 switch (mode)
2388 case SB_REG_REG_N_EFF:
2389 case SB_REG_REG_N:
2390 operands[(*n_operands)++] =
2391 create_register_operand_with_size (sb & 0x07, osize);
2392 break;
2394 case SB_REG_OPR_OPR:
2395 operands[(*n_operands)++] = x_opr_decode_with_size (mra, 1, osize);
2396 break;
2398 default:
2399 break;
2402 /* 3rd arg */
2403 switch (mode)
2405 case SB_REG_OPR_EFF:
2406 case SB_OPR_N:
2407 operands[(*n_operands)++] = x_opr_decode_with_size (mra, 1, osize);
2408 break;
2410 case SB_REG_REG_N:
2412 uint8_t xb;
2413 mra->read (mra, 1, 1, &xb);
2415 /* This case is slightly unusual.
2416 If XB matches the binary pattern 0111XXXX, then instead of
2417 interpreting this as a general OPR postbyte in the IMMe4 mode,
2418 the XB byte is interpreted in s special way. */
2419 if ((xb & 0xF0) == 0x70)
2421 if (byte & 0x10)
2423 int shift = ((sb & 0x08) >> 3) | ((xb & 0x0f) << 1);
2424 operands[(*n_operands)++] = create_immediate_operand (shift);
2426 else
2428 /* This should not happen. */
2429 abort ();
2432 else
2434 operands[(*n_operands)++] = x_opr_decode (mra, 1);
2437 break;
2438 case SB_REG_OPR_OPR:
2440 uint8_t xb;
2441 int n = x_opr_n_bytes (mra, 1);
2442 mra->read (mra, 1 + n, 1, &xb);
2444 if ((xb & 0xF0) == 0x70)
2446 int imm = xb & 0x0F;
2447 imm <<= 1;
2448 imm |= (sb & 0x08) >> 3;
2449 operands[(*n_operands)++] = create_immediate_operand (imm);
2451 else
2453 operands[(*n_operands)++] = x_opr_decode (mra, 1 + n);
2456 break;
2457 default:
2458 break;
2461 switch (mode)
2463 case SB_REG_REG_N_EFF:
2464 case SB_REG_OPR_EFF:
2465 case SB_OPR_N:
2467 int imm = (sb & 0x08) ? 2 : 1;
2468 operands[(*n_operands)++] = create_immediate_operand (imm);
2470 break;
2472 default:
2473 break;
2477 static enum optr
2478 psh_pul_discrim (struct mem_read_abstraction_base *mra,
2479 enum optr hint ATTRIBUTE_UNUSED)
2481 uint8_t byte;
2482 int status = mra->read (mra, 0, 1, &byte);
2483 if (status != 0)
2484 return OP_INVALID;
2486 return (byte & 0x80) ? OP_pull: OP_push;
2490 static void
2491 psh_pul_decode (struct mem_read_abstraction_base *mra,
2492 int *n_operands, struct operand **operand)
2494 uint8_t byte;
2495 int status = mra->read (mra, 0, 1, &byte);
2496 if (status != 0)
2497 return;
2498 int bit;
2499 if (byte & 0x40)
2501 if ((byte & 0x3F) == 0)
2503 operand[(*n_operands)++] = create_register_all16_operand ();
2505 else
2506 for (bit = 5; bit >= 0; --bit)
2508 if (byte & (0x1 << bit))
2510 operand[(*n_operands)++] = create_register_operand (oprregs2[bit]);
2514 else
2516 if ((byte & 0x3F) == 0)
2518 operand[(*n_operands)++] = create_register_all_operand ();
2520 else
2521 for (bit = 5; bit >= 0; --bit)
2523 if (byte & (0x1 << bit))
2525 operand[(*n_operands)++] = create_register_operand (oprregs1[bit]);
2531 static enum optr
2532 bit_field_discrim (struct mem_read_abstraction_base *mra, enum optr hint ATTRIBUTE_UNUSED)
2534 int status;
2535 bfd_byte bb;
2536 status = mra->read (mra, 0, 1, &bb);
2537 if (status != 0)
2538 return OP_INVALID;
2540 return (bb & 0x80) ? OP_bfins : OP_bfext;
2543 static void
2544 bit_field_decode (struct mem_read_abstraction_base *mra,
2545 int *n_operands, struct operand **operands)
2547 int status;
2549 bfd_byte byte2;
2550 status = mra->read (mra, -1, 1, &byte2);
2551 if (status != 0)
2552 return;
2554 bfd_byte bb;
2555 status = mra->read (mra, 0, 1, &bb);
2556 if (status != 0)
2557 return;
2559 enum BB_MODE mode = -1;
2560 size_t i;
2561 const struct opr_bb *bbs = 0;
2562 for (i = 0; i < sizeof (bb_modes) / sizeof (bb_modes[0]); ++i)
2564 bbs = bb_modes + i;
2565 if ((bb & bbs->mask) == bbs->value)
2567 mode = bbs->mode;
2568 break;
2571 int reg1 = byte2 & 0x07;
2572 /* First operand */
2573 switch (mode)
2575 case BB_REG_REG_REG:
2576 case BB_REG_REG_IMM:
2577 case BB_REG_OPR_REG:
2578 case BB_REG_OPR_IMM:
2579 operands[(*n_operands)++] = create_register_operand (reg1);
2580 break;
2581 case BB_OPR_REG_REG:
2582 operands[(*n_operands)++] = x_opr_decode_with_size (mra, 1,
2583 (bb >> 2) & 0x03);
2584 break;
2585 case BB_OPR_REG_IMM:
2586 operands[(*n_operands)++] = x_opr_decode_with_size (mra, 2,
2587 (bb >> 2) & 0x03);
2588 break;
2591 /* Second operand */
2592 switch (mode)
2594 case BB_REG_REG_REG:
2595 case BB_REG_REG_IMM:
2597 int reg_src = (bb >> 2) & 0x07;
2598 operands[(*n_operands)++] = create_register_operand (reg_src);
2600 break;
2601 case BB_OPR_REG_REG:
2602 case BB_OPR_REG_IMM:
2604 int reg_src = (byte2 & 0x07);
2605 operands[(*n_operands)++] = create_register_operand (reg_src);
2607 break;
2608 case BB_REG_OPR_REG:
2609 operands[(*n_operands)++] = x_opr_decode_with_size (mra, 1,
2610 (bb >> 2) & 0x03);
2611 break;
2612 case BB_REG_OPR_IMM:
2613 operands[(*n_operands)++] = x_opr_decode_with_size (mra, 2,
2614 (bb >> 2) & 0x03);
2615 break;
2618 /* Third operand */
2619 switch (mode)
2621 case BB_REG_REG_REG:
2622 case BB_OPR_REG_REG:
2623 case BB_REG_OPR_REG:
2625 int reg_parm = bb & 0x03;
2626 operands[(*n_operands)++] = create_register_operand (reg_parm);
2628 break;
2629 case BB_REG_REG_IMM:
2630 case BB_OPR_REG_IMM:
2631 case BB_REG_OPR_IMM:
2633 bfd_byte i1;
2634 mra->read (mra, 1, 1, &i1);
2635 int offset = i1 & 0x1f;
2636 int width = bb & 0x03;
2637 width <<= 3;
2638 width |= i1 >> 5;
2639 operands[(*n_operands)++] = create_bitfield_operand (width, offset);
2641 break;
2646 /* Decode the next instruction at MRA, according to OPC.
2647 The operation to be performed is returned.
2648 The number of operands, will be placed in N_OPERANDS.
2649 The operands themselved into OPERANDS. */
2650 static enum optr
2651 decode_operation (const struct opcode *opc,
2652 struct mem_read_abstraction_base *mra,
2653 int *n_operands, struct operand **operands)
2655 enum optr op = opc->operator;
2656 if (opc->discriminator)
2657 op = opc->discriminator (mra, opc->operator);
2659 if (opc->operands)
2660 opc->operands (mra, n_operands, operands);
2662 if (opc->operands2)
2663 opc->operands2 (mra, n_operands, operands);
2665 return op;
2669 decode_s12z (enum optr *myoperator, short *osize,
2670 int *n_operands, struct operand **operands,
2671 struct mem_read_abstraction_base *mra)
2673 int n_bytes = 0;
2674 bfd_byte byte;
2676 int status = mra->read (mra, 0, 1, &byte);
2677 if (status != 0)
2678 return status;
2680 mra->advance (mra);
2682 const struct opcode *opc = page1 + byte;
2683 if (byte == PAGE2_PREBYTE)
2685 /* Opcodes in page2 have an additional byte */
2686 n_bytes++;
2688 bfd_byte byte2;
2689 mra->read (mra, 0, 1, &byte2);
2690 mra->advance (mra);
2691 opc = page2 + byte2;
2693 *myoperator = decode_operation (opc, mra, n_operands, operands);
2694 *osize = opc->osize;
2696 /* Return the number of bytes in the instruction. */
2697 n_bytes += (opc && opc->insn_bytes) ? opc->insn_bytes (mra) : 0;
2699 return n_bytes;