1 /* ELF support for AArch64.
2 Copyright 2009-2013 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
21 /* Notes on implementation:
23 Thread Local Store (TLS)
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD64
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL64 relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
95 aarch64_check_relocs()
97 This function is invoked for each relocation.
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
107 elf64_aarch64_allocate_dynrelocs ()
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
115 elf64_aarch64_size_dynamic_sections ()
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
122 elf64_aarch64_relocate_section ()
124 Calls elf64_aarch64_final_link_relocate ()
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
134 elf64_aarch64_final_link_relocate ()
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
140 #include "libiberty.h"
142 #include "bfd_stdint.h"
145 #include "elf/aarch64.h"
147 static bfd_reloc_status_type
148 bfd_elf_aarch64_put_addend (bfd
*abfd
,
150 reloc_howto_type
*howto
, bfd_signed_vma addend
);
152 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
153 ((R_TYPE) == R_AARCH64_TLSGD_ADR_PAGE21 \
154 || (R_TYPE) == R_AARCH64_TLSGD_ADD_LO12_NC \
155 || (R_TYPE) == R_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
156 || (R_TYPE) == R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
157 || (R_TYPE) == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
158 || (R_TYPE) == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
159 || (R_TYPE) == R_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
160 || (R_TYPE) == R_AARCH64_TLSLE_ADD_TPREL_LO12 \
161 || (R_TYPE) == R_AARCH64_TLSLE_ADD_TPREL_HI12 \
162 || (R_TYPE) == R_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
163 || (R_TYPE) == R_AARCH64_TLSLE_MOVW_TPREL_G2 \
164 || (R_TYPE) == R_AARCH64_TLSLE_MOVW_TPREL_G1 \
165 || (R_TYPE) == R_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
166 || (R_TYPE) == R_AARCH64_TLSLE_MOVW_TPREL_G0 \
167 || (R_TYPE) == R_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
168 || (R_TYPE) == R_AARCH64_TLS_DTPMOD64 \
169 || (R_TYPE) == R_AARCH64_TLS_DTPREL64 \
170 || (R_TYPE) == R_AARCH64_TLS_TPREL64 \
171 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
173 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
174 ((R_TYPE) == R_AARCH64_TLSDESC_LD64_PREL19 \
175 || (R_TYPE) == R_AARCH64_TLSDESC_ADR_PREL21 \
176 || (R_TYPE) == R_AARCH64_TLSDESC_ADR_PAGE \
177 || (R_TYPE) == R_AARCH64_TLSDESC_ADD_LO12_NC \
178 || (R_TYPE) == R_AARCH64_TLSDESC_LD64_LO12_NC \
179 || (R_TYPE) == R_AARCH64_TLSDESC_OFF_G1 \
180 || (R_TYPE) == R_AARCH64_TLSDESC_OFF_G0_NC \
181 || (R_TYPE) == R_AARCH64_TLSDESC_LDR \
182 || (R_TYPE) == R_AARCH64_TLSDESC_ADD \
183 || (R_TYPE) == R_AARCH64_TLSDESC_CALL \
184 || (R_TYPE) == R_AARCH64_TLSDESC)
186 #define ELIMINATE_COPY_RELOCS 0
188 /* Return the relocation section associated with NAME. HTAB is the
189 bfd's elf64_aarch64_link_hash_entry. */
190 #define RELOC_SECTION(HTAB, NAME) \
191 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
193 /* Return size of a relocation entry. HTAB is the bfd's
194 elf64_aarch64_link_hash_entry. */
195 #define RELOC_SIZE(HTAB) (sizeof (Elf64_External_Rela))
197 /* Return function to swap relocations in. HTAB is the bfd's
198 elf64_aarch64_link_hash_entry. */
199 #define SWAP_RELOC_IN(HTAB) (bfd_elf64_swap_reloca_in)
201 /* Return function to swap relocations out. HTAB is the bfd's
202 elf64_aarch64_link_hash_entry. */
203 #define SWAP_RELOC_OUT(HTAB) (bfd_elf64_swap_reloca_out)
205 /* GOT Entry size - 8 bytes. */
206 #define GOT_ENTRY_SIZE (8)
207 #define PLT_ENTRY_SIZE (32)
208 #define PLT_SMALL_ENTRY_SIZE (16)
209 #define PLT_TLSDESC_ENTRY_SIZE (32)
211 /* Take the PAGE component of an address or offset. */
212 #define PG(x) ((x) & ~ 0xfff)
213 #define PG_OFFSET(x) ((x) & 0xfff)
215 /* Encoding of the nop instruction */
216 #define INSN_NOP 0xd503201f
218 #define aarch64_compute_jump_table_size(htab) \
219 (((htab)->root.srelplt == NULL) ? 0 \
220 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
222 /* The first entry in a procedure linkage table looks like this
223 if the distance between the PLTGOT and the PLT is < 4GB use
224 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
225 in x16 and needs to work out PLTGOT[1] by using an address of
227 static const bfd_byte elf64_aarch64_small_plt0_entry
[PLT_ENTRY_SIZE
] =
229 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
230 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
231 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
232 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
233 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
234 0x1f, 0x20, 0x03, 0xd5, /* nop */
235 0x1f, 0x20, 0x03, 0xd5, /* nop */
236 0x1f, 0x20, 0x03, 0xd5, /* nop */
239 /* Per function entry in a procedure linkage table looks like this
240 if the distance between the PLTGOT and the PLT is < 4GB use
241 these PLT entries. */
242 static const bfd_byte elf64_aarch64_small_plt_entry
[PLT_SMALL_ENTRY_SIZE
] =
244 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
245 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
246 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
247 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
250 static const bfd_byte
251 elf64_aarch64_tlsdesc_small_plt_entry
[PLT_TLSDESC_ENTRY_SIZE
] =
253 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
254 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
255 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
256 0x42, 0x08, 0x40, 0xF9, /* ldr x2, [x2, #0] */
257 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
258 0x40, 0x00, 0x1F, 0xD6, /* br x2 */
259 0x1f, 0x20, 0x03, 0xd5, /* nop */
260 0x1f, 0x20, 0x03, 0xd5, /* nop */
263 #define elf_info_to_howto elf64_aarch64_info_to_howto
264 #define elf_info_to_howto_rel elf64_aarch64_info_to_howto
266 #define AARCH64_ELF_ABI_VERSION 0
267 #define AARCH64_ELF_OS_ABI_VERSION 0
269 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
270 #define ALL_ONES (~ (bfd_vma) 0)
272 static reloc_howto_type elf64_aarch64_howto_none
=
273 HOWTO (R_AARCH64_NONE
, /* type */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
277 FALSE
, /* pc_relative */
279 complain_overflow_dont
,/* complain_on_overflow */
280 bfd_elf_generic_reloc
, /* special_function */
281 "R_AARCH64_NONE", /* name */
282 FALSE
, /* partial_inplace */
285 FALSE
); /* pcrel_offset */
287 static reloc_howto_type elf64_aarch64_howto_dynrelocs
[] =
289 HOWTO (R_AARCH64_COPY
, /* type */
291 2, /* size (0 = byte, 1 = short, 2 = long) */
293 FALSE
, /* pc_relative */
295 complain_overflow_bitfield
, /* complain_on_overflow */
296 bfd_elf_generic_reloc
, /* special_function */
297 "R_AARCH64_COPY", /* name */
298 TRUE
, /* partial_inplace */
299 0xffffffff, /* src_mask */
300 0xffffffff, /* dst_mask */
301 FALSE
), /* pcrel_offset */
303 HOWTO (R_AARCH64_GLOB_DAT
, /* type */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
307 FALSE
, /* pc_relative */
309 complain_overflow_bitfield
, /* complain_on_overflow */
310 bfd_elf_generic_reloc
, /* special_function */
311 "R_AARCH64_GLOB_DAT", /* name */
312 TRUE
, /* partial_inplace */
313 0xffffffff, /* src_mask */
314 0xffffffff, /* dst_mask */
315 FALSE
), /* pcrel_offset */
317 HOWTO (R_AARCH64_JUMP_SLOT
, /* type */
319 2, /* size (0 = byte, 1 = short, 2 = long) */
321 FALSE
, /* pc_relative */
323 complain_overflow_bitfield
, /* complain_on_overflow */
324 bfd_elf_generic_reloc
, /* special_function */
325 "R_AARCH64_JUMP_SLOT", /* name */
326 TRUE
, /* partial_inplace */
327 0xffffffff, /* src_mask */
328 0xffffffff, /* dst_mask */
329 FALSE
), /* pcrel_offset */
331 HOWTO (R_AARCH64_RELATIVE
, /* type */
333 2, /* size (0 = byte, 1 = short, 2 = long) */
335 FALSE
, /* pc_relative */
337 complain_overflow_bitfield
, /* complain_on_overflow */
338 bfd_elf_generic_reloc
, /* special_function */
339 "R_AARCH64_RELATIVE", /* name */
340 TRUE
, /* partial_inplace */
341 ALL_ONES
, /* src_mask */
342 ALL_ONES
, /* dst_mask */
343 FALSE
), /* pcrel_offset */
345 HOWTO (R_AARCH64_TLS_DTPMOD64
, /* type */
347 2, /* size (0 = byte, 1 = short, 2 = long) */
349 FALSE
, /* pc_relative */
351 complain_overflow_dont
, /* complain_on_overflow */
352 bfd_elf_generic_reloc
, /* special_function */
353 "R_AARCH64_TLS_DTPMOD64", /* name */
354 FALSE
, /* partial_inplace */
356 ALL_ONES
, /* dst_mask */
357 FALSE
), /* pc_reloffset */
359 HOWTO (R_AARCH64_TLS_DTPREL64
, /* type */
361 2, /* size (0 = byte, 1 = short, 2 = long) */
363 FALSE
, /* pc_relative */
365 complain_overflow_dont
, /* complain_on_overflow */
366 bfd_elf_generic_reloc
, /* special_function */
367 "R_AARCH64_TLS_DTPREL64", /* name */
368 FALSE
, /* partial_inplace */
370 ALL_ONES
, /* dst_mask */
371 FALSE
), /* pcrel_offset */
373 HOWTO (R_AARCH64_TLS_TPREL64
, /* type */
375 2, /* size (0 = byte, 1 = short, 2 = long) */
377 FALSE
, /* pc_relative */
379 complain_overflow_dont
, /* complain_on_overflow */
380 bfd_elf_generic_reloc
, /* special_function */
381 "R_AARCH64_TLS_TPREL64", /* name */
382 FALSE
, /* partial_inplace */
384 ALL_ONES
, /* dst_mask */
385 FALSE
), /* pcrel_offset */
387 HOWTO (R_AARCH64_TLSDESC
, /* type */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
391 FALSE
, /* pc_relative */
393 complain_overflow_dont
, /* complain_on_overflow */
394 bfd_elf_generic_reloc
, /* special_function */
395 "R_AARCH64_TLSDESC", /* name */
396 FALSE
, /* partial_inplace */
398 ALL_ONES
, /* dst_mask */
399 FALSE
), /* pcrel_offset */
403 /* Note: code such as elf64_aarch64_reloc_type_lookup expect to use e.g.
404 R_AARCH64_PREL64 as an index into this, and find the R_AARCH64_PREL64 HOWTO
407 static reloc_howto_type elf64_aarch64_howto_table
[] =
409 /* Basic data relocations. */
411 HOWTO (R_AARCH64_NULL
, /* type */
413 0, /* size (0 = byte, 1 = short, 2 = long) */
415 FALSE
, /* pc_relative */
417 complain_overflow_dont
, /* complain_on_overflow */
418 bfd_elf_generic_reloc
, /* special_function */
419 "R_AARCH64_NULL", /* name */
420 FALSE
, /* partial_inplace */
423 FALSE
), /* pcrel_offset */
426 HOWTO (R_AARCH64_ABS64
, /* type */
428 4, /* size (4 = long long) */
430 FALSE
, /* pc_relative */
432 complain_overflow_unsigned
, /* complain_on_overflow */
433 bfd_elf_generic_reloc
, /* special_function */
434 "R_AARCH64_ABS64", /* name */
435 FALSE
, /* partial_inplace */
436 ALL_ONES
, /* src_mask */
437 ALL_ONES
, /* dst_mask */
438 FALSE
), /* pcrel_offset */
441 HOWTO (R_AARCH64_ABS32
, /* type */
443 2, /* size (0 = byte, 1 = short, 2 = long) */
445 FALSE
, /* pc_relative */
447 complain_overflow_unsigned
, /* complain_on_overflow */
448 bfd_elf_generic_reloc
, /* special_function */
449 "R_AARCH64_ABS32", /* name */
450 FALSE
, /* partial_inplace */
451 0xffffffff, /* src_mask */
452 0xffffffff, /* dst_mask */
453 FALSE
), /* pcrel_offset */
456 HOWTO (R_AARCH64_ABS16
, /* type */
458 1, /* size (0 = byte, 1 = short, 2 = long) */
460 FALSE
, /* pc_relative */
462 complain_overflow_unsigned
, /* complain_on_overflow */
463 bfd_elf_generic_reloc
, /* special_function */
464 "R_AARCH64_ABS16", /* name */
465 FALSE
, /* partial_inplace */
466 0xffff, /* src_mask */
467 0xffff, /* dst_mask */
468 FALSE
), /* pcrel_offset */
470 /* .xword: (S+A-P) */
471 HOWTO (R_AARCH64_PREL64
, /* type */
473 4, /* size (4 = long long) */
475 TRUE
, /* pc_relative */
477 complain_overflow_signed
, /* complain_on_overflow */
478 bfd_elf_generic_reloc
, /* special_function */
479 "R_AARCH64_PREL64", /* name */
480 FALSE
, /* partial_inplace */
481 ALL_ONES
, /* src_mask */
482 ALL_ONES
, /* dst_mask */
483 TRUE
), /* pcrel_offset */
486 HOWTO (R_AARCH64_PREL32
, /* type */
488 2, /* size (0 = byte, 1 = short, 2 = long) */
490 TRUE
, /* pc_relative */
492 complain_overflow_signed
, /* complain_on_overflow */
493 bfd_elf_generic_reloc
, /* special_function */
494 "R_AARCH64_PREL32", /* name */
495 FALSE
, /* partial_inplace */
496 0xffffffff, /* src_mask */
497 0xffffffff, /* dst_mask */
498 TRUE
), /* pcrel_offset */
501 HOWTO (R_AARCH64_PREL16
, /* type */
503 1, /* size (0 = byte, 1 = short, 2 = long) */
505 TRUE
, /* pc_relative */
507 complain_overflow_signed
, /* complain_on_overflow */
508 bfd_elf_generic_reloc
, /* special_function */
509 "R_AARCH64_PREL16", /* name */
510 FALSE
, /* partial_inplace */
511 0xffff, /* src_mask */
512 0xffff, /* dst_mask */
513 TRUE
), /* pcrel_offset */
515 /* Group relocations to create a 16, 32, 48 or 64 bit
516 unsigned data or abs address inline. */
518 /* MOVZ: ((S+A) >> 0) & 0xffff */
519 HOWTO (R_AARCH64_MOVW_UABS_G0
, /* type */
521 2, /* size (0 = byte, 1 = short, 2 = long) */
523 FALSE
, /* pc_relative */
525 complain_overflow_unsigned
, /* complain_on_overflow */
526 bfd_elf_generic_reloc
, /* special_function */
527 "R_AARCH64_MOVW_UABS_G0", /* name */
528 FALSE
, /* partial_inplace */
529 0xffff, /* src_mask */
530 0xffff, /* dst_mask */
531 FALSE
), /* pcrel_offset */
533 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
534 HOWTO (R_AARCH64_MOVW_UABS_G0_NC
, /* type */
536 2, /* size (0 = byte, 1 = short, 2 = long) */
538 FALSE
, /* pc_relative */
540 complain_overflow_dont
, /* complain_on_overflow */
541 bfd_elf_generic_reloc
, /* special_function */
542 "R_AARCH64_MOVW_UABS_G0_NC", /* name */
543 FALSE
, /* partial_inplace */
544 0xffff, /* src_mask */
545 0xffff, /* dst_mask */
546 FALSE
), /* pcrel_offset */
548 /* MOVZ: ((S+A) >> 16) & 0xffff */
549 HOWTO (R_AARCH64_MOVW_UABS_G1
, /* type */
551 2, /* size (0 = byte, 1 = short, 2 = long) */
553 FALSE
, /* pc_relative */
555 complain_overflow_unsigned
, /* complain_on_overflow */
556 bfd_elf_generic_reloc
, /* special_function */
557 "R_AARCH64_MOVW_UABS_G1", /* name */
558 FALSE
, /* partial_inplace */
559 0xffff, /* src_mask */
560 0xffff, /* dst_mask */
561 FALSE
), /* pcrel_offset */
563 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
564 HOWTO (R_AARCH64_MOVW_UABS_G1_NC
, /* type */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
568 FALSE
, /* pc_relative */
570 complain_overflow_dont
, /* complain_on_overflow */
571 bfd_elf_generic_reloc
, /* special_function */
572 "R_AARCH64_MOVW_UABS_G1_NC", /* name */
573 FALSE
, /* partial_inplace */
574 0xffff, /* src_mask */
575 0xffff, /* dst_mask */
576 FALSE
), /* pcrel_offset */
578 /* MOVZ: ((S+A) >> 32) & 0xffff */
579 HOWTO (R_AARCH64_MOVW_UABS_G2
, /* type */
581 2, /* size (0 = byte, 1 = short, 2 = long) */
583 FALSE
, /* pc_relative */
585 complain_overflow_unsigned
, /* complain_on_overflow */
586 bfd_elf_generic_reloc
, /* special_function */
587 "R_AARCH64_MOVW_UABS_G2", /* name */
588 FALSE
, /* partial_inplace */
589 0xffff, /* src_mask */
590 0xffff, /* dst_mask */
591 FALSE
), /* pcrel_offset */
593 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
594 HOWTO (R_AARCH64_MOVW_UABS_G2_NC
, /* type */
596 2, /* size (0 = byte, 1 = short, 2 = long) */
598 FALSE
, /* pc_relative */
600 complain_overflow_dont
, /* complain_on_overflow */
601 bfd_elf_generic_reloc
, /* special_function */
602 "R_AARCH64_MOVW_UABS_G2_NC", /* name */
603 FALSE
, /* partial_inplace */
604 0xffff, /* src_mask */
605 0xffff, /* dst_mask */
606 FALSE
), /* pcrel_offset */
608 /* MOVZ: ((S+A) >> 48) & 0xffff */
609 HOWTO (R_AARCH64_MOVW_UABS_G3
, /* type */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
613 FALSE
, /* pc_relative */
615 complain_overflow_unsigned
, /* complain_on_overflow */
616 bfd_elf_generic_reloc
, /* special_function */
617 "R_AARCH64_MOVW_UABS_G3", /* name */
618 FALSE
, /* partial_inplace */
619 0xffff, /* src_mask */
620 0xffff, /* dst_mask */
621 FALSE
), /* pcrel_offset */
623 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
624 signed data or abs address inline. Will change instruction
625 to MOVN or MOVZ depending on sign of calculated value. */
627 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
628 HOWTO (R_AARCH64_MOVW_SABS_G0
, /* type */
630 2, /* size (0 = byte, 1 = short, 2 = long) */
632 FALSE
, /* pc_relative */
634 complain_overflow_signed
, /* complain_on_overflow */
635 bfd_elf_generic_reloc
, /* special_function */
636 "R_AARCH64_MOVW_SABS_G0", /* name */
637 FALSE
, /* partial_inplace */
638 0xffff, /* src_mask */
639 0xffff, /* dst_mask */
640 FALSE
), /* pcrel_offset */
642 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
643 HOWTO (R_AARCH64_MOVW_SABS_G1
, /* type */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
647 FALSE
, /* pc_relative */
649 complain_overflow_signed
, /* complain_on_overflow */
650 bfd_elf_generic_reloc
, /* special_function */
651 "R_AARCH64_MOVW_SABS_G1", /* name */
652 FALSE
, /* partial_inplace */
653 0xffff, /* src_mask */
654 0xffff, /* dst_mask */
655 FALSE
), /* pcrel_offset */
657 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
658 HOWTO (R_AARCH64_MOVW_SABS_G2
, /* type */
660 2, /* size (0 = byte, 1 = short, 2 = long) */
662 FALSE
, /* pc_relative */
664 complain_overflow_signed
, /* complain_on_overflow */
665 bfd_elf_generic_reloc
, /* special_function */
666 "R_AARCH64_MOVW_SABS_G2", /* name */
667 FALSE
, /* partial_inplace */
668 0xffff, /* src_mask */
669 0xffff, /* dst_mask */
670 FALSE
), /* pcrel_offset */
672 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
673 addresses: PG(x) is (x & ~0xfff). */
675 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
676 HOWTO (R_AARCH64_LD_PREL_LO19
, /* type */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
680 TRUE
, /* pc_relative */
682 complain_overflow_signed
, /* complain_on_overflow */
683 bfd_elf_generic_reloc
, /* special_function */
684 "R_AARCH64_LD_PREL_LO19", /* name */
685 FALSE
, /* partial_inplace */
686 0x7ffff, /* src_mask */
687 0x7ffff, /* dst_mask */
688 TRUE
), /* pcrel_offset */
690 /* ADR: (S+A-P) & 0x1fffff */
691 HOWTO (R_AARCH64_ADR_PREL_LO21
, /* type */
693 2, /* size (0 = byte, 1 = short, 2 = long) */
695 TRUE
, /* pc_relative */
697 complain_overflow_signed
, /* complain_on_overflow */
698 bfd_elf_generic_reloc
, /* special_function */
699 "R_AARCH64_ADR_PREL_LO21", /* name */
700 FALSE
, /* partial_inplace */
701 0x1fffff, /* src_mask */
702 0x1fffff, /* dst_mask */
703 TRUE
), /* pcrel_offset */
705 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
706 HOWTO (R_AARCH64_ADR_PREL_PG_HI21
, /* type */
708 2, /* size (0 = byte, 1 = short, 2 = long) */
710 TRUE
, /* pc_relative */
712 complain_overflow_signed
, /* complain_on_overflow */
713 bfd_elf_generic_reloc
, /* special_function */
714 "R_AARCH64_ADR_PREL_PG_HI21", /* name */
715 FALSE
, /* partial_inplace */
716 0x1fffff, /* src_mask */
717 0x1fffff, /* dst_mask */
718 TRUE
), /* pcrel_offset */
720 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
721 HOWTO (R_AARCH64_ADR_PREL_PG_HI21_NC
, /* type */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
725 TRUE
, /* pc_relative */
727 complain_overflow_dont
, /* complain_on_overflow */
728 bfd_elf_generic_reloc
, /* special_function */
729 "R_AARCH64_ADR_PREL_PG_HI21_NC", /* name */
730 FALSE
, /* partial_inplace */
731 0x1fffff, /* src_mask */
732 0x1fffff, /* dst_mask */
733 TRUE
), /* pcrel_offset */
735 /* ADD: (S+A) & 0xfff [no overflow check] */
736 HOWTO (R_AARCH64_ADD_ABS_LO12_NC
, /* type */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
740 FALSE
, /* pc_relative */
742 complain_overflow_dont
, /* complain_on_overflow */
743 bfd_elf_generic_reloc
, /* special_function */
744 "R_AARCH64_ADD_ABS_LO12_NC", /* name */
745 FALSE
, /* partial_inplace */
746 0x3ffc00, /* src_mask */
747 0x3ffc00, /* dst_mask */
748 FALSE
), /* pcrel_offset */
750 /* LD/ST8: (S+A) & 0xfff */
751 HOWTO (R_AARCH64_LDST8_ABS_LO12_NC
, /* type */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
755 FALSE
, /* pc_relative */
757 complain_overflow_dont
, /* complain_on_overflow */
758 bfd_elf_generic_reloc
, /* special_function */
759 "R_AARCH64_LDST8_ABS_LO12_NC", /* name */
760 FALSE
, /* partial_inplace */
761 0xfff, /* src_mask */
762 0xfff, /* dst_mask */
763 FALSE
), /* pcrel_offset */
765 /* Relocations for control-flow instructions. */
767 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
768 HOWTO (R_AARCH64_TSTBR14
, /* type */
770 2, /* size (0 = byte, 1 = short, 2 = long) */
772 TRUE
, /* pc_relative */
774 complain_overflow_signed
, /* complain_on_overflow */
775 bfd_elf_generic_reloc
, /* special_function */
776 "R_AARCH64_TSTBR14", /* name */
777 FALSE
, /* partial_inplace */
778 0x3fff, /* src_mask */
779 0x3fff, /* dst_mask */
780 TRUE
), /* pcrel_offset */
782 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
783 HOWTO (R_AARCH64_CONDBR19
, /* type */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
787 TRUE
, /* pc_relative */
789 complain_overflow_signed
, /* complain_on_overflow */
790 bfd_elf_generic_reloc
, /* special_function */
791 "R_AARCH64_CONDBR19", /* name */
792 FALSE
, /* partial_inplace */
793 0x7ffff, /* src_mask */
794 0x7ffff, /* dst_mask */
795 TRUE
), /* pcrel_offset */
799 /* B: ((S+A-P) >> 2) & 0x3ffffff */
800 HOWTO (R_AARCH64_JUMP26
, /* type */
802 2, /* size (0 = byte, 1 = short, 2 = long) */
804 TRUE
, /* pc_relative */
806 complain_overflow_signed
, /* complain_on_overflow */
807 bfd_elf_generic_reloc
, /* special_function */
808 "R_AARCH64_JUMP26", /* name */
809 FALSE
, /* partial_inplace */
810 0x3ffffff, /* src_mask */
811 0x3ffffff, /* dst_mask */
812 TRUE
), /* pcrel_offset */
814 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
815 HOWTO (R_AARCH64_CALL26
, /* type */
817 2, /* size (0 = byte, 1 = short, 2 = long) */
819 TRUE
, /* pc_relative */
821 complain_overflow_signed
, /* complain_on_overflow */
822 bfd_elf_generic_reloc
, /* special_function */
823 "R_AARCH64_CALL26", /* name */
824 FALSE
, /* partial_inplace */
825 0x3ffffff, /* src_mask */
826 0x3ffffff, /* dst_mask */
827 TRUE
), /* pcrel_offset */
829 /* LD/ST16: (S+A) & 0xffe */
830 HOWTO (R_AARCH64_LDST16_ABS_LO12_NC
, /* type */
832 2, /* size (0 = byte, 1 = short, 2 = long) */
834 FALSE
, /* pc_relative */
836 complain_overflow_dont
, /* complain_on_overflow */
837 bfd_elf_generic_reloc
, /* special_function */
838 "R_AARCH64_LDST16_ABS_LO12_NC", /* name */
839 FALSE
, /* partial_inplace */
840 0xffe, /* src_mask */
841 0xffe, /* dst_mask */
842 FALSE
), /* pcrel_offset */
844 /* LD/ST32: (S+A) & 0xffc */
845 HOWTO (R_AARCH64_LDST32_ABS_LO12_NC
, /* type */
847 2, /* size (0 = byte, 1 = short, 2 = long) */
849 FALSE
, /* pc_relative */
851 complain_overflow_dont
, /* complain_on_overflow */
852 bfd_elf_generic_reloc
, /* special_function */
853 "R_AARCH64_LDST32_ABS_LO12_NC", /* name */
854 FALSE
, /* partial_inplace */
855 0xffc, /* src_mask */
856 0xffc, /* dst_mask */
857 FALSE
), /* pcrel_offset */
859 /* LD/ST64: (S+A) & 0xff8 */
860 HOWTO (R_AARCH64_LDST64_ABS_LO12_NC
, /* type */
862 2, /* size (0 = byte, 1 = short, 2 = long) */
864 FALSE
, /* pc_relative */
866 complain_overflow_dont
, /* complain_on_overflow */
867 bfd_elf_generic_reloc
, /* special_function */
868 "R_AARCH64_LDST64_ABS_LO12_NC", /* name */
869 FALSE
, /* partial_inplace */
870 0xff8, /* src_mask */
871 0xff8, /* dst_mask */
872 FALSE
), /* pcrel_offset */
887 /* LD/ST128: (S+A) & 0xff0 */
888 HOWTO (R_AARCH64_LDST128_ABS_LO12_NC
, /* type */
890 2, /* size (0 = byte, 1 = short, 2 = long) */
892 FALSE
, /* pc_relative */
894 complain_overflow_dont
, /* complain_on_overflow */
895 bfd_elf_generic_reloc
, /* special_function */
896 "R_AARCH64_LDST128_ABS_LO12_NC", /* name */
897 FALSE
, /* partial_inplace */
898 0xff0, /* src_mask */
899 0xff0, /* dst_mask */
900 FALSE
), /* pcrel_offset */
912 /* Set a load-literal immediate field to bits
913 0x1FFFFC of G(S)-P */
914 HOWTO (R_AARCH64_GOT_LD_PREL19
, /* type */
916 2, /* size (0 = byte,1 = short,2 = long) */
918 TRUE
, /* pc_relative */
920 complain_overflow_signed
, /* complain_on_overflow */
921 bfd_elf_generic_reloc
, /* special_function */
922 "R_AARCH64_GOT_LD_PREL19", /* name */
923 FALSE
, /* partial_inplace */
924 0xffffe0, /* src_mask */
925 0xffffe0, /* dst_mask */
926 TRUE
), /* pcrel_offset */
930 /* Get to the page for the GOT entry for the symbol
931 (G(S) - P) using an ADRP instruction. */
932 HOWTO (R_AARCH64_ADR_GOT_PAGE
, /* type */
934 2, /* size (0 = byte, 1 = short, 2 = long) */
936 TRUE
, /* pc_relative */
938 complain_overflow_dont
, /* complain_on_overflow */
939 bfd_elf_generic_reloc
, /* special_function */
940 "R_AARCH64_ADR_GOT_PAGE", /* name */
941 FALSE
, /* partial_inplace */
942 0x1fffff, /* src_mask */
943 0x1fffff, /* dst_mask */
944 TRUE
), /* pcrel_offset */
946 /* LD64: GOT offset G(S) & 0xff8 */
947 HOWTO (R_AARCH64_LD64_GOT_LO12_NC
, /* type */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
951 FALSE
, /* pc_relative */
953 complain_overflow_dont
, /* complain_on_overflow */
954 bfd_elf_generic_reloc
, /* special_function */
955 "R_AARCH64_LD64_GOT_LO12_NC", /* name */
956 FALSE
, /* partial_inplace */
957 0xff8, /* src_mask */
958 0xff8, /* dst_mask */
959 FALSE
) /* pcrel_offset */
962 static reloc_howto_type elf64_aarch64_tls_howto_table
[] =
966 /* Get to the page for the GOT entry for the symbol
967 (G(S) - P) using an ADRP instruction. */
968 HOWTO (R_AARCH64_TLSGD_ADR_PAGE21
, /* type */
970 2, /* size (0 = byte, 1 = short, 2 = long) */
972 TRUE
, /* pc_relative */
974 complain_overflow_dont
, /* complain_on_overflow */
975 bfd_elf_generic_reloc
, /* special_function */
976 "R_AARCH64_TLSGD_ADR_PAGE21", /* name */
977 FALSE
, /* partial_inplace */
978 0x1fffff, /* src_mask */
979 0x1fffff, /* dst_mask */
980 TRUE
), /* pcrel_offset */
982 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
983 HOWTO (R_AARCH64_TLSGD_ADD_LO12_NC
, /* type */
985 2, /* size (0 = byte, 1 = short, 2 = long) */
987 FALSE
, /* pc_relative */
989 complain_overflow_dont
, /* complain_on_overflow */
990 bfd_elf_generic_reloc
, /* special_function */
991 "R_AARCH64_TLSGD_ADD_LO12_NC", /* name */
992 FALSE
, /* partial_inplace */
993 0xfff, /* src_mask */
994 0xfff, /* dst_mask */
995 FALSE
), /* pcrel_offset */
1022 HOWTO (R_AARCH64_TLSIE_MOVW_GOTTPREL_G1
, /* type */
1023 16, /* rightshift */
1024 2, /* size (0 = byte, 1 = short, 2 = long) */
1026 FALSE
, /* pc_relative */
1028 complain_overflow_dont
, /* complain_on_overflow */
1029 bfd_elf_generic_reloc
, /* special_function */
1030 "R_AARCH64_TLSIE_MOVW_GOTTPREL_G1", /* name */
1031 FALSE
, /* partial_inplace */
1032 0xffff, /* src_mask */
1033 0xffff, /* dst_mask */
1034 FALSE
), /* pcrel_offset */
1036 HOWTO (R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
, /* type */
1038 2, /* size (0 = byte, 1 = short, 2 = long) */
1040 FALSE
, /* pc_relative */
1042 complain_overflow_dont
, /* complain_on_overflow */
1043 bfd_elf_generic_reloc
, /* special_function */
1044 "R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC", /* name */
1045 FALSE
, /* partial_inplace */
1046 0xffff, /* src_mask */
1047 0xffff, /* dst_mask */
1048 FALSE
), /* pcrel_offset */
1050 HOWTO (R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
, /* type */
1051 12, /* rightshift */
1052 2, /* size (0 = byte, 1 = short, 2 = long) */
1054 FALSE
, /* pc_relative */
1056 complain_overflow_dont
, /* complain_on_overflow */
1057 bfd_elf_generic_reloc
, /* special_function */
1058 "R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21", /* name */
1059 FALSE
, /* partial_inplace */
1060 0x1fffff, /* src_mask */
1061 0x1fffff, /* dst_mask */
1062 FALSE
), /* pcrel_offset */
1064 HOWTO (R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
, /* type */
1066 2, /* size (0 = byte, 1 = short, 2 = long) */
1068 FALSE
, /* pc_relative */
1070 complain_overflow_dont
, /* complain_on_overflow */
1071 bfd_elf_generic_reloc
, /* special_function */
1072 "R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC", /* name */
1073 FALSE
, /* partial_inplace */
1074 0xff8, /* src_mask */
1075 0xff8, /* dst_mask */
1076 FALSE
), /* pcrel_offset */
1078 HOWTO (R_AARCH64_TLSIE_LD_GOTTPREL_PREL19
, /* type */
1080 2, /* size (0 = byte, 1 = short, 2 = long) */
1082 FALSE
, /* pc_relative */
1084 complain_overflow_dont
, /* complain_on_overflow */
1085 bfd_elf_generic_reloc
, /* special_function */
1086 "R_AARCH64_TLSIE_LD_GOTTPREL_PREL19", /* name */
1087 FALSE
, /* partial_inplace */
1088 0x1ffffc, /* src_mask */
1089 0x1ffffc, /* dst_mask */
1090 FALSE
), /* pcrel_offset */
1092 HOWTO (R_AARCH64_TLSLE_MOVW_TPREL_G2
, /* type */
1093 32, /* rightshift */
1094 2, /* size (0 = byte, 1 = short, 2 = long) */
1096 FALSE
, /* pc_relative */
1098 complain_overflow_dont
, /* complain_on_overflow */
1099 bfd_elf_generic_reloc
, /* special_function */
1100 "R_AARCH64_TLSLE_MOVW_TPREL_G2", /* name */
1101 FALSE
, /* partial_inplace */
1102 0xffff, /* src_mask */
1103 0xffff, /* dst_mask */
1104 FALSE
), /* pcrel_offset */
1106 HOWTO (R_AARCH64_TLSLE_MOVW_TPREL_G1
, /* type */
1107 16, /* rightshift */
1108 2, /* size (0 = byte, 1 = short, 2 = long) */
1110 FALSE
, /* pc_relative */
1112 complain_overflow_dont
, /* complain_on_overflow */
1113 bfd_elf_generic_reloc
, /* special_function */
1114 "R_AARCH64_TLSLE_MOVW_TPREL_G1", /* name */
1115 FALSE
, /* partial_inplace */
1116 0xffff, /* src_mask */
1117 0xffff, /* dst_mask */
1118 FALSE
), /* pcrel_offset */
1120 HOWTO (R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
, /* type */
1121 16, /* rightshift */
1122 2, /* size (0 = byte, 1 = short, 2 = long) */
1124 FALSE
, /* pc_relative */
1126 complain_overflow_dont
, /* complain_on_overflow */
1127 bfd_elf_generic_reloc
, /* special_function */
1128 "R_AARCH64_TLSLE_MOVW_TPREL_G1_NC", /* name */
1129 FALSE
, /* partial_inplace */
1130 0xffff, /* src_mask */
1131 0xffff, /* dst_mask */
1132 FALSE
), /* pcrel_offset */
1134 HOWTO (R_AARCH64_TLSLE_MOVW_TPREL_G0
, /* type */
1136 2, /* size (0 = byte, 1 = short, 2 = long) */
1138 FALSE
, /* pc_relative */
1140 complain_overflow_dont
, /* complain_on_overflow */
1141 bfd_elf_generic_reloc
, /* special_function */
1142 "R_AARCH64_TLSLE_MOVW_TPREL_G0", /* name */
1143 FALSE
, /* partial_inplace */
1144 0xffff, /* src_mask */
1145 0xffff, /* dst_mask */
1146 FALSE
), /* pcrel_offset */
1148 HOWTO (R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
, /* type */
1150 2, /* size (0 = byte, 1 = short, 2 = long) */
1152 FALSE
, /* pc_relative */
1154 complain_overflow_dont
, /* complain_on_overflow */
1155 bfd_elf_generic_reloc
, /* special_function */
1156 "R_AARCH64_TLSLE_MOVW_TPREL_G0_NC", /* name */
1157 FALSE
, /* partial_inplace */
1158 0xffff, /* src_mask */
1159 0xffff, /* dst_mask */
1160 FALSE
), /* pcrel_offset */
1162 HOWTO (R_AARCH64_TLSLE_ADD_TPREL_HI12
, /* type */
1163 12, /* rightshift */
1164 2, /* size (0 = byte, 1 = short, 2 = long) */
1166 FALSE
, /* pc_relative */
1168 complain_overflow_dont
, /* complain_on_overflow */
1169 bfd_elf_generic_reloc
, /* special_function */
1170 "R_AARCH64_TLSLE_ADD_TPREL_HI12", /* name */
1171 FALSE
, /* partial_inplace */
1172 0xfff, /* src_mask */
1173 0xfff, /* dst_mask */
1174 FALSE
), /* pcrel_offset */
1176 HOWTO (R_AARCH64_TLSLE_ADD_TPREL_LO12
, /* type */
1178 2, /* size (0 = byte, 1 = short, 2 = long) */
1180 FALSE
, /* pc_relative */
1182 complain_overflow_dont
, /* complain_on_overflow */
1183 bfd_elf_generic_reloc
, /* special_function */
1184 "R_AARCH64_TLSLE_ADD_TPREL_LO12", /* name */
1185 FALSE
, /* partial_inplace */
1186 0xfff, /* src_mask */
1187 0xfff, /* dst_mask */
1188 FALSE
), /* pcrel_offset */
1190 HOWTO (R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
, /* type */
1192 2, /* size (0 = byte, 1 = short, 2 = long) */
1194 FALSE
, /* pc_relative */
1196 complain_overflow_dont
, /* complain_on_overflow */
1197 bfd_elf_generic_reloc
, /* special_function */
1198 "R_AARCH64_TLSLE_ADD_TPREL_LO12_NC", /* name */
1199 FALSE
, /* partial_inplace */
1200 0xfff, /* src_mask */
1201 0xfff, /* dst_mask */
1202 FALSE
), /* pcrel_offset */
1205 static reloc_howto_type elf64_aarch64_tlsdesc_howto_table
[] =
1207 HOWTO (R_AARCH64_TLSDESC_LD64_PREL19
, /* type */
1209 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 TRUE
, /* pc_relative */
1213 complain_overflow_dont
, /* complain_on_overflow */
1214 bfd_elf_generic_reloc
, /* special_function */
1215 "R_AARCH64_TLSDESC_LD64_PREL19", /* name */
1216 FALSE
, /* partial_inplace */
1217 0x1ffffc, /* src_mask */
1218 0x1ffffc, /* dst_mask */
1219 TRUE
), /* pcrel_offset */
1221 HOWTO (R_AARCH64_TLSDESC_ADR_PREL21
, /* type */
1223 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 TRUE
, /* pc_relative */
1227 complain_overflow_dont
, /* complain_on_overflow */
1228 bfd_elf_generic_reloc
, /* special_function */
1229 "R_AARCH64_TLSDESC_ADR_PREL21", /* name */
1230 FALSE
, /* partial_inplace */
1231 0x1fffff, /* src_mask */
1232 0x1fffff, /* dst_mask */
1233 TRUE
), /* pcrel_offset */
1235 /* Get to the page for the GOT entry for the symbol
1236 (G(S) - P) using an ADRP instruction. */
1237 HOWTO (R_AARCH64_TLSDESC_ADR_PAGE
, /* type */
1238 12, /* rightshift */
1239 2, /* size (0 = byte, 1 = short, 2 = long) */
1241 TRUE
, /* pc_relative */
1243 complain_overflow_dont
, /* complain_on_overflow */
1244 bfd_elf_generic_reloc
, /* special_function */
1245 "R_AARCH64_TLSDESC_ADR_PAGE", /* name */
1246 FALSE
, /* partial_inplace */
1247 0x1fffff, /* src_mask */
1248 0x1fffff, /* dst_mask */
1249 TRUE
), /* pcrel_offset */
1251 /* LD64: GOT offset G(S) & 0xfff. */
1252 HOWTO (R_AARCH64_TLSDESC_LD64_LO12_NC
, /* type */
1254 2, /* size (0 = byte, 1 = short, 2 = long) */
1256 FALSE
, /* pc_relative */
1258 complain_overflow_dont
, /* complain_on_overflow */
1259 bfd_elf_generic_reloc
, /* special_function */
1260 "R_AARCH64_TLSDESC_LD64_LO12_NC", /* name */
1261 FALSE
, /* partial_inplace */
1262 0xfff, /* src_mask */
1263 0xfff, /* dst_mask */
1264 FALSE
), /* pcrel_offset */
1266 /* ADD: GOT offset G(S) & 0xfff. */
1267 HOWTO (R_AARCH64_TLSDESC_ADD_LO12_NC
, /* type */
1269 2, /* size (0 = byte, 1 = short, 2 = long) */
1271 FALSE
, /* pc_relative */
1273 complain_overflow_dont
, /* complain_on_overflow */
1274 bfd_elf_generic_reloc
, /* special_function */
1275 "R_AARCH64_TLSDESC_ADD_LO12_NC", /* name */
1276 FALSE
, /* partial_inplace */
1277 0xfff, /* src_mask */
1278 0xfff, /* dst_mask */
1279 FALSE
), /* pcrel_offset */
1281 HOWTO (R_AARCH64_TLSDESC_OFF_G1
, /* type */
1282 16, /* rightshift */
1283 2, /* size (0 = byte, 1 = short, 2 = long) */
1285 FALSE
, /* pc_relative */
1287 complain_overflow_dont
, /* complain_on_overflow */
1288 bfd_elf_generic_reloc
, /* special_function */
1289 "R_AARCH64_TLSDESC_OFF_G1", /* name */
1290 FALSE
, /* partial_inplace */
1291 0xffff, /* src_mask */
1292 0xffff, /* dst_mask */
1293 FALSE
), /* pcrel_offset */
1295 HOWTO (R_AARCH64_TLSDESC_OFF_G0_NC
, /* type */
1297 2, /* size (0 = byte, 1 = short, 2 = long) */
1299 FALSE
, /* pc_relative */
1301 complain_overflow_dont
, /* complain_on_overflow */
1302 bfd_elf_generic_reloc
, /* special_function */
1303 "R_AARCH64_TLSDESC_OFF_G0_NC", /* name */
1304 FALSE
, /* partial_inplace */
1305 0xffff, /* src_mask */
1306 0xffff, /* dst_mask */
1307 FALSE
), /* pcrel_offset */
1309 HOWTO (R_AARCH64_TLSDESC_LDR
, /* type */
1311 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 FALSE
, /* pc_relative */
1315 complain_overflow_dont
, /* complain_on_overflow */
1316 bfd_elf_generic_reloc
, /* special_function */
1317 "R_AARCH64_TLSDESC_LDR", /* name */
1318 FALSE
, /* partial_inplace */
1321 FALSE
), /* pcrel_offset */
1323 HOWTO (R_AARCH64_TLSDESC_ADD
, /* type */
1325 2, /* size (0 = byte, 1 = short, 2 = long) */
1327 FALSE
, /* pc_relative */
1329 complain_overflow_dont
, /* complain_on_overflow */
1330 bfd_elf_generic_reloc
, /* special_function */
1331 "R_AARCH64_TLSDESC_ADD", /* name */
1332 FALSE
, /* partial_inplace */
1335 FALSE
), /* pcrel_offset */
1337 HOWTO (R_AARCH64_TLSDESC_CALL
, /* type */
1339 2, /* size (0 = byte, 1 = short, 2 = long) */
1341 FALSE
, /* pc_relative */
1343 complain_overflow_dont
, /* complain_on_overflow */
1344 bfd_elf_generic_reloc
, /* special_function */
1345 "R_AARCH64_TLSDESC_CALL", /* name */
1346 FALSE
, /* partial_inplace */
1349 FALSE
), /* pcrel_offset */
1352 static reloc_howto_type
*
1353 elf64_aarch64_howto_from_type (unsigned int r_type
)
1355 if (r_type
>= R_AARCH64_static_min
&& r_type
< R_AARCH64_static_max
)
1356 return &elf64_aarch64_howto_table
[r_type
- R_AARCH64_static_min
];
1358 if (r_type
>= R_AARCH64_tls_min
&& r_type
< R_AARCH64_tls_max
)
1359 return &elf64_aarch64_tls_howto_table
[r_type
- R_AARCH64_tls_min
];
1361 if (r_type
>= R_AARCH64_tlsdesc_min
&& r_type
< R_AARCH64_tlsdesc_max
)
1362 return &elf64_aarch64_tlsdesc_howto_table
[r_type
- R_AARCH64_tlsdesc_min
];
1364 if (r_type
>= R_AARCH64_dyn_min
&& r_type
< R_AARCH64_dyn_max
)
1365 return &elf64_aarch64_howto_dynrelocs
[r_type
- R_AARCH64_dyn_min
];
1369 case R_AARCH64_NONE
:
1370 return &elf64_aarch64_howto_none
;
1373 bfd_set_error (bfd_error_bad_value
);
1378 elf64_aarch64_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*bfd_reloc
,
1379 Elf_Internal_Rela
*elf_reloc
)
1381 unsigned int r_type
;
1383 r_type
= ELF64_R_TYPE (elf_reloc
->r_info
);
1384 bfd_reloc
->howto
= elf64_aarch64_howto_from_type (r_type
);
1387 struct elf64_aarch64_reloc_map
1389 bfd_reloc_code_real_type bfd_reloc_val
;
1390 unsigned int elf_reloc_val
;
1393 /* All entries in this list must also be present in
1394 elf64_aarch64_howto_table. */
1395 static const struct elf64_aarch64_reloc_map elf64_aarch64_reloc_map
[] =
1397 {BFD_RELOC_NONE
, R_AARCH64_NONE
},
1399 /* Basic data relocations. */
1400 {BFD_RELOC_CTOR
, R_AARCH64_ABS64
},
1401 {BFD_RELOC_64
, R_AARCH64_ABS64
},
1402 {BFD_RELOC_32
, R_AARCH64_ABS32
},
1403 {BFD_RELOC_16
, R_AARCH64_ABS16
},
1404 {BFD_RELOC_64_PCREL
, R_AARCH64_PREL64
},
1405 {BFD_RELOC_32_PCREL
, R_AARCH64_PREL32
},
1406 {BFD_RELOC_16_PCREL
, R_AARCH64_PREL16
},
1408 /* Group relocations to low order bits of a 16, 32, 48 or 64 bit
1410 {BFD_RELOC_AARCH64_MOVW_G0_NC
, R_AARCH64_MOVW_UABS_G0_NC
},
1411 {BFD_RELOC_AARCH64_MOVW_G1_NC
, R_AARCH64_MOVW_UABS_G1_NC
},
1412 {BFD_RELOC_AARCH64_MOVW_G2_NC
, R_AARCH64_MOVW_UABS_G2_NC
},
1414 /* Group relocations to create high bits of a 16, 32, 48 or 64 bit
1415 signed value inline. */
1416 {BFD_RELOC_AARCH64_MOVW_G0_S
, R_AARCH64_MOVW_SABS_G0
},
1417 {BFD_RELOC_AARCH64_MOVW_G1_S
, R_AARCH64_MOVW_SABS_G1
},
1418 {BFD_RELOC_AARCH64_MOVW_G2_S
, R_AARCH64_MOVW_SABS_G2
},
1420 /* Group relocations to create high bits of a 16, 32, 48 or 64 bit
1421 unsigned value inline. */
1422 {BFD_RELOC_AARCH64_MOVW_G0
, R_AARCH64_MOVW_UABS_G0
},
1423 {BFD_RELOC_AARCH64_MOVW_G1
, R_AARCH64_MOVW_UABS_G1
},
1424 {BFD_RELOC_AARCH64_MOVW_G2
, R_AARCH64_MOVW_UABS_G2
},
1425 {BFD_RELOC_AARCH64_MOVW_G3
, R_AARCH64_MOVW_UABS_G3
},
1427 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store. */
1428 {BFD_RELOC_AARCH64_LD_LO19_PCREL
, R_AARCH64_LD_PREL_LO19
},
1429 {BFD_RELOC_AARCH64_ADR_LO21_PCREL
, R_AARCH64_ADR_PREL_LO21
},
1430 {BFD_RELOC_AARCH64_ADR_HI21_PCREL
, R_AARCH64_ADR_PREL_PG_HI21
},
1431 {BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL
, R_AARCH64_ADR_PREL_PG_HI21_NC
},
1432 {BFD_RELOC_AARCH64_ADD_LO12
, R_AARCH64_ADD_ABS_LO12_NC
},
1433 {BFD_RELOC_AARCH64_LDST8_LO12
, R_AARCH64_LDST8_ABS_LO12_NC
},
1434 {BFD_RELOC_AARCH64_LDST16_LO12
, R_AARCH64_LDST16_ABS_LO12_NC
},
1435 {BFD_RELOC_AARCH64_LDST32_LO12
, R_AARCH64_LDST32_ABS_LO12_NC
},
1436 {BFD_RELOC_AARCH64_LDST64_LO12
, R_AARCH64_LDST64_ABS_LO12_NC
},
1437 {BFD_RELOC_AARCH64_LDST128_LO12
, R_AARCH64_LDST128_ABS_LO12_NC
},
1439 /* Relocations for control-flow instructions. */
1440 {BFD_RELOC_AARCH64_TSTBR14
, R_AARCH64_TSTBR14
},
1441 {BFD_RELOC_AARCH64_BRANCH19
, R_AARCH64_CONDBR19
},
1442 {BFD_RELOC_AARCH64_JUMP26
, R_AARCH64_JUMP26
},
1443 {BFD_RELOC_AARCH64_CALL26
, R_AARCH64_CALL26
},
1445 /* Relocations for PIC. */
1446 {BFD_RELOC_AARCH64_GOT_LD_PREL19
, R_AARCH64_GOT_LD_PREL19
},
1447 {BFD_RELOC_AARCH64_ADR_GOT_PAGE
, R_AARCH64_ADR_GOT_PAGE
},
1448 {BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
, R_AARCH64_LD64_GOT_LO12_NC
},
1450 /* Relocations for TLS. */
1451 {BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
, R_AARCH64_TLSGD_ADR_PAGE21
},
1452 {BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
, R_AARCH64_TLSGD_ADD_LO12_NC
},
1453 {BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1
,
1454 R_AARCH64_TLSIE_MOVW_GOTTPREL_G1
},
1455 {BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
,
1456 R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
},
1457 {BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
,
1458 R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
},
1459 {BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
,
1460 R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
},
1461 {BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
,
1462 R_AARCH64_TLSIE_LD_GOTTPREL_PREL19
},
1463 {BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
, R_AARCH64_TLSLE_MOVW_TPREL_G2
},
1464 {BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
, R_AARCH64_TLSLE_MOVW_TPREL_G1
},
1465 {BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
,
1466 R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
},
1467 {BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0
, R_AARCH64_TLSLE_MOVW_TPREL_G0
},
1468 {BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
,
1469 R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
},
1470 {BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12
, R_AARCH64_TLSLE_ADD_TPREL_LO12
},
1471 {BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
, R_AARCH64_TLSLE_ADD_TPREL_HI12
},
1472 {BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC
,
1473 R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
},
1474 {BFD_RELOC_AARCH64_TLSDESC_LD64_PREL19
, R_AARCH64_TLSDESC_LD64_PREL19
},
1475 {BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21
, R_AARCH64_TLSDESC_ADR_PREL21
},
1476 {BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE
, R_AARCH64_TLSDESC_ADR_PAGE
},
1477 {BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC
, R_AARCH64_TLSDESC_ADD_LO12_NC
},
1478 {BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC
, R_AARCH64_TLSDESC_LD64_LO12_NC
},
1479 {BFD_RELOC_AARCH64_TLSDESC_OFF_G1
, R_AARCH64_TLSDESC_OFF_G1
},
1480 {BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC
, R_AARCH64_TLSDESC_OFF_G0_NC
},
1481 {BFD_RELOC_AARCH64_TLSDESC_LDR
, R_AARCH64_TLSDESC_LDR
},
1482 {BFD_RELOC_AARCH64_TLSDESC_ADD
, R_AARCH64_TLSDESC_ADD
},
1483 {BFD_RELOC_AARCH64_TLSDESC_CALL
, R_AARCH64_TLSDESC_CALL
},
1484 {BFD_RELOC_AARCH64_TLS_DTPMOD64
, R_AARCH64_TLS_DTPMOD64
},
1485 {BFD_RELOC_AARCH64_TLS_DTPREL64
, R_AARCH64_TLS_DTPREL64
},
1486 {BFD_RELOC_AARCH64_TLS_TPREL64
, R_AARCH64_TLS_TPREL64
},
1487 {BFD_RELOC_AARCH64_TLSDESC
, R_AARCH64_TLSDESC
},
1490 static reloc_howto_type
*
1491 elf64_aarch64_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1492 bfd_reloc_code_real_type code
)
1496 for (i
= 0; i
< ARRAY_SIZE (elf64_aarch64_reloc_map
); i
++)
1497 if (elf64_aarch64_reloc_map
[i
].bfd_reloc_val
== code
)
1498 return elf64_aarch64_howto_from_type
1499 (elf64_aarch64_reloc_map
[i
].elf_reloc_val
);
1501 bfd_set_error (bfd_error_bad_value
);
1505 static reloc_howto_type
*
1506 elf64_aarch64_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1511 for (i
= 0; i
< ARRAY_SIZE (elf64_aarch64_howto_table
); i
++)
1512 if (elf64_aarch64_howto_table
[i
].name
!= NULL
1513 && strcasecmp (elf64_aarch64_howto_table
[i
].name
, r_name
) == 0)
1514 return &elf64_aarch64_howto_table
[i
];
1519 /* Support for core dump NOTE sections. */
1522 elf64_aarch64_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1527 switch (note
->descsz
)
1532 case 408: /* sizeof(struct elf_prstatus) on Linux/arm64. */
1534 elf_tdata (abfd
)->core
->signal
1535 = bfd_get_16 (abfd
, note
->descdata
+ 12);
1538 elf_tdata (abfd
)->core
->lwpid
1539 = bfd_get_32 (abfd
, note
->descdata
+ 32);
1548 /* Make a ".reg/999" section. */
1549 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1550 size
, note
->descpos
+ offset
);
1553 #define TARGET_LITTLE_SYM bfd_elf64_littleaarch64_vec
1554 #define TARGET_LITTLE_NAME "elf64-littleaarch64"
1555 #define TARGET_BIG_SYM bfd_elf64_bigaarch64_vec
1556 #define TARGET_BIG_NAME "elf64-bigaarch64"
1558 #define elf_backend_grok_prstatus elf64_aarch64_grok_prstatus
1560 typedef unsigned long int insn32
;
1562 /* The linker script knows the section names for placement.
1563 The entry_names are used to do simple name mangling on the stubs.
1564 Given a function name, and its type, the stub can be found. The
1565 name can be changed. The only requirement is the %s be present. */
1566 #define STUB_ENTRY_NAME "__%s_veneer"
1568 /* The name of the dynamic interpreter. This is put in the .interp
1570 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
1572 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
1573 (((1 << 25) - 1) << 2)
1574 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
1577 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
1578 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
1581 aarch64_valid_for_adrp_p (bfd_vma value
, bfd_vma place
)
1583 bfd_signed_vma offset
= (bfd_signed_vma
) (PG (value
) - PG (place
)) >> 12;
1584 return offset
<= AARCH64_MAX_ADRP_IMM
&& offset
>= AARCH64_MIN_ADRP_IMM
;
1588 aarch64_valid_branch_p (bfd_vma value
, bfd_vma place
)
1590 bfd_signed_vma offset
= (bfd_signed_vma
) (value
- place
);
1591 return (offset
<= AARCH64_MAX_FWD_BRANCH_OFFSET
1592 && offset
>= AARCH64_MAX_BWD_BRANCH_OFFSET
);
1595 static const uint32_t aarch64_adrp_branch_stub
[] =
1597 0x90000010, /* adrp ip0, X */
1598 /* R_AARCH64_ADR_HI21_PCREL(X) */
1599 0x91000210, /* add ip0, ip0, :lo12:X */
1600 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
1601 0xd61f0200, /* br ip0 */
1604 static const uint32_t aarch64_long_branch_stub
[] =
1606 0x58000090, /* ldr ip0, 1f */
1607 0x10000011, /* adr ip1, #0 */
1608 0x8b110210, /* add ip0, ip0, ip1 */
1609 0xd61f0200, /* br ip0 */
1610 0x00000000, /* 1: .xword
1611 R_AARCH64_PREL64(X) + 12
1616 /* Section name for stubs is the associated section name plus this
1618 #define STUB_SUFFIX ".stub"
1620 enum elf64_aarch64_stub_type
1623 aarch64_stub_adrp_branch
,
1624 aarch64_stub_long_branch
,
1627 struct elf64_aarch64_stub_hash_entry
1629 /* Base hash table entry structure. */
1630 struct bfd_hash_entry root
;
1632 /* The stub section. */
1635 /* Offset within stub_sec of the beginning of this stub. */
1636 bfd_vma stub_offset
;
1638 /* Given the symbol's value and its section we can determine its final
1639 value when building the stubs (so the stub knows where to jump). */
1640 bfd_vma target_value
;
1641 asection
*target_section
;
1643 enum elf64_aarch64_stub_type stub_type
;
1645 /* The symbol table entry, if any, that this was derived from. */
1646 struct elf64_aarch64_link_hash_entry
*h
;
1648 /* Destination symbol type */
1649 unsigned char st_type
;
1651 /* Where this stub is being called from, or, in the case of combined
1652 stub sections, the first input section in the group. */
1655 /* The name for the local symbol at the start of this stub. The
1656 stub name in the hash table has to be unique; this does not, so
1657 it can be friendlier. */
1661 /* Used to build a map of a section. This is required for mixed-endian
1664 typedef struct elf64_elf_section_map
1669 elf64_aarch64_section_map
;
1672 typedef struct _aarch64_elf_section_data
1674 struct bfd_elf_section_data elf
;
1675 unsigned int mapcount
;
1676 unsigned int mapsize
;
1677 elf64_aarch64_section_map
*map
;
1679 _aarch64_elf_section_data
;
1681 #define elf64_aarch64_section_data(sec) \
1682 ((_aarch64_elf_section_data *) elf_section_data (sec))
1684 /* The size of the thread control block. */
1687 struct elf_aarch64_local_symbol
1689 unsigned int got_type
;
1690 bfd_signed_vma got_refcount
;
1693 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
1694 offset is from the end of the jump table and reserved entries
1697 The magic value (bfd_vma) -1 indicates that an offset has not be
1699 bfd_vma tlsdesc_got_jump_table_offset
;
1702 struct elf_aarch64_obj_tdata
1704 struct elf_obj_tdata root
;
1706 /* local symbol descriptors */
1707 struct elf_aarch64_local_symbol
*locals
;
1709 /* Zero to warn when linking objects with incompatible enum sizes. */
1710 int no_enum_size_warning
;
1712 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
1713 int no_wchar_size_warning
;
1716 #define elf_aarch64_tdata(bfd) \
1717 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
1719 #define elf64_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
1721 #define is_aarch64_elf(bfd) \
1722 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1723 && elf_tdata (bfd) != NULL \
1724 && elf_object_id (bfd) == AARCH64_ELF_DATA)
1727 elf64_aarch64_mkobject (bfd
*abfd
)
1729 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_aarch64_obj_tdata
),
1733 /* The AArch64 linker needs to keep track of the number of relocs that it
1734 decides to copy in check_relocs for each symbol. This is so that
1735 it can discard PC relative relocs if it doesn't need them when
1736 linking with -Bsymbolic. We store the information in a field
1737 extending the regular ELF linker hash table. */
1739 /* This structure keeps track of the number of relocs we have copied
1740 for a given symbol. */
1741 struct elf64_aarch64_relocs_copied
1744 struct elf64_aarch64_relocs_copied
*next
;
1745 /* A section in dynobj. */
1747 /* Number of relocs copied in this section. */
1748 bfd_size_type count
;
1749 /* Number of PC-relative relocs copied in this section. */
1750 bfd_size_type pc_count
;
1753 #define elf64_aarch64_hash_entry(ent) \
1754 ((struct elf64_aarch64_link_hash_entry *)(ent))
1756 #define GOT_UNKNOWN 0
1757 #define GOT_NORMAL 1
1758 #define GOT_TLS_GD 2
1759 #define GOT_TLS_IE 4
1760 #define GOT_TLSDESC_GD 8
1762 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
1764 /* AArch64 ELF linker hash entry. */
1765 struct elf64_aarch64_link_hash_entry
1767 struct elf_link_hash_entry root
;
1769 /* Track dynamic relocs copied for this symbol. */
1770 struct elf_dyn_relocs
*dyn_relocs
;
1772 /* Number of PC relative relocs copied for this symbol. */
1773 struct elf64_aarch64_relocs_copied
*relocs_copied
;
1775 /* Since PLT entries have variable size, we need to record the
1776 index into .got.plt instead of recomputing it from the PLT
1778 bfd_signed_vma plt_got_offset
;
1780 /* Bit mask representing the type of GOT entry(s) if any required by
1782 unsigned int got_type
;
1784 /* A pointer to the most recently used stub hash entry against this
1786 struct elf64_aarch64_stub_hash_entry
*stub_cache
;
1788 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
1789 is from the end of the jump table and reserved entries within the PLTGOT.
1791 The magic value (bfd_vma) -1 indicates that an offset has not
1793 bfd_vma tlsdesc_got_jump_table_offset
;
1797 elf64_aarch64_symbol_got_type (struct elf_link_hash_entry
*h
,
1799 unsigned long r_symndx
)
1802 return elf64_aarch64_hash_entry (h
)->got_type
;
1804 if (! elf64_aarch64_locals (abfd
))
1807 return elf64_aarch64_locals (abfd
)[r_symndx
].got_type
;
1810 /* Traverse an AArch64 ELF linker hash table. */
1811 #define elf64_aarch64_link_hash_traverse(table, func, info) \
1812 (elf_link_hash_traverse \
1814 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1817 /* Get the AArch64 elf linker hash table from a link_info structure. */
1818 #define elf64_aarch64_hash_table(info) \
1819 ((struct elf64_aarch64_link_hash_table *) ((info)->hash))
1821 #define aarch64_stub_hash_lookup(table, string, create, copy) \
1822 ((struct elf64_aarch64_stub_hash_entry *) \
1823 bfd_hash_lookup ((table), (string), (create), (copy)))
1825 /* AArch64 ELF linker hash table. */
1826 struct elf64_aarch64_link_hash_table
1828 /* The main hash table. */
1829 struct elf_link_hash_table root
;
1831 /* Nonzero to force PIC branch veneers. */
1834 /* The number of bytes in the initial entry in the PLT. */
1835 bfd_size_type plt_header_size
;
1837 /* The number of bytes in the subsequent PLT etries. */
1838 bfd_size_type plt_entry_size
;
1840 /* Short-cuts to get to dynamic linker sections. */
1844 /* Small local sym cache. */
1845 struct sym_cache sym_cache
;
1847 /* For convenience in allocate_dynrelocs. */
1850 /* The amount of space used by the reserved portion of the sgotplt
1851 section, plus whatever space is used by the jump slots. */
1852 bfd_vma sgotplt_jump_table_size
;
1854 /* The stub hash table. */
1855 struct bfd_hash_table stub_hash_table
;
1857 /* Linker stub bfd. */
1860 /* Linker call-backs. */
1861 asection
*(*add_stub_section
) (const char *, asection
*);
1862 void (*layout_sections_again
) (void);
1864 /* Array to keep track of which stub sections have been created, and
1865 information on stub grouping. */
1868 /* This is the section to which stubs in the group will be
1871 /* The stub section. */
1875 /* Assorted information used by elf64_aarch64_size_stubs. */
1876 unsigned int bfd_count
;
1878 asection
**input_list
;
1880 /* The offset into splt of the PLT entry for the TLS descriptor
1881 resolver. Special values are 0, if not necessary (or not found
1882 to be necessary yet), and -1 if needed but not determined
1884 bfd_vma tlsdesc_plt
;
1886 /* The GOT offset for the lazy trampoline. Communicated to the
1887 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
1888 indicates an offset is not allocated. */
1889 bfd_vma dt_tlsdesc_got
;
1893 /* Return non-zero if the indicated VALUE has overflowed the maximum
1894 range expressible by a unsigned number with the indicated number of
1897 static bfd_reloc_status_type
1898 aarch64_unsigned_overflow (bfd_vma value
, unsigned int bits
)
1901 if (bits
>= sizeof (bfd_vma
) * 8)
1902 return bfd_reloc_ok
;
1903 lim
= (bfd_vma
) 1 << bits
;
1905 return bfd_reloc_overflow
;
1906 return bfd_reloc_ok
;
1910 /* Return non-zero if the indicated VALUE has overflowed the maximum
1911 range expressible by an signed number with the indicated number of
1914 static bfd_reloc_status_type
1915 aarch64_signed_overflow (bfd_vma value
, unsigned int bits
)
1917 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
1920 if (bits
>= sizeof (bfd_vma
) * 8)
1921 return bfd_reloc_ok
;
1922 lim
= (bfd_signed_vma
) 1 << (bits
- 1);
1923 if (svalue
< -lim
|| svalue
>= lim
)
1924 return bfd_reloc_overflow
;
1925 return bfd_reloc_ok
;
1928 /* Create an entry in an AArch64 ELF linker hash table. */
1930 static struct bfd_hash_entry
*
1931 elf64_aarch64_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1932 struct bfd_hash_table
*table
,
1935 struct elf64_aarch64_link_hash_entry
*ret
=
1936 (struct elf64_aarch64_link_hash_entry
*) entry
;
1938 /* Allocate the structure if it has not already been allocated by a
1941 ret
= bfd_hash_allocate (table
,
1942 sizeof (struct elf64_aarch64_link_hash_entry
));
1944 return (struct bfd_hash_entry
*) ret
;
1946 /* Call the allocation method of the superclass. */
1947 ret
= ((struct elf64_aarch64_link_hash_entry
*)
1948 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
1952 ret
->dyn_relocs
= NULL
;
1953 ret
->relocs_copied
= NULL
;
1954 ret
->got_type
= GOT_UNKNOWN
;
1955 ret
->plt_got_offset
= (bfd_vma
) - 1;
1956 ret
->stub_cache
= NULL
;
1957 ret
->tlsdesc_got_jump_table_offset
= (bfd_vma
) - 1;
1960 return (struct bfd_hash_entry
*) ret
;
1963 /* Initialize an entry in the stub hash table. */
1965 static struct bfd_hash_entry
*
1966 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
1967 struct bfd_hash_table
*table
, const char *string
)
1969 /* Allocate the structure if it has not already been allocated by a
1973 entry
= bfd_hash_allocate (table
,
1975 elf64_aarch64_stub_hash_entry
));
1980 /* Call the allocation method of the superclass. */
1981 entry
= bfd_hash_newfunc (entry
, table
, string
);
1984 struct elf64_aarch64_stub_hash_entry
*eh
;
1986 /* Initialize the local fields. */
1987 eh
= (struct elf64_aarch64_stub_hash_entry
*) entry
;
1988 eh
->stub_sec
= NULL
;
1989 eh
->stub_offset
= 0;
1990 eh
->target_value
= 0;
1991 eh
->target_section
= NULL
;
1992 eh
->stub_type
= aarch64_stub_none
;
2001 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2004 elf64_aarch64_copy_indirect_symbol (struct bfd_link_info
*info
,
2005 struct elf_link_hash_entry
*dir
,
2006 struct elf_link_hash_entry
*ind
)
2008 struct elf64_aarch64_link_hash_entry
*edir
, *eind
;
2010 edir
= (struct elf64_aarch64_link_hash_entry
*) dir
;
2011 eind
= (struct elf64_aarch64_link_hash_entry
*) ind
;
2013 if (eind
->dyn_relocs
!= NULL
)
2015 if (edir
->dyn_relocs
!= NULL
)
2017 struct elf_dyn_relocs
**pp
;
2018 struct elf_dyn_relocs
*p
;
2020 /* Add reloc counts against the indirect sym to the direct sym
2021 list. Merge any entries against the same section. */
2022 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
;)
2024 struct elf_dyn_relocs
*q
;
2026 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
2027 if (q
->sec
== p
->sec
)
2029 q
->pc_count
+= p
->pc_count
;
2030 q
->count
+= p
->count
;
2037 *pp
= edir
->dyn_relocs
;
2040 edir
->dyn_relocs
= eind
->dyn_relocs
;
2041 eind
->dyn_relocs
= NULL
;
2044 if (eind
->relocs_copied
!= NULL
)
2046 if (edir
->relocs_copied
!= NULL
)
2048 struct elf64_aarch64_relocs_copied
**pp
;
2049 struct elf64_aarch64_relocs_copied
*p
;
2051 /* Add reloc counts against the indirect sym to the direct sym
2052 list. Merge any entries against the same section. */
2053 for (pp
= &eind
->relocs_copied
; (p
= *pp
) != NULL
;)
2055 struct elf64_aarch64_relocs_copied
*q
;
2057 for (q
= edir
->relocs_copied
; q
!= NULL
; q
= q
->next
)
2058 if (q
->section
== p
->section
)
2060 q
->pc_count
+= p
->pc_count
;
2061 q
->count
+= p
->count
;
2068 *pp
= edir
->relocs_copied
;
2071 edir
->relocs_copied
= eind
->relocs_copied
;
2072 eind
->relocs_copied
= NULL
;
2075 if (ind
->root
.type
== bfd_link_hash_indirect
)
2077 /* Copy over PLT info. */
2078 if (dir
->got
.refcount
<= 0)
2080 edir
->got_type
= eind
->got_type
;
2081 eind
->got_type
= GOT_UNKNOWN
;
2085 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
2088 /* Create an AArch64 elf linker hash table. */
2090 static struct bfd_link_hash_table
*
2091 elf64_aarch64_link_hash_table_create (bfd
*abfd
)
2093 struct elf64_aarch64_link_hash_table
*ret
;
2094 bfd_size_type amt
= sizeof (struct elf64_aarch64_link_hash_table
);
2096 ret
= bfd_zmalloc (amt
);
2100 if (!_bfd_elf_link_hash_table_init
2101 (&ret
->root
, abfd
, elf64_aarch64_link_hash_newfunc
,
2102 sizeof (struct elf64_aarch64_link_hash_entry
), AARCH64_ELF_DATA
))
2108 ret
->plt_header_size
= PLT_ENTRY_SIZE
;
2109 ret
->plt_entry_size
= PLT_SMALL_ENTRY_SIZE
;
2111 ret
->dt_tlsdesc_got
= (bfd_vma
) - 1;
2113 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
2114 sizeof (struct elf64_aarch64_stub_hash_entry
)))
2120 return &ret
->root
.root
;
2123 /* Free the derived linker hash table. */
2126 elf64_aarch64_hash_table_free (struct bfd_link_hash_table
*hash
)
2128 struct elf64_aarch64_link_hash_table
*ret
2129 = (struct elf64_aarch64_link_hash_table
*) hash
;
2131 bfd_hash_table_free (&ret
->stub_hash_table
);
2132 _bfd_elf_link_hash_table_free (hash
);
2136 aarch64_resolve_relocation (unsigned int r_type
, bfd_vma place
, bfd_vma value
,
2137 bfd_vma addend
, bfd_boolean weak_undef_p
)
2141 case R_AARCH64_TLSDESC_CALL
:
2142 case R_AARCH64_NONE
:
2143 case R_AARCH64_NULL
:
2146 case R_AARCH64_ADR_PREL_LO21
:
2147 case R_AARCH64_CONDBR19
:
2148 case R_AARCH64_LD_PREL_LO19
:
2149 case R_AARCH64_PREL16
:
2150 case R_AARCH64_PREL32
:
2151 case R_AARCH64_PREL64
:
2152 case R_AARCH64_TSTBR14
:
2155 value
= value
+ addend
- place
;
2158 case R_AARCH64_CALL26
:
2159 case R_AARCH64_JUMP26
:
2160 value
= value
+ addend
- place
;
2163 case R_AARCH64_ABS16
:
2164 case R_AARCH64_ABS32
:
2165 case R_AARCH64_MOVW_SABS_G0
:
2166 case R_AARCH64_MOVW_SABS_G1
:
2167 case R_AARCH64_MOVW_SABS_G2
:
2168 case R_AARCH64_MOVW_UABS_G0
:
2169 case R_AARCH64_MOVW_UABS_G0_NC
:
2170 case R_AARCH64_MOVW_UABS_G1
:
2171 case R_AARCH64_MOVW_UABS_G1_NC
:
2172 case R_AARCH64_MOVW_UABS_G2
:
2173 case R_AARCH64_MOVW_UABS_G2_NC
:
2174 case R_AARCH64_MOVW_UABS_G3
:
2175 value
= value
+ addend
;
2178 case R_AARCH64_ADR_PREL_PG_HI21
:
2179 case R_AARCH64_ADR_PREL_PG_HI21_NC
:
2182 value
= PG (value
+ addend
) - PG (place
);
2185 case R_AARCH64_GOT_LD_PREL19
:
2186 value
= value
+ addend
- place
;
2189 case R_AARCH64_ADR_GOT_PAGE
:
2190 case R_AARCH64_TLSDESC_ADR_PAGE
:
2191 case R_AARCH64_TLSGD_ADR_PAGE21
:
2192 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
2193 value
= PG (value
+ addend
) - PG (place
);
2196 case R_AARCH64_ADD_ABS_LO12_NC
:
2197 case R_AARCH64_LD64_GOT_LO12_NC
:
2198 case R_AARCH64_LDST8_ABS_LO12_NC
:
2199 case R_AARCH64_LDST16_ABS_LO12_NC
:
2200 case R_AARCH64_LDST32_ABS_LO12_NC
:
2201 case R_AARCH64_LDST64_ABS_LO12_NC
:
2202 case R_AARCH64_LDST128_ABS_LO12_NC
:
2203 case R_AARCH64_TLSDESC_ADD_LO12_NC
:
2204 case R_AARCH64_TLSDESC_ADD
:
2205 case R_AARCH64_TLSDESC_LD64_LO12_NC
:
2206 case R_AARCH64_TLSDESC_LDR
:
2207 case R_AARCH64_TLSGD_ADD_LO12_NC
:
2208 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
2209 case R_AARCH64_TLSLE_ADD_TPREL_LO12
:
2210 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
2211 value
= PG_OFFSET (value
+ addend
);
2214 case R_AARCH64_TLSLE_MOVW_TPREL_G1
:
2215 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
2216 value
= (value
+ addend
) & (bfd_vma
) 0xffff0000;
2218 case R_AARCH64_TLSLE_ADD_TPREL_HI12
:
2219 value
= (value
+ addend
) & (bfd_vma
) 0xfff000;
2222 case R_AARCH64_TLSLE_MOVW_TPREL_G0
:
2223 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
2224 value
= (value
+ addend
) & (bfd_vma
) 0xffff;
2227 case R_AARCH64_TLSLE_MOVW_TPREL_G2
:
2228 value
= (value
+ addend
) & ~(bfd_vma
) 0xffffffff;
2229 value
-= place
& ~(bfd_vma
) 0xffffffff;
2236 aarch64_relocate (unsigned int r_type
, bfd
*input_bfd
, asection
*input_section
,
2237 bfd_vma offset
, bfd_vma value
)
2239 reloc_howto_type
*howto
;
2242 howto
= elf64_aarch64_howto_from_type (r_type
);
2243 place
= (input_section
->output_section
->vma
+ input_section
->output_offset
2245 value
= aarch64_resolve_relocation (r_type
, place
, value
, 0, FALSE
);
2246 return bfd_elf_aarch64_put_addend (input_bfd
,
2247 input_section
->contents
+ offset
,
2251 static enum elf64_aarch64_stub_type
2252 aarch64_select_branch_stub (bfd_vma value
, bfd_vma place
)
2254 if (aarch64_valid_for_adrp_p (value
, place
))
2255 return aarch64_stub_adrp_branch
;
2256 return aarch64_stub_long_branch
;
2259 /* Determine the type of stub needed, if any, for a call. */
2261 static enum elf64_aarch64_stub_type
2262 aarch64_type_of_stub (struct bfd_link_info
*info
,
2263 asection
*input_sec
,
2264 const Elf_Internal_Rela
*rel
,
2265 unsigned char st_type
,
2266 struct elf64_aarch64_link_hash_entry
*hash
,
2267 bfd_vma destination
)
2270 bfd_signed_vma branch_offset
;
2271 unsigned int r_type
;
2272 struct elf64_aarch64_link_hash_table
*globals
;
2273 enum elf64_aarch64_stub_type stub_type
= aarch64_stub_none
;
2274 bfd_boolean via_plt_p
;
2276 if (st_type
!= STT_FUNC
)
2279 globals
= elf64_aarch64_hash_table (info
);
2280 via_plt_p
= (globals
->root
.splt
!= NULL
&& hash
!= NULL
2281 && hash
->root
.plt
.offset
!= (bfd_vma
) - 1);
2286 /* Determine where the call point is. */
2287 location
= (input_sec
->output_offset
2288 + input_sec
->output_section
->vma
+ rel
->r_offset
);
2290 branch_offset
= (bfd_signed_vma
) (destination
- location
);
2292 r_type
= ELF64_R_TYPE (rel
->r_info
);
2294 /* We don't want to redirect any old unconditional jump in this way,
2295 only one which is being used for a sibcall, where it is
2296 acceptable for the IP0 and IP1 registers to be clobbered. */
2297 if ((r_type
== R_AARCH64_CALL26
|| r_type
== R_AARCH64_JUMP26
)
2298 && (branch_offset
> AARCH64_MAX_FWD_BRANCH_OFFSET
2299 || branch_offset
< AARCH64_MAX_BWD_BRANCH_OFFSET
))
2301 stub_type
= aarch64_stub_long_branch
;
2307 /* Build a name for an entry in the stub hash table. */
2310 elf64_aarch64_stub_name (const asection
*input_section
,
2311 const asection
*sym_sec
,
2312 const struct elf64_aarch64_link_hash_entry
*hash
,
2313 const Elf_Internal_Rela
*rel
)
2320 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 16 + 1;
2321 stub_name
= bfd_malloc (len
);
2322 if (stub_name
!= NULL
)
2323 snprintf (stub_name
, len
, "%08x_%s+%" BFD_VMA_FMT
"x",
2324 (unsigned int) input_section
->id
,
2325 hash
->root
.root
.root
.string
,
2330 len
= 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2331 stub_name
= bfd_malloc (len
);
2332 if (stub_name
!= NULL
)
2333 snprintf (stub_name
, len
, "%08x_%x:%x+%" BFD_VMA_FMT
"x",
2334 (unsigned int) input_section
->id
,
2335 (unsigned int) sym_sec
->id
,
2336 (unsigned int) ELF64_R_SYM (rel
->r_info
),
2343 /* Look up an entry in the stub hash. Stub entries are cached because
2344 creating the stub name takes a bit of time. */
2346 static struct elf64_aarch64_stub_hash_entry
*
2347 elf64_aarch64_get_stub_entry (const asection
*input_section
,
2348 const asection
*sym_sec
,
2349 struct elf_link_hash_entry
*hash
,
2350 const Elf_Internal_Rela
*rel
,
2351 struct elf64_aarch64_link_hash_table
*htab
)
2353 struct elf64_aarch64_stub_hash_entry
*stub_entry
;
2354 struct elf64_aarch64_link_hash_entry
*h
=
2355 (struct elf64_aarch64_link_hash_entry
*) hash
;
2356 const asection
*id_sec
;
2358 if ((input_section
->flags
& SEC_CODE
) == 0)
2361 /* If this input section is part of a group of sections sharing one
2362 stub section, then use the id of the first section in the group.
2363 Stub names need to include a section id, as there may well be
2364 more than one stub used to reach say, printf, and we need to
2365 distinguish between them. */
2366 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
2368 if (h
!= NULL
&& h
->stub_cache
!= NULL
2369 && h
->stub_cache
->h
== h
&& h
->stub_cache
->id_sec
== id_sec
)
2371 stub_entry
= h
->stub_cache
;
2377 stub_name
= elf64_aarch64_stub_name (id_sec
, sym_sec
, h
, rel
);
2378 if (stub_name
== NULL
)
2381 stub_entry
= aarch64_stub_hash_lookup (&htab
->stub_hash_table
,
2382 stub_name
, FALSE
, FALSE
);
2384 h
->stub_cache
= stub_entry
;
2392 /* Add a new stub entry to the stub hash. Not all fields of the new
2393 stub entry are initialised. */
2395 static struct elf64_aarch64_stub_hash_entry
*
2396 elf64_aarch64_add_stub (const char *stub_name
,
2398 struct elf64_aarch64_link_hash_table
*htab
)
2402 struct elf64_aarch64_stub_hash_entry
*stub_entry
;
2404 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
2405 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
2406 if (stub_sec
== NULL
)
2408 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
2409 if (stub_sec
== NULL
)
2415 namelen
= strlen (link_sec
->name
);
2416 len
= namelen
+ sizeof (STUB_SUFFIX
);
2417 s_name
= bfd_alloc (htab
->stub_bfd
, len
);
2421 memcpy (s_name
, link_sec
->name
, namelen
);
2422 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
2423 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
2424 if (stub_sec
== NULL
)
2426 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
2428 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
2431 /* Enter this entry into the linker stub hash table. */
2432 stub_entry
= aarch64_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
2434 if (stub_entry
== NULL
)
2436 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
2437 section
->owner
, stub_name
);
2441 stub_entry
->stub_sec
= stub_sec
;
2442 stub_entry
->stub_offset
= 0;
2443 stub_entry
->id_sec
= link_sec
;
2449 aarch64_build_one_stub (struct bfd_hash_entry
*gen_entry
,
2450 void *in_arg ATTRIBUTE_UNUSED
)
2452 struct elf64_aarch64_stub_hash_entry
*stub_entry
;
2457 unsigned int template_size
;
2458 const uint32_t *template;
2461 /* Massage our args to the form they really have. */
2462 stub_entry
= (struct elf64_aarch64_stub_hash_entry
*) gen_entry
;
2464 stub_sec
= stub_entry
->stub_sec
;
2466 /* Make a note of the offset within the stubs for this entry. */
2467 stub_entry
->stub_offset
= stub_sec
->size
;
2468 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
2470 stub_bfd
= stub_sec
->owner
;
2472 /* This is the address of the stub destination. */
2473 sym_value
= (stub_entry
->target_value
2474 + stub_entry
->target_section
->output_offset
2475 + stub_entry
->target_section
->output_section
->vma
);
2477 if (stub_entry
->stub_type
== aarch64_stub_long_branch
)
2479 bfd_vma place
= (stub_entry
->stub_offset
+ stub_sec
->output_section
->vma
2480 + stub_sec
->output_offset
);
2482 /* See if we can relax the stub. */
2483 if (aarch64_valid_for_adrp_p (sym_value
, place
))
2484 stub_entry
->stub_type
= aarch64_select_branch_stub (sym_value
, place
);
2487 switch (stub_entry
->stub_type
)
2489 case aarch64_stub_adrp_branch
:
2490 template = aarch64_adrp_branch_stub
;
2491 template_size
= sizeof (aarch64_adrp_branch_stub
);
2493 case aarch64_stub_long_branch
:
2494 template = aarch64_long_branch_stub
;
2495 template_size
= sizeof (aarch64_long_branch_stub
);
2502 for (i
= 0; i
< (template_size
/ sizeof template[0]); i
++)
2504 bfd_putl32 (template[i
], loc
);
2508 template_size
= (template_size
+ 7) & ~7;
2509 stub_sec
->size
+= template_size
;
2511 switch (stub_entry
->stub_type
)
2513 case aarch64_stub_adrp_branch
:
2514 if (aarch64_relocate (R_AARCH64_ADR_PREL_PG_HI21
, stub_bfd
, stub_sec
,
2515 stub_entry
->stub_offset
, sym_value
))
2516 /* The stub would not have been relaxed if the offset was out
2520 _bfd_final_link_relocate
2521 (elf64_aarch64_howto_from_type (R_AARCH64_ADD_ABS_LO12_NC
),
2525 stub_entry
->stub_offset
+ 4,
2530 case aarch64_stub_long_branch
:
2531 /* We want the value relative to the address 12 bytes back from the
2533 _bfd_final_link_relocate (elf64_aarch64_howto_from_type
2534 (R_AARCH64_PREL64
), stub_bfd
, stub_sec
,
2536 stub_entry
->stub_offset
+ 16,
2546 /* As above, but don't actually build the stub. Just bump offset so
2547 we know stub section sizes. */
2550 aarch64_size_one_stub (struct bfd_hash_entry
*gen_entry
,
2551 void *in_arg ATTRIBUTE_UNUSED
)
2553 struct elf64_aarch64_stub_hash_entry
*stub_entry
;
2556 /* Massage our args to the form they really have. */
2557 stub_entry
= (struct elf64_aarch64_stub_hash_entry
*) gen_entry
;
2559 switch (stub_entry
->stub_type
)
2561 case aarch64_stub_adrp_branch
:
2562 size
= sizeof (aarch64_adrp_branch_stub
);
2564 case aarch64_stub_long_branch
:
2565 size
= sizeof (aarch64_long_branch_stub
);
2573 size
= (size
+ 7) & ~7;
2574 stub_entry
->stub_sec
->size
+= size
;
2578 /* External entry points for sizing and building linker stubs. */
2580 /* Set up various things so that we can make a list of input sections
2581 for each output section included in the link. Returns -1 on error,
2582 0 when no stubs will be needed, and 1 on success. */
2585 elf64_aarch64_setup_section_lists (bfd
*output_bfd
,
2586 struct bfd_link_info
*info
)
2589 unsigned int bfd_count
;
2590 int top_id
, top_index
;
2592 asection
**input_list
, **list
;
2594 struct elf64_aarch64_link_hash_table
*htab
=
2595 elf64_aarch64_hash_table (info
);
2597 if (!is_elf_hash_table (htab
))
2600 /* Count the number of input BFDs and find the top input section id. */
2601 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
2602 input_bfd
!= NULL
; input_bfd
= input_bfd
->link_next
)
2605 for (section
= input_bfd
->sections
;
2606 section
!= NULL
; section
= section
->next
)
2608 if (top_id
< section
->id
)
2609 top_id
= section
->id
;
2612 htab
->bfd_count
= bfd_count
;
2614 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
2615 htab
->stub_group
= bfd_zmalloc (amt
);
2616 if (htab
->stub_group
== NULL
)
2619 /* We can't use output_bfd->section_count here to find the top output
2620 section index as some sections may have been removed, and
2621 _bfd_strip_section_from_output doesn't renumber the indices. */
2622 for (section
= output_bfd
->sections
, top_index
= 0;
2623 section
!= NULL
; section
= section
->next
)
2625 if (top_index
< section
->index
)
2626 top_index
= section
->index
;
2629 htab
->top_index
= top_index
;
2630 amt
= sizeof (asection
*) * (top_index
+ 1);
2631 input_list
= bfd_malloc (amt
);
2632 htab
->input_list
= input_list
;
2633 if (input_list
== NULL
)
2636 /* For sections we aren't interested in, mark their entries with a
2637 value we can check later. */
2638 list
= input_list
+ top_index
;
2640 *list
= bfd_abs_section_ptr
;
2641 while (list
-- != input_list
);
2643 for (section
= output_bfd
->sections
;
2644 section
!= NULL
; section
= section
->next
)
2646 if ((section
->flags
& SEC_CODE
) != 0)
2647 input_list
[section
->index
] = NULL
;
2653 /* Used by elf64_aarch64_next_input_section and group_sections. */
2654 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2656 /* The linker repeatedly calls this function for each input section,
2657 in the order that input sections are linked into output sections.
2658 Build lists of input sections to determine groupings between which
2659 we may insert linker stubs. */
2662 elf64_aarch64_next_input_section (struct bfd_link_info
*info
, asection
*isec
)
2664 struct elf64_aarch64_link_hash_table
*htab
=
2665 elf64_aarch64_hash_table (info
);
2667 if (isec
->output_section
->index
<= htab
->top_index
)
2669 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
2671 if (*list
!= bfd_abs_section_ptr
)
2673 /* Steal the link_sec pointer for our list. */
2674 /* This happens to make the list in reverse order,
2675 which is what we want. */
2676 PREV_SEC (isec
) = *list
;
2682 /* See whether we can group stub sections together. Grouping stub
2683 sections may result in fewer stubs. More importantly, we need to
2684 put all .init* and .fini* stubs at the beginning of the .init or
2685 .fini output sections respectively, because glibc splits the
2686 _init and _fini functions into multiple parts. Putting a stub in
2687 the middle of a function is not a good idea. */
2690 group_sections (struct elf64_aarch64_link_hash_table
*htab
,
2691 bfd_size_type stub_group_size
,
2692 bfd_boolean stubs_always_before_branch
)
2694 asection
**list
= htab
->input_list
+ htab
->top_index
;
2698 asection
*tail
= *list
;
2700 if (tail
== bfd_abs_section_ptr
)
2703 while (tail
!= NULL
)
2707 bfd_size_type total
;
2711 while ((prev
= PREV_SEC (curr
)) != NULL
2712 && ((total
+= curr
->output_offset
- prev
->output_offset
)
2716 /* OK, the size from the start of CURR to the end is less
2717 than stub_group_size and thus can be handled by one stub
2718 section. (Or the tail section is itself larger than
2719 stub_group_size, in which case we may be toast.)
2720 We should really be keeping track of the total size of
2721 stubs added here, as stubs contribute to the final output
2725 prev
= PREV_SEC (tail
);
2726 /* Set up this stub group. */
2727 htab
->stub_group
[tail
->id
].link_sec
= curr
;
2729 while (tail
!= curr
&& (tail
= prev
) != NULL
);
2731 /* But wait, there's more! Input sections up to stub_group_size
2732 bytes before the stub section can be handled by it too. */
2733 if (!stubs_always_before_branch
)
2737 && ((total
+= tail
->output_offset
- prev
->output_offset
)
2741 prev
= PREV_SEC (tail
);
2742 htab
->stub_group
[tail
->id
].link_sec
= curr
;
2748 while (list
-- != htab
->input_list
);
2750 free (htab
->input_list
);
2755 /* Determine and set the size of the stub section for a final link.
2757 The basic idea here is to examine all the relocations looking for
2758 PC-relative calls to a target that is unreachable with a "bl"
2762 elf64_aarch64_size_stubs (bfd
*output_bfd
,
2764 struct bfd_link_info
*info
,
2765 bfd_signed_vma group_size
,
2766 asection
* (*add_stub_section
) (const char *,
2768 void (*layout_sections_again
) (void))
2770 bfd_size_type stub_group_size
;
2771 bfd_boolean stubs_always_before_branch
;
2772 bfd_boolean stub_changed
= 0;
2773 struct elf64_aarch64_link_hash_table
*htab
= elf64_aarch64_hash_table (info
);
2775 /* Propagate mach to stub bfd, because it may not have been
2776 finalized when we created stub_bfd. */
2777 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
2778 bfd_get_mach (output_bfd
));
2780 /* Stash our params away. */
2781 htab
->stub_bfd
= stub_bfd
;
2782 htab
->add_stub_section
= add_stub_section
;
2783 htab
->layout_sections_again
= layout_sections_again
;
2784 stubs_always_before_branch
= group_size
< 0;
2786 stub_group_size
= -group_size
;
2788 stub_group_size
= group_size
;
2790 if (stub_group_size
== 1)
2792 /* Default values. */
2793 /* Aarch64 branch range is +-128MB. The value used is 1MB less. */
2794 stub_group_size
= 127 * 1024 * 1024;
2797 group_sections (htab
, stub_group_size
, stubs_always_before_branch
);
2802 unsigned int bfd_indx
;
2805 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
2806 input_bfd
!= NULL
; input_bfd
= input_bfd
->link_next
, bfd_indx
++)
2808 Elf_Internal_Shdr
*symtab_hdr
;
2810 Elf_Internal_Sym
*local_syms
= NULL
;
2812 /* We'll need the symbol table in a second. */
2813 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2814 if (symtab_hdr
->sh_info
== 0)
2817 /* Walk over each section attached to the input bfd. */
2818 for (section
= input_bfd
->sections
;
2819 section
!= NULL
; section
= section
->next
)
2821 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
2823 /* If there aren't any relocs, then there's nothing more
2825 if ((section
->flags
& SEC_RELOC
) == 0
2826 || section
->reloc_count
== 0
2827 || (section
->flags
& SEC_CODE
) == 0)
2830 /* If this section is a link-once section that will be
2831 discarded, then don't create any stubs. */
2832 if (section
->output_section
== NULL
2833 || section
->output_section
->owner
!= output_bfd
)
2836 /* Get the relocs. */
2838 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
2839 NULL
, info
->keep_memory
);
2840 if (internal_relocs
== NULL
)
2841 goto error_ret_free_local
;
2843 /* Now examine each relocation. */
2844 irela
= internal_relocs
;
2845 irelaend
= irela
+ section
->reloc_count
;
2846 for (; irela
< irelaend
; irela
++)
2848 unsigned int r_type
, r_indx
;
2849 enum elf64_aarch64_stub_type stub_type
;
2850 struct elf64_aarch64_stub_hash_entry
*stub_entry
;
2853 bfd_vma destination
;
2854 struct elf64_aarch64_link_hash_entry
*hash
;
2855 const char *sym_name
;
2857 const asection
*id_sec
;
2858 unsigned char st_type
;
2861 r_type
= ELF64_R_TYPE (irela
->r_info
);
2862 r_indx
= ELF64_R_SYM (irela
->r_info
);
2864 if (r_type
>= (unsigned int) R_AARCH64_end
)
2866 bfd_set_error (bfd_error_bad_value
);
2867 error_ret_free_internal
:
2868 if (elf_section_data (section
)->relocs
== NULL
)
2869 free (internal_relocs
);
2870 goto error_ret_free_local
;
2873 /* Only look for stubs on unconditional branch and
2874 branch and link instructions. */
2875 if (r_type
!= (unsigned int) R_AARCH64_CALL26
2876 && r_type
!= (unsigned int) R_AARCH64_JUMP26
)
2879 /* Now determine the call target, its name, value,
2886 if (r_indx
< symtab_hdr
->sh_info
)
2888 /* It's a local symbol. */
2889 Elf_Internal_Sym
*sym
;
2890 Elf_Internal_Shdr
*hdr
;
2892 if (local_syms
== NULL
)
2895 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
2896 if (local_syms
== NULL
)
2898 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
2899 symtab_hdr
->sh_info
, 0,
2901 if (local_syms
== NULL
)
2902 goto error_ret_free_internal
;
2905 sym
= local_syms
+ r_indx
;
2906 hdr
= elf_elfsections (input_bfd
)[sym
->st_shndx
];
2907 sym_sec
= hdr
->bfd_section
;
2909 /* This is an undefined symbol. It can never
2913 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
2914 sym_value
= sym
->st_value
;
2915 destination
= (sym_value
+ irela
->r_addend
2916 + sym_sec
->output_offset
2917 + sym_sec
->output_section
->vma
);
2918 st_type
= ELF_ST_TYPE (sym
->st_info
);
2920 = bfd_elf_string_from_elf_section (input_bfd
,
2921 symtab_hdr
->sh_link
,
2928 e_indx
= r_indx
- symtab_hdr
->sh_info
;
2929 hash
= ((struct elf64_aarch64_link_hash_entry
*)
2930 elf_sym_hashes (input_bfd
)[e_indx
]);
2932 while (hash
->root
.root
.type
== bfd_link_hash_indirect
2933 || hash
->root
.root
.type
== bfd_link_hash_warning
)
2934 hash
= ((struct elf64_aarch64_link_hash_entry
*)
2935 hash
->root
.root
.u
.i
.link
);
2937 if (hash
->root
.root
.type
== bfd_link_hash_defined
2938 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
2940 struct elf64_aarch64_link_hash_table
*globals
=
2941 elf64_aarch64_hash_table (info
);
2942 sym_sec
= hash
->root
.root
.u
.def
.section
;
2943 sym_value
= hash
->root
.root
.u
.def
.value
;
2944 /* For a destination in a shared library,
2945 use the PLT stub as target address to
2946 decide whether a branch stub is
2948 if (globals
->root
.splt
!= NULL
&& hash
!= NULL
2949 && hash
->root
.plt
.offset
!= (bfd_vma
) - 1)
2951 sym_sec
= globals
->root
.splt
;
2952 sym_value
= hash
->root
.plt
.offset
;
2953 if (sym_sec
->output_section
!= NULL
)
2954 destination
= (sym_value
2955 + sym_sec
->output_offset
2957 sym_sec
->output_section
->vma
);
2959 else if (sym_sec
->output_section
!= NULL
)
2960 destination
= (sym_value
+ irela
->r_addend
2961 + sym_sec
->output_offset
2962 + sym_sec
->output_section
->vma
);
2964 else if (hash
->root
.root
.type
== bfd_link_hash_undefined
2965 || (hash
->root
.root
.type
2966 == bfd_link_hash_undefweak
))
2968 /* For a shared library, use the PLT stub as
2969 target address to decide whether a long
2970 branch stub is needed.
2971 For absolute code, they cannot be handled. */
2972 struct elf64_aarch64_link_hash_table
*globals
=
2973 elf64_aarch64_hash_table (info
);
2975 if (globals
->root
.splt
!= NULL
&& hash
!= NULL
2976 && hash
->root
.plt
.offset
!= (bfd_vma
) - 1)
2978 sym_sec
= globals
->root
.splt
;
2979 sym_value
= hash
->root
.plt
.offset
;
2980 if (sym_sec
->output_section
!= NULL
)
2981 destination
= (sym_value
2982 + sym_sec
->output_offset
2984 sym_sec
->output_section
->vma
);
2991 bfd_set_error (bfd_error_bad_value
);
2992 goto error_ret_free_internal
;
2994 st_type
= ELF_ST_TYPE (hash
->root
.type
);
2995 sym_name
= hash
->root
.root
.root
.string
;
2998 /* Determine what (if any) linker stub is needed. */
2999 stub_type
= aarch64_type_of_stub
3000 (info
, section
, irela
, st_type
, hash
, destination
);
3001 if (stub_type
== aarch64_stub_none
)
3004 /* Support for grouping stub sections. */
3005 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
3007 /* Get the name of this stub. */
3008 stub_name
= elf64_aarch64_stub_name (id_sec
, sym_sec
, hash
,
3011 goto error_ret_free_internal
;
3014 aarch64_stub_hash_lookup (&htab
->stub_hash_table
,
3015 stub_name
, FALSE
, FALSE
);
3016 if (stub_entry
!= NULL
)
3018 /* The proper stub has already been created. */
3023 stub_entry
= elf64_aarch64_add_stub (stub_name
, section
,
3025 if (stub_entry
== NULL
)
3028 goto error_ret_free_internal
;
3031 stub_entry
->target_value
= sym_value
;
3032 stub_entry
->target_section
= sym_sec
;
3033 stub_entry
->stub_type
= stub_type
;
3034 stub_entry
->h
= hash
;
3035 stub_entry
->st_type
= st_type
;
3037 if (sym_name
== NULL
)
3038 sym_name
= "unnamed";
3039 len
= sizeof (STUB_ENTRY_NAME
) + strlen (sym_name
);
3040 stub_entry
->output_name
= bfd_alloc (htab
->stub_bfd
, len
);
3041 if (stub_entry
->output_name
== NULL
)
3044 goto error_ret_free_internal
;
3047 snprintf (stub_entry
->output_name
, len
, STUB_ENTRY_NAME
,
3050 stub_changed
= TRUE
;
3053 /* We're done with the internal relocs, free them. */
3054 if (elf_section_data (section
)->relocs
== NULL
)
3055 free (internal_relocs
);
3062 /* OK, we've added some stubs. Find out the new size of the
3064 for (stub_sec
= htab
->stub_bfd
->sections
;
3065 stub_sec
!= NULL
; stub_sec
= stub_sec
->next
)
3068 bfd_hash_traverse (&htab
->stub_hash_table
, aarch64_size_one_stub
, htab
);
3070 /* Ask the linker to do its stuff. */
3071 (*htab
->layout_sections_again
) ();
3072 stub_changed
= FALSE
;
3077 error_ret_free_local
:
3081 /* Build all the stubs associated with the current output file. The
3082 stubs are kept in a hash table attached to the main linker hash
3083 table. We also set up the .plt entries for statically linked PIC
3084 functions here. This function is called via aarch64_elf_finish in the
3088 elf64_aarch64_build_stubs (struct bfd_link_info
*info
)
3091 struct bfd_hash_table
*table
;
3092 struct elf64_aarch64_link_hash_table
*htab
;
3094 htab
= elf64_aarch64_hash_table (info
);
3096 for (stub_sec
= htab
->stub_bfd
->sections
;
3097 stub_sec
!= NULL
; stub_sec
= stub_sec
->next
)
3101 /* Ignore non-stub sections. */
3102 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
3105 /* Allocate memory to hold the linker stubs. */
3106 size
= stub_sec
->size
;
3107 stub_sec
->contents
= bfd_zalloc (htab
->stub_bfd
, size
);
3108 if (stub_sec
->contents
== NULL
&& size
!= 0)
3113 /* Build the stubs as directed by the stub hash table. */
3114 table
= &htab
->stub_hash_table
;
3115 bfd_hash_traverse (table
, aarch64_build_one_stub
, info
);
3121 /* Add an entry to the code/data map for section SEC. */
3124 elf64_aarch64_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
3126 struct _aarch64_elf_section_data
*sec_data
=
3127 elf64_aarch64_section_data (sec
);
3128 unsigned int newidx
;
3130 if (sec_data
->map
== NULL
)
3132 sec_data
->map
= bfd_malloc (sizeof (elf64_aarch64_section_map
));
3133 sec_data
->mapcount
= 0;
3134 sec_data
->mapsize
= 1;
3137 newidx
= sec_data
->mapcount
++;
3139 if (sec_data
->mapcount
> sec_data
->mapsize
)
3141 sec_data
->mapsize
*= 2;
3142 sec_data
->map
= bfd_realloc_or_free
3143 (sec_data
->map
, sec_data
->mapsize
* sizeof (elf64_aarch64_section_map
));
3148 sec_data
->map
[newidx
].vma
= vma
;
3149 sec_data
->map
[newidx
].type
= type
;
3154 /* Initialise maps of insn/data for input BFDs. */
3156 bfd_elf64_aarch64_init_maps (bfd
*abfd
)
3158 Elf_Internal_Sym
*isymbuf
;
3159 Elf_Internal_Shdr
*hdr
;
3160 unsigned int i
, localsyms
;
3162 /* Make sure that we are dealing with an AArch64 elf binary. */
3163 if (!is_aarch64_elf (abfd
))
3166 if ((abfd
->flags
& DYNAMIC
) != 0)
3169 hdr
= &elf_symtab_hdr (abfd
);
3170 localsyms
= hdr
->sh_info
;
3172 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
3173 should contain the number of local symbols, which should come before any
3174 global symbols. Mapping symbols are always local. */
3175 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
, NULL
);
3177 /* No internal symbols read? Skip this BFD. */
3178 if (isymbuf
== NULL
)
3181 for (i
= 0; i
< localsyms
; i
++)
3183 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
3184 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3187 if (sec
!= NULL
&& ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
3189 name
= bfd_elf_string_from_elf_section (abfd
,
3193 if (bfd_is_aarch64_special_symbol_name
3194 (name
, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP
))
3195 elf64_aarch64_section_map_add (sec
, name
[1], isym
->st_value
);
3200 /* Set option values needed during linking. */
3202 bfd_elf64_aarch64_set_options (struct bfd
*output_bfd
,
3203 struct bfd_link_info
*link_info
,
3205 int no_wchar_warn
, int pic_veneer
)
3207 struct elf64_aarch64_link_hash_table
*globals
;
3209 globals
= elf64_aarch64_hash_table (link_info
);
3210 globals
->pic_veneer
= pic_veneer
;
3212 BFD_ASSERT (is_aarch64_elf (output_bfd
));
3213 elf_aarch64_tdata (output_bfd
)->no_enum_size_warning
= no_enum_warn
;
3214 elf_aarch64_tdata (output_bfd
)->no_wchar_size_warning
= no_wchar_warn
;
3217 #define MASK(n) ((1u << (n)) - 1)
3219 /* Decode the 26-bit offset of unconditional branch. */
3220 static inline uint32_t
3221 decode_branch_ofs_26 (uint32_t insn
)
3223 return insn
& MASK (26);
3226 /* Decode the 19-bit offset of conditional branch and compare & branch. */
3227 static inline uint32_t
3228 decode_cond_branch_ofs_19 (uint32_t insn
)
3230 return (insn
>> 5) & MASK (19);
3233 /* Decode the 19-bit offset of load literal. */
3234 static inline uint32_t
3235 decode_ld_lit_ofs_19 (uint32_t insn
)
3237 return (insn
>> 5) & MASK (19);
3240 /* Decode the 14-bit offset of test & branch. */
3241 static inline uint32_t
3242 decode_tst_branch_ofs_14 (uint32_t insn
)
3244 return (insn
>> 5) & MASK (14);
3247 /* Decode the 16-bit imm of move wide. */
3248 static inline uint32_t
3249 decode_movw_imm (uint32_t insn
)
3251 return (insn
>> 5) & MASK (16);
3254 /* Decode the 21-bit imm of adr. */
3255 static inline uint32_t
3256 decode_adr_imm (uint32_t insn
)
3258 return ((insn
>> 29) & MASK (2)) | ((insn
>> 3) & (MASK (19) << 2));
3261 /* Decode the 12-bit imm of add immediate. */
3262 static inline uint32_t
3263 decode_add_imm (uint32_t insn
)
3265 return (insn
>> 10) & MASK (12);
3269 /* Encode the 26-bit offset of unconditional branch. */
3270 static inline uint32_t
3271 reencode_branch_ofs_26 (uint32_t insn
, uint32_t ofs
)
3273 return (insn
& ~MASK (26)) | (ofs
& MASK (26));
3276 /* Encode the 19-bit offset of conditional branch and compare & branch. */
3277 static inline uint32_t
3278 reencode_cond_branch_ofs_19 (uint32_t insn
, uint32_t ofs
)
3280 return (insn
& ~(MASK (19) << 5)) | ((ofs
& MASK (19)) << 5);
3283 /* Decode the 19-bit offset of load literal. */
3284 static inline uint32_t
3285 reencode_ld_lit_ofs_19 (uint32_t insn
, uint32_t ofs
)
3287 return (insn
& ~(MASK (19) << 5)) | ((ofs
& MASK (19)) << 5);
3290 /* Encode the 14-bit offset of test & branch. */
3291 static inline uint32_t
3292 reencode_tst_branch_ofs_14 (uint32_t insn
, uint32_t ofs
)
3294 return (insn
& ~(MASK (14) << 5)) | ((ofs
& MASK (14)) << 5);
3297 /* Reencode the imm field of move wide. */
3298 static inline uint32_t
3299 reencode_movw_imm (uint32_t insn
, uint32_t imm
)
3301 return (insn
& ~(MASK (16) << 5)) | ((imm
& MASK (16)) << 5);
3304 /* Reencode the imm field of adr. */
3305 static inline uint32_t
3306 reencode_adr_imm (uint32_t insn
, uint32_t imm
)
3308 return (insn
& ~((MASK (2) << 29) | (MASK (19) << 5)))
3309 | ((imm
& MASK (2)) << 29) | ((imm
& (MASK (19) << 2)) << 3);
3312 /* Reencode the imm field of ld/st pos immediate. */
3313 static inline uint32_t
3314 reencode_ldst_pos_imm (uint32_t insn
, uint32_t imm
)
3316 return (insn
& ~(MASK (12) << 10)) | ((imm
& MASK (12)) << 10);
3319 /* Reencode the imm field of add immediate. */
3320 static inline uint32_t
3321 reencode_add_imm (uint32_t insn
, uint32_t imm
)
3323 return (insn
& ~(MASK (12) << 10)) | ((imm
& MASK (12)) << 10);
3326 /* Reencode mov[zn] to movz. */
3327 static inline uint32_t
3328 reencode_movzn_to_movz (uint32_t opcode
)
3330 return opcode
| (1 << 30);
3333 /* Reencode mov[zn] to movn. */
3334 static inline uint32_t
3335 reencode_movzn_to_movn (uint32_t opcode
)
3337 return opcode
& ~(1 << 30);
3340 /* Insert the addend/value into the instruction or data object being
3342 static bfd_reloc_status_type
3343 bfd_elf_aarch64_put_addend (bfd
*abfd
,
3345 reloc_howto_type
*howto
, bfd_signed_vma addend
)
3347 bfd_reloc_status_type status
= bfd_reloc_ok
;
3348 bfd_signed_vma old_addend
= addend
;
3352 size
= bfd_get_reloc_size (howto
);
3356 contents
= bfd_get_16 (abfd
, address
);
3359 if (howto
->src_mask
!= 0xffffffff)
3360 /* Must be 32-bit instruction, always little-endian. */
3361 contents
= bfd_getl32 (address
);
3363 /* Must be 32-bit data (endianness dependent). */
3364 contents
= bfd_get_32 (abfd
, address
);
3367 contents
= bfd_get_64 (abfd
, address
);
3373 switch (howto
->complain_on_overflow
)
3375 case complain_overflow_dont
:
3377 case complain_overflow_signed
:
3378 status
= aarch64_signed_overflow (addend
,
3379 howto
->bitsize
+ howto
->rightshift
);
3381 case complain_overflow_unsigned
:
3382 status
= aarch64_unsigned_overflow (addend
,
3383 howto
->bitsize
+ howto
->rightshift
);
3385 case complain_overflow_bitfield
:
3390 addend
>>= howto
->rightshift
;
3392 switch (howto
->type
)
3394 case R_AARCH64_JUMP26
:
3395 case R_AARCH64_CALL26
:
3396 contents
= reencode_branch_ofs_26 (contents
, addend
);
3399 case R_AARCH64_CONDBR19
:
3400 contents
= reencode_cond_branch_ofs_19 (contents
, addend
);
3403 case R_AARCH64_TSTBR14
:
3404 contents
= reencode_tst_branch_ofs_14 (contents
, addend
);
3407 case R_AARCH64_LD_PREL_LO19
:
3408 case R_AARCH64_GOT_LD_PREL19
:
3409 if (old_addend
& ((1 << howto
->rightshift
) - 1))
3410 return bfd_reloc_overflow
;
3411 contents
= reencode_ld_lit_ofs_19 (contents
, addend
);
3414 case R_AARCH64_TLSDESC_CALL
:
3417 case R_AARCH64_TLSGD_ADR_PAGE21
:
3418 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
3419 case R_AARCH64_TLSDESC_ADR_PAGE
:
3420 case R_AARCH64_ADR_GOT_PAGE
:
3421 case R_AARCH64_ADR_PREL_LO21
:
3422 case R_AARCH64_ADR_PREL_PG_HI21
:
3423 case R_AARCH64_ADR_PREL_PG_HI21_NC
:
3424 contents
= reencode_adr_imm (contents
, addend
);
3427 case R_AARCH64_TLSGD_ADD_LO12_NC
:
3428 case R_AARCH64_TLSLE_ADD_TPREL_LO12
:
3429 case R_AARCH64_TLSLE_ADD_TPREL_HI12
:
3430 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
3431 case R_AARCH64_TLSDESC_ADD_LO12_NC
:
3432 case R_AARCH64_ADD_ABS_LO12_NC
:
3433 /* Corresponds to: add rd, rn, #uimm12 to provide the low order
3434 12 bits of the page offset following
3435 R_AARCH64_ADR_PREL_PG_HI21 which computes the
3436 (pc-relative) page base. */
3437 contents
= reencode_add_imm (contents
, addend
);
3440 case R_AARCH64_LDST8_ABS_LO12_NC
:
3441 case R_AARCH64_LDST16_ABS_LO12_NC
:
3442 case R_AARCH64_LDST32_ABS_LO12_NC
:
3443 case R_AARCH64_LDST64_ABS_LO12_NC
:
3444 case R_AARCH64_LDST128_ABS_LO12_NC
:
3445 case R_AARCH64_TLSDESC_LD64_LO12_NC
:
3446 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
3447 case R_AARCH64_LD64_GOT_LO12_NC
:
3448 if (old_addend
& ((1 << howto
->rightshift
) - 1))
3449 return bfd_reloc_overflow
;
3450 /* Used for ldr*|str* rt, [rn, #uimm12] to provide the low order
3451 12 bits of the page offset following R_AARCH64_ADR_PREL_PG_HI21
3452 which computes the (pc-relative) page base. */
3453 contents
= reencode_ldst_pos_imm (contents
, addend
);
3456 /* Group relocations to create high bits of a 16, 32, 48 or 64
3457 bit signed data or abs address inline. Will change
3458 instruction to MOVN or MOVZ depending on sign of calculated
3461 case R_AARCH64_TLSLE_MOVW_TPREL_G2
:
3462 case R_AARCH64_TLSLE_MOVW_TPREL_G1
:
3463 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
3464 case R_AARCH64_TLSLE_MOVW_TPREL_G0
:
3465 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
3466 case R_AARCH64_MOVW_SABS_G0
:
3467 case R_AARCH64_MOVW_SABS_G1
:
3468 case R_AARCH64_MOVW_SABS_G2
:
3469 /* NOTE: We can only come here with movz or movn. */
3472 /* Force use of MOVN. */
3474 contents
= reencode_movzn_to_movn (contents
);
3478 /* Force use of MOVZ. */
3479 contents
= reencode_movzn_to_movz (contents
);
3483 /* Group relocations to create a 16, 32, 48 or 64 bit unsigned
3484 data or abs address inline. */
3486 case R_AARCH64_MOVW_UABS_G0
:
3487 case R_AARCH64_MOVW_UABS_G0_NC
:
3488 case R_AARCH64_MOVW_UABS_G1
:
3489 case R_AARCH64_MOVW_UABS_G1_NC
:
3490 case R_AARCH64_MOVW_UABS_G2
:
3491 case R_AARCH64_MOVW_UABS_G2_NC
:
3492 case R_AARCH64_MOVW_UABS_G3
:
3493 contents
= reencode_movw_imm (contents
, addend
);
3497 /* Repack simple data */
3498 if (howto
->dst_mask
& (howto
->dst_mask
+ 1))
3499 return bfd_reloc_notsupported
;
3501 contents
= ((contents
& ~howto
->dst_mask
) | (addend
& howto
->dst_mask
));
3508 bfd_put_16 (abfd
, contents
, address
);
3511 if (howto
->dst_mask
!= 0xffffffff)
3512 /* must be 32-bit instruction, always little-endian */
3513 bfd_putl32 (contents
, address
);
3515 /* must be 32-bit data (endianness dependent) */
3516 bfd_put_32 (abfd
, contents
, address
);
3519 bfd_put_64 (abfd
, contents
, address
);
3529 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry
*h
,
3530 struct elf64_aarch64_link_hash_table
3531 *globals
, struct bfd_link_info
*info
,
3532 bfd_vma value
, bfd
*output_bfd
,
3533 bfd_boolean
*unresolved_reloc_p
)
3535 bfd_vma off
= (bfd_vma
) - 1;
3536 asection
*basegot
= globals
->root
.sgot
;
3537 bfd_boolean dyn
= globals
->root
.dynamic_sections_created
;
3541 off
= h
->got
.offset
;
3542 BFD_ASSERT (off
!= (bfd_vma
) - 1);
3543 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
3545 && SYMBOL_REFERENCES_LOCAL (info
, h
))
3546 || (ELF_ST_VISIBILITY (h
->other
)
3547 && h
->root
.type
== bfd_link_hash_undefweak
))
3549 /* This is actually a static link, or it is a -Bsymbolic link
3550 and the symbol is defined locally. We must initialize this
3551 entry in the global offset table. Since the offset must
3552 always be a multiple of 8, we use the least significant bit
3553 to record whether we have initialized it already.
3554 When doing a dynamic link, we create a .rel(a).got relocation
3555 entry to initialize the value. This is done in the
3556 finish_dynamic_symbol routine. */
3561 bfd_put_64 (output_bfd
, value
, basegot
->contents
+ off
);
3566 *unresolved_reloc_p
= FALSE
;
3568 off
= off
+ basegot
->output_section
->vma
+ basegot
->output_offset
;
3574 /* Change R_TYPE to a more efficient access model where possible,
3575 return the new reloc type. */
3578 aarch64_tls_transition_without_check (unsigned int r_type
,
3579 struct elf_link_hash_entry
*h
)
3581 bfd_boolean is_local
= h
== NULL
;
3584 case R_AARCH64_TLSGD_ADR_PAGE21
:
3585 case R_AARCH64_TLSDESC_ADR_PAGE
:
3587 ? R_AARCH64_TLSLE_MOVW_TPREL_G1
: R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
;
3589 case R_AARCH64_TLSGD_ADD_LO12_NC
:
3590 case R_AARCH64_TLSDESC_LD64_LO12_NC
:
3592 ? R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
3593 : R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
;
3595 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
3596 return is_local
? R_AARCH64_TLSLE_MOVW_TPREL_G1
: r_type
;
3598 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
3599 return is_local
? R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
: r_type
;
3601 case R_AARCH64_TLSDESC_ADD_LO12_NC
:
3602 case R_AARCH64_TLSDESC_CALL
:
3603 /* Instructions with these relocations will become NOPs. */
3604 return R_AARCH64_NONE
;
3611 aarch64_reloc_got_type (unsigned int r_type
)
3615 case R_AARCH64_LD64_GOT_LO12_NC
:
3616 case R_AARCH64_ADR_GOT_PAGE
:
3617 case R_AARCH64_GOT_LD_PREL19
:
3620 case R_AARCH64_TLSGD_ADR_PAGE21
:
3621 case R_AARCH64_TLSGD_ADD_LO12_NC
:
3624 case R_AARCH64_TLSDESC_ADD_LO12_NC
:
3625 case R_AARCH64_TLSDESC_ADR_PAGE
:
3626 case R_AARCH64_TLSDESC_CALL
:
3627 case R_AARCH64_TLSDESC_LD64_LO12_NC
:
3628 return GOT_TLSDESC_GD
;
3630 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
3631 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
3634 case R_AARCH64_TLSLE_ADD_TPREL_HI12
:
3635 case R_AARCH64_TLSLE_ADD_TPREL_LO12
:
3636 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
3637 case R_AARCH64_TLSLE_MOVW_TPREL_G0
:
3638 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
3639 case R_AARCH64_TLSLE_MOVW_TPREL_G1
:
3640 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
3641 case R_AARCH64_TLSLE_MOVW_TPREL_G2
:
3648 aarch64_can_relax_tls (bfd
*input_bfd
,
3649 struct bfd_link_info
*info
,
3650 unsigned int r_type
,
3651 struct elf_link_hash_entry
*h
,
3652 unsigned long r_symndx
)
3654 unsigned int symbol_got_type
;
3655 unsigned int reloc_got_type
;
3657 if (! IS_AARCH64_TLS_RELOC (r_type
))
3660 symbol_got_type
= elf64_aarch64_symbol_got_type (h
, input_bfd
, r_symndx
);
3661 reloc_got_type
= aarch64_reloc_got_type (r_type
);
3663 if (symbol_got_type
== GOT_TLS_IE
&& GOT_TLS_GD_ANY_P (reloc_got_type
))
3669 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
)
3676 aarch64_tls_transition (bfd
*input_bfd
,
3677 struct bfd_link_info
*info
,
3678 unsigned int r_type
,
3679 struct elf_link_hash_entry
*h
,
3680 unsigned long r_symndx
)
3682 if (! aarch64_can_relax_tls (input_bfd
, info
, r_type
, h
, r_symndx
))
3685 return aarch64_tls_transition_without_check (r_type
, h
);
3688 /* Return the base VMA address which should be subtracted from real addresses
3689 when resolving R_AARCH64_TLS_DTPREL64 relocation. */
3692 dtpoff_base (struct bfd_link_info
*info
)
3694 /* If tls_sec is NULL, we should have signalled an error already. */
3695 BFD_ASSERT (elf_hash_table (info
)->tls_sec
!= NULL
);
3696 return elf_hash_table (info
)->tls_sec
->vma
;
3700 /* Return the base VMA address which should be subtracted from real addresses
3701 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
3704 tpoff_base (struct bfd_link_info
*info
)
3706 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
3708 /* If tls_sec is NULL, we should have signalled an error already. */
3709 if (htab
->tls_sec
== NULL
)
3712 bfd_vma base
= align_power ((bfd_vma
) TCB_SIZE
,
3713 htab
->tls_sec
->alignment_power
);
3714 return htab
->tls_sec
->vma
- base
;
3718 symbol_got_offset_ref (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
3719 unsigned long r_symndx
)
3721 /* Calculate the address of the GOT entry for symbol
3722 referred to in h. */
3724 return &h
->got
.offset
;
3728 struct elf_aarch64_local_symbol
*l
;
3730 l
= elf64_aarch64_locals (input_bfd
);
3731 return &l
[r_symndx
].got_offset
;
3736 symbol_got_offset_mark (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
3737 unsigned long r_symndx
)
3740 p
= symbol_got_offset_ref (input_bfd
, h
, r_symndx
);
3745 symbol_got_offset_mark_p (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
3746 unsigned long r_symndx
)
3749 value
= * symbol_got_offset_ref (input_bfd
, h
, r_symndx
);
3754 symbol_got_offset (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
3755 unsigned long r_symndx
)
3758 value
= * symbol_got_offset_ref (input_bfd
, h
, r_symndx
);
3764 symbol_tlsdesc_got_offset_ref (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
3765 unsigned long r_symndx
)
3767 /* Calculate the address of the GOT entry for symbol
3768 referred to in h. */
3771 struct elf64_aarch64_link_hash_entry
*eh
;
3772 eh
= (struct elf64_aarch64_link_hash_entry
*) h
;
3773 return &eh
->tlsdesc_got_jump_table_offset
;
3778 struct elf_aarch64_local_symbol
*l
;
3780 l
= elf64_aarch64_locals (input_bfd
);
3781 return &l
[r_symndx
].tlsdesc_got_jump_table_offset
;
3786 symbol_tlsdesc_got_offset_mark (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
3787 unsigned long r_symndx
)
3790 p
= symbol_tlsdesc_got_offset_ref (input_bfd
, h
, r_symndx
);
3795 symbol_tlsdesc_got_offset_mark_p (bfd
*input_bfd
,
3796 struct elf_link_hash_entry
*h
,
3797 unsigned long r_symndx
)
3800 value
= * symbol_tlsdesc_got_offset_ref (input_bfd
, h
, r_symndx
);
3805 symbol_tlsdesc_got_offset (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
3806 unsigned long r_symndx
)
3809 value
= * symbol_tlsdesc_got_offset_ref (input_bfd
, h
, r_symndx
);
3814 /* Perform a relocation as part of a final link. */
3815 static bfd_reloc_status_type
3816 elf64_aarch64_final_link_relocate (reloc_howto_type
*howto
,
3819 asection
*input_section
,
3821 Elf_Internal_Rela
*rel
,
3823 struct bfd_link_info
*info
,
3825 struct elf_link_hash_entry
*h
,
3826 bfd_boolean
*unresolved_reloc_p
,
3827 bfd_boolean save_addend
,
3828 bfd_vma
*saved_addend
)
3830 unsigned int r_type
= howto
->type
;
3831 unsigned long r_symndx
;
3832 bfd_byte
*hit_data
= contents
+ rel
->r_offset
;
3834 bfd_signed_vma signed_addend
;
3835 struct elf64_aarch64_link_hash_table
*globals
;
3836 bfd_boolean weak_undef_p
;
3838 globals
= elf64_aarch64_hash_table (info
);
3840 BFD_ASSERT (is_aarch64_elf (input_bfd
));
3842 r_symndx
= ELF64_R_SYM (rel
->r_info
);
3844 /* It is possible to have linker relaxations on some TLS access
3845 models. Update our information here. */
3846 r_type
= aarch64_tls_transition (input_bfd
, info
, r_type
, h
, r_symndx
);
3848 if (r_type
!= howto
->type
)
3849 howto
= elf64_aarch64_howto_from_type (r_type
);
3851 place
= input_section
->output_section
->vma
3852 + input_section
->output_offset
+ rel
->r_offset
;
3854 /* Get addend, accumulating the addend for consecutive relocs
3855 which refer to the same offset. */
3856 signed_addend
= saved_addend
? *saved_addend
: 0;
3857 signed_addend
+= rel
->r_addend
;
3859 weak_undef_p
= (h
? h
->root
.type
== bfd_link_hash_undefweak
3860 : bfd_is_und_section (sym_sec
));
3863 case R_AARCH64_NONE
:
3864 case R_AARCH64_NULL
:
3865 case R_AARCH64_TLSDESC_CALL
:
3866 *unresolved_reloc_p
= FALSE
;
3867 return bfd_reloc_ok
;
3869 case R_AARCH64_ABS64
:
3871 /* When generating a shared object or relocatable executable, these
3872 relocations are copied into the output file to be resolved at
3874 if (((info
->shared
== TRUE
) || globals
->root
.is_relocatable_executable
)
3875 && (input_section
->flags
& SEC_ALLOC
)
3877 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
3878 || h
->root
.type
!= bfd_link_hash_undefweak
))
3880 Elf_Internal_Rela outrel
;
3882 bfd_boolean skip
, relocate
;
3885 *unresolved_reloc_p
= FALSE
;
3887 sreloc
= _bfd_elf_get_dynamic_reloc_section (input_bfd
,
3890 return bfd_reloc_notsupported
;
3895 outrel
.r_addend
= signed_addend
;
3897 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
3899 if (outrel
.r_offset
== (bfd_vma
) - 1)
3901 else if (outrel
.r_offset
== (bfd_vma
) - 2)
3907 outrel
.r_offset
+= (input_section
->output_section
->vma
3908 + input_section
->output_offset
);
3911 memset (&outrel
, 0, sizeof outrel
);
3914 && (!info
->shared
|| !info
->symbolic
|| !h
->def_regular
))
3915 outrel
.r_info
= ELF64_R_INFO (h
->dynindx
, r_type
);
3920 /* On SVR4-ish systems, the dynamic loader cannot
3921 relocate the text and data segments independently,
3922 so the symbol does not matter. */
3924 outrel
.r_info
= ELF64_R_INFO (symbol
, R_AARCH64_RELATIVE
);
3925 outrel
.r_addend
+= value
;
3928 loc
= sreloc
->contents
+ sreloc
->reloc_count
++ * RELOC_SIZE (htab
);
3929 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
3931 if (sreloc
->reloc_count
* RELOC_SIZE (htab
) > sreloc
->size
)
3933 /* Sanity to check that we have previously allocated
3934 sufficient space in the relocation section for the
3935 number of relocations we actually want to emit. */
3939 /* If this reloc is against an external symbol, we do not want to
3940 fiddle with the addend. Otherwise, we need to include the symbol
3941 value so that it becomes an addend for the dynamic reloc. */
3943 return bfd_reloc_ok
;
3945 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
3946 contents
, rel
->r_offset
, value
,
3950 value
+= signed_addend
;
3953 case R_AARCH64_JUMP26
:
3954 case R_AARCH64_CALL26
:
3956 asection
*splt
= globals
->root
.splt
;
3957 bfd_boolean via_plt_p
=
3958 splt
!= NULL
&& h
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) - 1;
3960 /* A call to an undefined weak symbol is converted to a jump to
3961 the next instruction unless a PLT entry will be created.
3962 The jump to the next instruction is optimized as a NOP.
3963 Do the same for local undefined symbols. */
3964 if (weak_undef_p
&& ! via_plt_p
)
3966 bfd_putl32 (INSN_NOP
, hit_data
);
3967 return bfd_reloc_ok
;
3970 /* If the call goes through a PLT entry, make sure to
3971 check distance to the right destination address. */
3974 value
= (splt
->output_section
->vma
3975 + splt
->output_offset
+ h
->plt
.offset
);
3976 *unresolved_reloc_p
= FALSE
;
3979 /* If the target symbol is global and marked as a function the
3980 relocation applies a function call or a tail call. In this
3981 situation we can veneer out of range branches. The veneers
3982 use IP0 and IP1 hence cannot be used arbitrary out of range
3983 branches that occur within the body of a function. */
3984 if (h
&& h
->type
== STT_FUNC
)
3986 /* Check if a stub has to be inserted because the destination
3988 if (! aarch64_valid_branch_p (value
, place
))
3990 /* The target is out of reach, so redirect the branch to
3991 the local stub for this function. */
3992 struct elf64_aarch64_stub_hash_entry
*stub_entry
;
3993 stub_entry
= elf64_aarch64_get_stub_entry (input_section
,
3996 if (stub_entry
!= NULL
)
3997 value
= (stub_entry
->stub_offset
3998 + stub_entry
->stub_sec
->output_offset
3999 + stub_entry
->stub_sec
->output_section
->vma
);
4003 value
= aarch64_resolve_relocation (r_type
, place
, value
,
4004 signed_addend
, weak_undef_p
);
4007 case R_AARCH64_ABS16
:
4008 case R_AARCH64_ABS32
:
4009 case R_AARCH64_ADD_ABS_LO12_NC
:
4010 case R_AARCH64_ADR_PREL_LO21
:
4011 case R_AARCH64_ADR_PREL_PG_HI21
:
4012 case R_AARCH64_ADR_PREL_PG_HI21_NC
:
4013 case R_AARCH64_CONDBR19
:
4014 case R_AARCH64_LD_PREL_LO19
:
4015 case R_AARCH64_LDST8_ABS_LO12_NC
:
4016 case R_AARCH64_LDST16_ABS_LO12_NC
:
4017 case R_AARCH64_LDST32_ABS_LO12_NC
:
4018 case R_AARCH64_LDST64_ABS_LO12_NC
:
4019 case R_AARCH64_LDST128_ABS_LO12_NC
:
4020 case R_AARCH64_MOVW_SABS_G0
:
4021 case R_AARCH64_MOVW_SABS_G1
:
4022 case R_AARCH64_MOVW_SABS_G2
:
4023 case R_AARCH64_MOVW_UABS_G0
:
4024 case R_AARCH64_MOVW_UABS_G0_NC
:
4025 case R_AARCH64_MOVW_UABS_G1
:
4026 case R_AARCH64_MOVW_UABS_G1_NC
:
4027 case R_AARCH64_MOVW_UABS_G2
:
4028 case R_AARCH64_MOVW_UABS_G2_NC
:
4029 case R_AARCH64_MOVW_UABS_G3
:
4030 case R_AARCH64_PREL16
:
4031 case R_AARCH64_PREL32
:
4032 case R_AARCH64_PREL64
:
4033 case R_AARCH64_TSTBR14
:
4034 value
= aarch64_resolve_relocation (r_type
, place
, value
,
4035 signed_addend
, weak_undef_p
);
4038 case R_AARCH64_LD64_GOT_LO12_NC
:
4039 case R_AARCH64_ADR_GOT_PAGE
:
4040 case R_AARCH64_GOT_LD_PREL19
:
4041 if (globals
->root
.sgot
== NULL
)
4042 BFD_ASSERT (h
!= NULL
);
4046 value
= aarch64_calculate_got_entry_vma (h
, globals
, info
, value
,
4048 unresolved_reloc_p
);
4049 value
= aarch64_resolve_relocation (r_type
, place
, value
,
4054 case R_AARCH64_TLSGD_ADR_PAGE21
:
4055 case R_AARCH64_TLSGD_ADD_LO12_NC
:
4056 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
4057 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
4058 if (globals
->root
.sgot
== NULL
)
4059 return bfd_reloc_notsupported
;
4061 value
= (symbol_got_offset (input_bfd
, h
, r_symndx
)
4062 + globals
->root
.sgot
->output_section
->vma
4063 + globals
->root
.sgot
->output_section
->output_offset
);
4065 value
= aarch64_resolve_relocation (r_type
, place
, value
,
4067 *unresolved_reloc_p
= FALSE
;
4070 case R_AARCH64_TLSLE_ADD_TPREL_HI12
:
4071 case R_AARCH64_TLSLE_ADD_TPREL_LO12
:
4072 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
4073 case R_AARCH64_TLSLE_MOVW_TPREL_G0
:
4074 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
4075 case R_AARCH64_TLSLE_MOVW_TPREL_G1
:
4076 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
4077 case R_AARCH64_TLSLE_MOVW_TPREL_G2
:
4078 value
= aarch64_resolve_relocation (r_type
, place
, value
,
4079 signed_addend
- tpoff_base (info
), weak_undef_p
);
4080 *unresolved_reloc_p
= FALSE
;
4083 case R_AARCH64_TLSDESC_ADR_PAGE
:
4084 case R_AARCH64_TLSDESC_LD64_LO12_NC
:
4085 case R_AARCH64_TLSDESC_ADD_LO12_NC
:
4086 case R_AARCH64_TLSDESC_ADD
:
4087 case R_AARCH64_TLSDESC_LDR
:
4088 if (globals
->root
.sgot
== NULL
)
4089 return bfd_reloc_notsupported
;
4091 value
= (symbol_tlsdesc_got_offset (input_bfd
, h
, r_symndx
)
4092 + globals
->root
.sgotplt
->output_section
->vma
4093 + globals
->root
.sgotplt
->output_section
->output_offset
4094 + globals
->sgotplt_jump_table_size
);
4096 value
= aarch64_resolve_relocation (r_type
, place
, value
,
4098 *unresolved_reloc_p
= FALSE
;
4102 return bfd_reloc_notsupported
;
4106 *saved_addend
= value
;
4108 /* Only apply the final relocation in a sequence. */
4110 return bfd_reloc_continue
;
4112 return bfd_elf_aarch64_put_addend (input_bfd
, hit_data
, howto
, value
);
4115 /* Handle TLS relaxations. Relaxing is possible for symbols that use
4116 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
4119 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
4120 is to then call final_link_relocate. Return other values in the
4123 static bfd_reloc_status_type
4124 elf64_aarch64_tls_relax (struct elf64_aarch64_link_hash_table
*globals
,
4125 bfd
*input_bfd
, bfd_byte
*contents
,
4126 Elf_Internal_Rela
*rel
, struct elf_link_hash_entry
*h
)
4128 bfd_boolean is_local
= h
== NULL
;
4129 unsigned int r_type
= ELF64_R_TYPE (rel
->r_info
);
4132 BFD_ASSERT (globals
&& input_bfd
&& contents
&& rel
);
4136 case R_AARCH64_TLSGD_ADR_PAGE21
:
4137 case R_AARCH64_TLSDESC_ADR_PAGE
:
4140 /* GD->LE relaxation:
4141 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
4143 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
4145 bfd_putl32 (0xd2a00000, contents
+ rel
->r_offset
);
4146 return bfd_reloc_continue
;
4150 /* GD->IE relaxation:
4151 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
4153 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
4155 insn
= bfd_getl32 (contents
+ rel
->r_offset
);
4156 return bfd_reloc_continue
;
4159 case R_AARCH64_TLSDESC_LD64_LO12_NC
:
4162 /* GD->LE relaxation:
4163 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
4165 bfd_putl32 (0xf2800000, contents
+ rel
->r_offset
);
4166 return bfd_reloc_continue
;
4170 /* GD->IE relaxation:
4171 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
4173 insn
= bfd_getl32 (contents
+ rel
->r_offset
);
4175 bfd_putl32 (insn
, contents
+ rel
->r_offset
);
4176 return bfd_reloc_continue
;
4179 case R_AARCH64_TLSGD_ADD_LO12_NC
:
4182 /* GD->LE relaxation
4183 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
4184 bl __tls_get_addr => mrs x1, tpidr_el0
4185 nop => add x0, x1, x0
4188 /* First kill the tls_get_addr reloc on the bl instruction. */
4189 BFD_ASSERT (rel
->r_offset
+ 4 == rel
[1].r_offset
);
4190 rel
[1].r_info
= ELF64_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
4192 bfd_putl32 (0xf2800000, contents
+ rel
->r_offset
);
4193 bfd_putl32 (0xd53bd041, contents
+ rel
->r_offset
+ 4);
4194 bfd_putl32 (0x8b000020, contents
+ rel
->r_offset
+ 8);
4195 return bfd_reloc_continue
;
4199 /* GD->IE relaxation
4200 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
4201 BL __tls_get_addr => mrs x1, tpidr_el0
4203 NOP => add x0, x1, x0
4206 BFD_ASSERT (ELF64_R_TYPE (rel
[1].r_info
) == R_AARCH64_CALL26
);
4208 /* Remove the relocation on the BL instruction. */
4209 rel
[1].r_info
= ELF64_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
4211 bfd_putl32 (0xf9400000, contents
+ rel
->r_offset
);
4213 /* We choose to fixup the BL and NOP instructions using the
4214 offset from the second relocation to allow flexibility in
4215 scheduling instructions between the ADD and BL. */
4216 bfd_putl32 (0xd53bd041, contents
+ rel
[1].r_offset
);
4217 bfd_putl32 (0x8b000020, contents
+ rel
[1].r_offset
+ 4);
4218 return bfd_reloc_continue
;
4221 case R_AARCH64_TLSDESC_ADD_LO12_NC
:
4222 case R_AARCH64_TLSDESC_CALL
:
4223 /* GD->IE/LE relaxation:
4224 add x0, x0, #:tlsdesc_lo12:var => nop
4227 bfd_putl32 (INSN_NOP
, contents
+ rel
->r_offset
);
4228 return bfd_reloc_ok
;
4230 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
4231 /* IE->LE relaxation:
4232 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
4236 insn
= bfd_getl32 (contents
+ rel
->r_offset
);
4237 bfd_putl32 (0xd2a00000 | (insn
& 0x1f), contents
+ rel
->r_offset
);
4239 return bfd_reloc_continue
;
4241 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
4242 /* IE->LE relaxation:
4243 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
4247 insn
= bfd_getl32 (contents
+ rel
->r_offset
);
4248 bfd_putl32 (0xf2800000 | (insn
& 0x1f), contents
+ rel
->r_offset
);
4250 return bfd_reloc_continue
;
4253 return bfd_reloc_continue
;
4256 return bfd_reloc_ok
;
4259 /* Relocate an AArch64 ELF section. */
4262 elf64_aarch64_relocate_section (bfd
*output_bfd
,
4263 struct bfd_link_info
*info
,
4265 asection
*input_section
,
4267 Elf_Internal_Rela
*relocs
,
4268 Elf_Internal_Sym
*local_syms
,
4269 asection
**local_sections
)
4271 Elf_Internal_Shdr
*symtab_hdr
;
4272 struct elf_link_hash_entry
**sym_hashes
;
4273 Elf_Internal_Rela
*rel
;
4274 Elf_Internal_Rela
*relend
;
4276 struct elf64_aarch64_link_hash_table
*globals
;
4277 bfd_boolean save_addend
= FALSE
;
4280 globals
= elf64_aarch64_hash_table (info
);
4282 symtab_hdr
= &elf_symtab_hdr (input_bfd
);
4283 sym_hashes
= elf_sym_hashes (input_bfd
);
4286 relend
= relocs
+ input_section
->reloc_count
;
4287 for (; rel
< relend
; rel
++)
4289 unsigned int r_type
;
4290 unsigned int relaxed_r_type
;
4291 reloc_howto_type
*howto
;
4292 unsigned long r_symndx
;
4293 Elf_Internal_Sym
*sym
;
4295 struct elf_link_hash_entry
*h
;
4297 bfd_reloc_status_type r
;
4300 bfd_boolean unresolved_reloc
= FALSE
;
4301 char *error_message
= NULL
;
4303 r_symndx
= ELF64_R_SYM (rel
->r_info
);
4304 r_type
= ELF64_R_TYPE (rel
->r_info
);
4306 bfd_reloc
.howto
= elf64_aarch64_howto_from_type (r_type
);
4307 howto
= bfd_reloc
.howto
;
4313 if (r_symndx
< symtab_hdr
->sh_info
)
4315 sym
= local_syms
+ r_symndx
;
4316 sym_type
= ELF64_ST_TYPE (sym
->st_info
);
4317 sec
= local_sections
[r_symndx
];
4319 /* An object file might have a reference to a local
4320 undefined symbol. This is a daft object file, but we
4321 should at least do something about it. */
4322 if (r_type
!= R_AARCH64_NONE
&& r_type
!= R_AARCH64_NULL
4323 && bfd_is_und_section (sec
)
4324 && ELF_ST_BIND (sym
->st_info
) != STB_WEAK
)
4326 if (!info
->callbacks
->undefined_symbol
4327 (info
, bfd_elf_string_from_elf_section
4328 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
),
4329 input_bfd
, input_section
, rel
->r_offset
, TRUE
))
4333 if (r_type
>= R_AARCH64_dyn_max
)
4335 bfd_set_error (bfd_error_bad_value
);
4339 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
4345 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
4346 r_symndx
, symtab_hdr
, sym_hashes
,
4348 unresolved_reloc
, warned
);
4353 if (sec
!= NULL
&& discarded_section (sec
))
4354 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
4355 rel
, 1, relend
, howto
, 0, contents
);
4357 if (info
->relocatable
)
4359 /* This is a relocatable link. We don't have to change
4360 anything, unless the reloc is against a section symbol,
4361 in which case we have to adjust according to where the
4362 section symbol winds up in the output section. */
4363 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
4364 rel
->r_addend
+= sec
->output_offset
;
4369 name
= h
->root
.root
.string
;
4372 name
= (bfd_elf_string_from_elf_section
4373 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
4374 if (name
== NULL
|| *name
== '\0')
4375 name
= bfd_section_name (input_bfd
, sec
);
4379 && r_type
!= R_AARCH64_NONE
4380 && r_type
!= R_AARCH64_NULL
4382 || h
->root
.type
== bfd_link_hash_defined
4383 || h
->root
.type
== bfd_link_hash_defweak
)
4384 && IS_AARCH64_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
4386 (*_bfd_error_handler
)
4387 ((sym_type
== STT_TLS
4388 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
4389 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
4391 input_section
, (long) rel
->r_offset
, howto
->name
, name
);
4395 /* We relax only if we can see that there can be a valid transition
4396 from a reloc type to another.
4397 We call elf64_aarch64_final_link_relocate unless we're completely
4398 done, i.e., the relaxation produced the final output we want. */
4400 relaxed_r_type
= aarch64_tls_transition (input_bfd
, info
, r_type
,
4402 if (relaxed_r_type
!= r_type
)
4404 r_type
= relaxed_r_type
;
4405 howto
= elf64_aarch64_howto_from_type (r_type
);
4407 r
= elf64_aarch64_tls_relax (globals
, input_bfd
, contents
, rel
, h
);
4408 unresolved_reloc
= 0;
4411 r
= bfd_reloc_continue
;
4413 /* There may be multiple consecutive relocations for the
4414 same offset. In that case we are supposed to treat the
4415 output of each relocation as the addend for the next. */
4416 if (rel
+ 1 < relend
4417 && rel
->r_offset
== rel
[1].r_offset
4418 && ELF64_R_TYPE (rel
[1].r_info
) != R_AARCH64_NONE
4419 && ELF64_R_TYPE (rel
[1].r_info
) != R_AARCH64_NULL
)
4422 save_addend
= FALSE
;
4424 if (r
== bfd_reloc_continue
)
4425 r
= elf64_aarch64_final_link_relocate (howto
, input_bfd
, output_bfd
,
4426 input_section
, contents
, rel
,
4427 relocation
, info
, sec
,
4428 h
, &unresolved_reloc
,
4429 save_addend
, &addend
);
4433 case R_AARCH64_TLSGD_ADR_PAGE21
:
4434 case R_AARCH64_TLSGD_ADD_LO12_NC
:
4435 if (! symbol_got_offset_mark_p (input_bfd
, h
, r_symndx
))
4437 bfd_boolean need_relocs
= FALSE
;
4442 off
= symbol_got_offset (input_bfd
, h
, r_symndx
);
4443 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
4446 (info
->shared
|| indx
!= 0) &&
4448 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
4449 || h
->root
.type
!= bfd_link_hash_undefweak
);
4451 BFD_ASSERT (globals
->root
.srelgot
!= NULL
);
4455 Elf_Internal_Rela rela
;
4456 rela
.r_info
= ELF64_R_INFO (indx
, R_AARCH64_TLS_DTPMOD64
);
4458 rela
.r_offset
= globals
->root
.sgot
->output_section
->vma
+
4459 globals
->root
.sgot
->output_offset
+ off
;
4462 loc
= globals
->root
.srelgot
->contents
;
4463 loc
+= globals
->root
.srelgot
->reloc_count
++
4464 * RELOC_SIZE (htab
);
4465 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
4469 bfd_put_64 (output_bfd
,
4470 relocation
- dtpoff_base (info
),
4471 globals
->root
.sgot
->contents
+ off
4476 /* This TLS symbol is global. We emit a
4477 relocation to fixup the tls offset at load
4480 ELF64_R_INFO (indx
, R_AARCH64_TLS_DTPREL64
);
4483 (globals
->root
.sgot
->output_section
->vma
4484 + globals
->root
.sgot
->output_offset
+ off
4487 loc
= globals
->root
.srelgot
->contents
;
4488 loc
+= globals
->root
.srelgot
->reloc_count
++
4489 * RELOC_SIZE (globals
);
4490 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
4491 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
4492 globals
->root
.sgot
->contents
+ off
4498 bfd_put_64 (output_bfd
, (bfd_vma
) 1,
4499 globals
->root
.sgot
->contents
+ off
);
4500 bfd_put_64 (output_bfd
,
4501 relocation
- dtpoff_base (info
),
4502 globals
->root
.sgot
->contents
+ off
4506 symbol_got_offset_mark (input_bfd
, h
, r_symndx
);
4510 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
4511 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
4512 if (! symbol_got_offset_mark_p (input_bfd
, h
, r_symndx
))
4514 bfd_boolean need_relocs
= FALSE
;
4519 off
= symbol_got_offset (input_bfd
, h
, r_symndx
);
4521 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
4524 (info
->shared
|| indx
!= 0) &&
4526 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
4527 || h
->root
.type
!= bfd_link_hash_undefweak
);
4529 BFD_ASSERT (globals
->root
.srelgot
!= NULL
);
4533 Elf_Internal_Rela rela
;
4536 rela
.r_addend
= relocation
- dtpoff_base (info
);
4540 rela
.r_info
= ELF64_R_INFO (indx
, R_AARCH64_TLS_TPREL64
);
4541 rela
.r_offset
= globals
->root
.sgot
->output_section
->vma
+
4542 globals
->root
.sgot
->output_offset
+ off
;
4544 loc
= globals
->root
.srelgot
->contents
;
4545 loc
+= globals
->root
.srelgot
->reloc_count
++
4546 * RELOC_SIZE (htab
);
4548 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
4550 bfd_put_64 (output_bfd
, rela
.r_addend
,
4551 globals
->root
.sgot
->contents
+ off
);
4554 bfd_put_64 (output_bfd
, relocation
- tpoff_base (info
),
4555 globals
->root
.sgot
->contents
+ off
);
4557 symbol_got_offset_mark (input_bfd
, h
, r_symndx
);
4561 case R_AARCH64_TLSLE_ADD_TPREL_LO12
:
4562 case R_AARCH64_TLSLE_ADD_TPREL_HI12
:
4563 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
4564 case R_AARCH64_TLSLE_MOVW_TPREL_G2
:
4565 case R_AARCH64_TLSLE_MOVW_TPREL_G1
:
4566 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
4567 case R_AARCH64_TLSLE_MOVW_TPREL_G0
:
4568 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
4571 case R_AARCH64_TLSDESC_ADR_PAGE
:
4572 case R_AARCH64_TLSDESC_LD64_LO12_NC
:
4573 case R_AARCH64_TLSDESC_ADD_LO12_NC
:
4574 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd
, h
, r_symndx
))
4576 bfd_boolean need_relocs
= FALSE
;
4577 int indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
4578 bfd_vma off
= symbol_tlsdesc_got_offset (input_bfd
, h
, r_symndx
);
4580 need_relocs
= (h
== NULL
4581 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
4582 || h
->root
.type
!= bfd_link_hash_undefweak
);
4584 BFD_ASSERT (globals
->root
.srelgot
!= NULL
);
4585 BFD_ASSERT (globals
->root
.sgot
!= NULL
);
4590 Elf_Internal_Rela rela
;
4591 rela
.r_info
= ELF64_R_INFO (indx
, R_AARCH64_TLSDESC
);
4593 rela
.r_offset
= (globals
->root
.sgotplt
->output_section
->vma
4594 + globals
->root
.sgotplt
->output_offset
4595 + off
+ globals
->sgotplt_jump_table_size
);
4598 rela
.r_addend
= relocation
- dtpoff_base (info
);
4600 /* Allocate the next available slot in the PLT reloc
4601 section to hold our R_AARCH64_TLSDESC, the next
4602 available slot is determined from reloc_count,
4603 which we step. But note, reloc_count was
4604 artifically moved down while allocating slots for
4605 real PLT relocs such that all of the PLT relocs
4606 will fit above the initial reloc_count and the
4607 extra stuff will fit below. */
4608 loc
= globals
->root
.srelplt
->contents
;
4609 loc
+= globals
->root
.srelplt
->reloc_count
++
4610 * RELOC_SIZE (globals
);
4612 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
4614 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
4615 globals
->root
.sgotplt
->contents
+ off
+
4616 globals
->sgotplt_jump_table_size
);
4617 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
4618 globals
->root
.sgotplt
->contents
+ off
+
4619 globals
->sgotplt_jump_table_size
+
4623 symbol_tlsdesc_got_offset_mark (input_bfd
, h
, r_symndx
);
4632 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4633 because such sections are not SEC_ALLOC and thus ld.so will
4634 not process them. */
4635 if (unresolved_reloc
4636 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
4638 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
4639 +rel
->r_offset
) != (bfd_vma
) - 1)
4641 (*_bfd_error_handler
)
4643 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4644 input_bfd
, input_section
, (long) rel
->r_offset
, howto
->name
,
4645 h
->root
.root
.string
);
4649 if (r
!= bfd_reloc_ok
&& r
!= bfd_reloc_continue
)
4653 case bfd_reloc_overflow
:
4654 /* If the overflowing reloc was to an undefined symbol,
4655 we have already printed one error message and there
4656 is no point complaining again. */
4658 h
->root
.type
!= bfd_link_hash_undefined
)
4659 && (!((*info
->callbacks
->reloc_overflow
)
4660 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
4661 (bfd_vma
) 0, input_bfd
, input_section
,
4666 case bfd_reloc_undefined
:
4667 if (!((*info
->callbacks
->undefined_symbol
)
4668 (info
, name
, input_bfd
, input_section
,
4669 rel
->r_offset
, TRUE
)))
4673 case bfd_reloc_outofrange
:
4674 error_message
= _("out of range");
4677 case bfd_reloc_notsupported
:
4678 error_message
= _("unsupported relocation");
4681 case bfd_reloc_dangerous
:
4682 /* error_message should already be set. */
4686 error_message
= _("unknown error");
4690 BFD_ASSERT (error_message
!= NULL
);
4691 if (!((*info
->callbacks
->reloc_dangerous
)
4692 (info
, error_message
, input_bfd
, input_section
,
4703 /* Set the right machine number. */
4706 elf64_aarch64_object_p (bfd
*abfd
)
4708 bfd_default_set_arch_mach (abfd
, bfd_arch_aarch64
, bfd_mach_aarch64
);
4712 /* Function to keep AArch64 specific flags in the ELF header. */
4715 elf64_aarch64_set_private_flags (bfd
*abfd
, flagword flags
)
4717 if (elf_flags_init (abfd
) && elf_elfheader (abfd
)->e_flags
!= flags
)
4722 elf_elfheader (abfd
)->e_flags
= flags
;
4723 elf_flags_init (abfd
) = TRUE
;
4729 /* Copy backend specific data from one object module to another. */
4732 elf64_aarch64_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
4736 if (!is_aarch64_elf (ibfd
) || !is_aarch64_elf (obfd
))
4739 in_flags
= elf_elfheader (ibfd
)->e_flags
;
4741 elf_elfheader (obfd
)->e_flags
= in_flags
;
4742 elf_flags_init (obfd
) = TRUE
;
4744 /* Also copy the EI_OSABI field. */
4745 elf_elfheader (obfd
)->e_ident
[EI_OSABI
] =
4746 elf_elfheader (ibfd
)->e_ident
[EI_OSABI
];
4748 /* Copy object attributes. */
4749 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
4754 /* Merge backend specific data from an object file to the output
4755 object file when linking. */
4758 elf64_aarch64_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
4762 bfd_boolean flags_compatible
= TRUE
;
4765 /* Check if we have the same endianess. */
4766 if (!_bfd_generic_verify_endian_match (ibfd
, obfd
))
4769 if (!is_aarch64_elf (ibfd
) || !is_aarch64_elf (obfd
))
4772 /* The input BFD must have had its flags initialised. */
4773 /* The following seems bogus to me -- The flags are initialized in
4774 the assembler but I don't think an elf_flags_init field is
4775 written into the object. */
4776 /* BFD_ASSERT (elf_flags_init (ibfd)); */
4778 in_flags
= elf_elfheader (ibfd
)->e_flags
;
4779 out_flags
= elf_elfheader (obfd
)->e_flags
;
4781 if (!elf_flags_init (obfd
))
4783 /* If the input is the default architecture and had the default
4784 flags then do not bother setting the flags for the output
4785 architecture, instead allow future merges to do this. If no
4786 future merges ever set these flags then they will retain their
4787 uninitialised values, which surprise surprise, correspond
4788 to the default values. */
4789 if (bfd_get_arch_info (ibfd
)->the_default
4790 && elf_elfheader (ibfd
)->e_flags
== 0)
4793 elf_flags_init (obfd
) = TRUE
;
4794 elf_elfheader (obfd
)->e_flags
= in_flags
;
4796 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
4797 && bfd_get_arch_info (obfd
)->the_default
)
4798 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
4799 bfd_get_mach (ibfd
));
4804 /* Identical flags must be compatible. */
4805 if (in_flags
== out_flags
)
4808 /* Check to see if the input BFD actually contains any sections. If
4809 not, its flags may not have been initialised either, but it
4810 cannot actually cause any incompatiblity. Do not short-circuit
4811 dynamic objects; their section list may be emptied by
4812 elf_link_add_object_symbols.
4814 Also check to see if there are no code sections in the input.
4815 In this case there is no need to check for code specific flags.
4816 XXX - do we need to worry about floating-point format compatability
4817 in data sections ? */
4818 if (!(ibfd
->flags
& DYNAMIC
))
4820 bfd_boolean null_input_bfd
= TRUE
;
4821 bfd_boolean only_data_sections
= TRUE
;
4823 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
4825 if ((bfd_get_section_flags (ibfd
, sec
)
4826 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
4827 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
4828 only_data_sections
= FALSE
;
4830 null_input_bfd
= FALSE
;
4834 if (null_input_bfd
|| only_data_sections
)
4838 return flags_compatible
;
4841 /* Display the flags field. */
4844 elf64_aarch64_print_private_bfd_data (bfd
*abfd
, void *ptr
)
4846 FILE *file
= (FILE *) ptr
;
4847 unsigned long flags
;
4849 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
4851 /* Print normal ELF private data. */
4852 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
4854 flags
= elf_elfheader (abfd
)->e_flags
;
4855 /* Ignore init flag - it may not be set, despite the flags field
4856 containing valid data. */
4858 /* xgettext:c-format */
4859 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
4862 fprintf (file
, _("<Unrecognised flag bits set>"));
4869 /* Update the got entry reference counts for the section being removed. */
4872 elf64_aarch64_gc_sweep_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
4873 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
4874 asection
*sec ATTRIBUTE_UNUSED
,
4875 const Elf_Internal_Rela
*
4876 relocs ATTRIBUTE_UNUSED
)
4878 struct elf64_aarch64_link_hash_table
*htab
;
4879 Elf_Internal_Shdr
*symtab_hdr
;
4880 struct elf_link_hash_entry
**sym_hashes
;
4881 bfd_signed_vma
*local_got_refcounts
;
4882 const Elf_Internal_Rela
*rel
, *relend
;
4884 if (info
->relocatable
)
4887 htab
= elf64_aarch64_hash_table (info
);
4892 elf_section_data (sec
)->local_dynrel
= NULL
;
4894 symtab_hdr
= &elf_symtab_hdr (abfd
);
4895 sym_hashes
= elf_sym_hashes (abfd
);
4897 local_got_refcounts
= elf_local_got_refcounts (abfd
);
4899 relend
= relocs
+ sec
->reloc_count
;
4900 for (rel
= relocs
; rel
< relend
; rel
++)
4902 unsigned long r_symndx
;
4903 unsigned int r_type
;
4904 struct elf_link_hash_entry
*h
= NULL
;
4906 r_symndx
= ELF64_R_SYM (rel
->r_info
);
4908 if (r_symndx
>= symtab_hdr
->sh_info
)
4910 struct elf64_aarch64_link_hash_entry
*eh
;
4911 struct elf_dyn_relocs
**pp
;
4912 struct elf_dyn_relocs
*p
;
4914 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
4915 while (h
->root
.type
== bfd_link_hash_indirect
4916 || h
->root
.type
== bfd_link_hash_warning
)
4917 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4918 eh
= (struct elf64_aarch64_link_hash_entry
*) h
;
4920 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; pp
= &p
->next
)
4924 /* Everything must go for SEC. */
4932 Elf_Internal_Sym
*isym
;
4934 /* A local symbol. */
4935 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
4941 r_type
= ELF64_R_TYPE (rel
->r_info
);
4942 r_type
= aarch64_tls_transition (abfd
,info
, r_type
, h
,r_symndx
);
4945 case R_AARCH64_LD64_GOT_LO12_NC
:
4946 case R_AARCH64_GOT_LD_PREL19
:
4947 case R_AARCH64_ADR_GOT_PAGE
:
4948 case R_AARCH64_TLSGD_ADR_PAGE21
:
4949 case R_AARCH64_TLSGD_ADD_LO12_NC
:
4950 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
4951 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
4952 case R_AARCH64_TLSLE_ADD_TPREL_LO12
:
4953 case R_AARCH64_TLSLE_ADD_TPREL_HI12
:
4954 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
4955 case R_AARCH64_TLSLE_MOVW_TPREL_G2
:
4956 case R_AARCH64_TLSLE_MOVW_TPREL_G1
:
4957 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
4958 case R_AARCH64_TLSLE_MOVW_TPREL_G0
:
4959 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
4960 case R_AARCH64_TLSDESC_ADR_PAGE
:
4961 case R_AARCH64_TLSDESC_ADD_LO12_NC
:
4962 case R_AARCH64_TLSDESC_LD64_LO12_NC
:
4965 if (h
->got
.refcount
> 0)
4966 h
->got
.refcount
-= 1;
4968 else if (local_got_refcounts
!= NULL
)
4970 if (local_got_refcounts
[r_symndx
] > 0)
4971 local_got_refcounts
[r_symndx
] -= 1;
4975 case R_AARCH64_ADR_PREL_PG_HI21_NC
:
4976 case R_AARCH64_ADR_PREL_PG_HI21
:
4977 case R_AARCH64_ADR_PREL_LO21
:
4978 if (h
!= NULL
&& info
->executable
)
4980 if (h
->plt
.refcount
> 0)
4981 h
->plt
.refcount
-= 1;
4985 case R_AARCH64_CALL26
:
4986 case R_AARCH64_JUMP26
:
4987 /* If this is a local symbol then we resolve it
4988 directly without creating a PLT entry. */
4992 if (h
->plt
.refcount
> 0)
4993 h
->plt
.refcount
-= 1;
4996 case R_AARCH64_ABS64
:
4997 if (h
!= NULL
&& info
->executable
)
4999 if (h
->plt
.refcount
> 0)
5000 h
->plt
.refcount
-= 1;
5012 /* Adjust a symbol defined by a dynamic object and referenced by a
5013 regular object. The current definition is in some section of the
5014 dynamic object, but we're not including those sections. We have to
5015 change the definition to something the rest of the link can
5019 elf64_aarch64_adjust_dynamic_symbol (struct bfd_link_info
*info
,
5020 struct elf_link_hash_entry
*h
)
5022 struct elf64_aarch64_link_hash_table
*htab
;
5025 /* If this is a function, put it in the procedure linkage table. We
5026 will fill in the contents of the procedure linkage table later,
5027 when we know the address of the .got section. */
5028 if (h
->type
== STT_FUNC
|| h
->needs_plt
)
5030 if (h
->plt
.refcount
<= 0
5031 || SYMBOL_CALLS_LOCAL (info
, h
)
5032 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
5033 && h
->root
.type
== bfd_link_hash_undefweak
))
5035 /* This case can occur if we saw a CALL26 reloc in
5036 an input file, but the symbol wasn't referred to
5037 by a dynamic object or all references were
5038 garbage collected. In which case we can end up
5040 h
->plt
.offset
= (bfd_vma
) - 1;
5047 /* It's possible that we incorrectly decided a .plt reloc was
5048 needed for an R_X86_64_PC32 reloc to a non-function sym in
5049 check_relocs. We can't decide accurately between function and
5050 non-function syms in check-relocs; Objects loaded later in
5051 the link may change h->type. So fix it now. */
5052 h
->plt
.offset
= (bfd_vma
) - 1;
5055 /* If this is a weak symbol, and there is a real definition, the
5056 processor independent code will have arranged for us to see the
5057 real definition first, and we can just use the same value. */
5058 if (h
->u
.weakdef
!= NULL
)
5060 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
5061 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
5062 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
5063 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
5064 if (ELIMINATE_COPY_RELOCS
|| info
->nocopyreloc
)
5065 h
->non_got_ref
= h
->u
.weakdef
->non_got_ref
;
5069 /* If we are creating a shared library, we must presume that the
5070 only references to the symbol are via the global offset table.
5071 For such cases we need not do anything here; the relocations will
5072 be handled correctly by relocate_section. */
5076 /* If there are no references to this symbol that do not use the
5077 GOT, we don't need to generate a copy reloc. */
5078 if (!h
->non_got_ref
)
5081 /* If -z nocopyreloc was given, we won't generate them either. */
5082 if (info
->nocopyreloc
)
5088 /* We must allocate the symbol in our .dynbss section, which will
5089 become part of the .bss section of the executable. There will be
5090 an entry for this symbol in the .dynsym section. The dynamic
5091 object will contain position independent code, so all references
5092 from the dynamic object to this symbol will go through the global
5093 offset table. The dynamic linker will use the .dynsym entry to
5094 determine the address it must put in the global offset table, so
5095 both the dynamic object and the regular object will refer to the
5096 same memory location for the variable. */
5098 htab
= elf64_aarch64_hash_table (info
);
5100 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
5101 to copy the initial value out of the dynamic object and into the
5102 runtime process image. */
5103 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0 && h
->size
!= 0)
5105 htab
->srelbss
->size
+= RELOC_SIZE (htab
);
5111 return _bfd_elf_adjust_dynamic_copy (h
, s
);
5116 elf64_aarch64_allocate_local_symbols (bfd
*abfd
, unsigned number
)
5118 struct elf_aarch64_local_symbol
*locals
;
5119 locals
= elf64_aarch64_locals (abfd
);
5122 locals
= (struct elf_aarch64_local_symbol
*)
5123 bfd_zalloc (abfd
, number
* sizeof (struct elf_aarch64_local_symbol
));
5126 elf64_aarch64_locals (abfd
) = locals
;
5131 /* Look through the relocs for a section during the first phase. */
5134 elf64_aarch64_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
5135 asection
*sec
, const Elf_Internal_Rela
*relocs
)
5137 Elf_Internal_Shdr
*symtab_hdr
;
5138 struct elf_link_hash_entry
**sym_hashes
;
5139 const Elf_Internal_Rela
*rel
;
5140 const Elf_Internal_Rela
*rel_end
;
5143 struct elf64_aarch64_link_hash_table
*htab
;
5145 unsigned long nsyms
;
5147 if (info
->relocatable
)
5150 BFD_ASSERT (is_aarch64_elf (abfd
));
5152 htab
= elf64_aarch64_hash_table (info
);
5155 symtab_hdr
= &elf_symtab_hdr (abfd
);
5156 sym_hashes
= elf_sym_hashes (abfd
);
5157 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
5159 rel_end
= relocs
+ sec
->reloc_count
;
5160 for (rel
= relocs
; rel
< rel_end
; rel
++)
5162 struct elf_link_hash_entry
*h
;
5163 unsigned long r_symndx
;
5164 unsigned int r_type
;
5166 r_symndx
= ELF64_R_SYM (rel
->r_info
);
5167 r_type
= ELF64_R_TYPE (rel
->r_info
);
5169 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
5171 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"), abfd
,
5176 if (r_symndx
>= nsyms
5177 /* PR 9934: It is possible to have relocations that do not
5178 refer to symbols, thus it is also possible to have an
5179 object file containing relocations but no symbol table. */
5180 && (r_symndx
> 0 || nsyms
> 0))
5182 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"), abfd
,
5187 if (nsyms
== 0 || r_symndx
< symtab_hdr
->sh_info
)
5191 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
5192 while (h
->root
.type
== bfd_link_hash_indirect
5193 || h
->root
.type
== bfd_link_hash_warning
)
5194 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5197 /* Could be done earlier, if h were already available. */
5198 r_type
= aarch64_tls_transition (abfd
, info
, r_type
, h
, r_symndx
);
5202 case R_AARCH64_ABS64
:
5204 /* We don't need to handle relocs into sections not going into
5205 the "real" output. */
5206 if ((sec
->flags
& SEC_ALLOC
) == 0)
5214 h
->plt
.refcount
+= 1;
5215 h
->pointer_equality_needed
= 1;
5218 /* No need to do anything if we're not creating a shared
5224 struct elf_dyn_relocs
*p
;
5225 struct elf_dyn_relocs
**head
;
5227 /* We must copy these reloc types into the output file.
5228 Create a reloc section in dynobj and make room for
5232 if (htab
->root
.dynobj
== NULL
)
5233 htab
->root
.dynobj
= abfd
;
5235 sreloc
= _bfd_elf_make_dynamic_reloc_section
5236 (sec
, htab
->root
.dynobj
, 3, abfd
, /*rela? */ TRUE
);
5242 /* If this is a global symbol, we count the number of
5243 relocations we need for this symbol. */
5246 struct elf64_aarch64_link_hash_entry
*eh
;
5247 eh
= (struct elf64_aarch64_link_hash_entry
*) h
;
5248 head
= &eh
->dyn_relocs
;
5252 /* Track dynamic relocs needed for local syms too.
5253 We really need local syms available to do this
5258 Elf_Internal_Sym
*isym
;
5260 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
5265 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
5269 /* Beware of type punned pointers vs strict aliasing
5271 vpp
= &(elf_section_data (s
)->local_dynrel
);
5272 head
= (struct elf_dyn_relocs
**) vpp
;
5276 if (p
== NULL
|| p
->sec
!= sec
)
5278 bfd_size_type amt
= sizeof *p
;
5279 p
= ((struct elf_dyn_relocs
*)
5280 bfd_zalloc (htab
->root
.dynobj
, amt
));
5293 /* RR: We probably want to keep a consistency check that
5294 there are no dangling GOT_PAGE relocs. */
5295 case R_AARCH64_LD64_GOT_LO12_NC
:
5296 case R_AARCH64_GOT_LD_PREL19
:
5297 case R_AARCH64_ADR_GOT_PAGE
:
5298 case R_AARCH64_TLSGD_ADR_PAGE21
:
5299 case R_AARCH64_TLSGD_ADD_LO12_NC
:
5300 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
5301 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
5302 case R_AARCH64_TLSLE_ADD_TPREL_LO12
:
5303 case R_AARCH64_TLSLE_ADD_TPREL_HI12
:
5304 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
5305 case R_AARCH64_TLSLE_MOVW_TPREL_G2
:
5306 case R_AARCH64_TLSLE_MOVW_TPREL_G1
:
5307 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
5308 case R_AARCH64_TLSLE_MOVW_TPREL_G0
:
5309 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
5310 case R_AARCH64_TLSDESC_ADR_PAGE
:
5311 case R_AARCH64_TLSDESC_ADD_LO12_NC
:
5312 case R_AARCH64_TLSDESC_LD64_LO12_NC
:
5315 unsigned old_got_type
;
5317 got_type
= aarch64_reloc_got_type (r_type
);
5321 h
->got
.refcount
+= 1;
5322 old_got_type
= elf64_aarch64_hash_entry (h
)->got_type
;
5326 struct elf_aarch64_local_symbol
*locals
;
5328 if (!elf64_aarch64_allocate_local_symbols
5329 (abfd
, symtab_hdr
->sh_info
))
5332 locals
= elf64_aarch64_locals (abfd
);
5333 BFD_ASSERT (r_symndx
< symtab_hdr
->sh_info
);
5334 locals
[r_symndx
].got_refcount
+= 1;
5335 old_got_type
= locals
[r_symndx
].got_type
;
5338 /* If a variable is accessed with both general dynamic TLS
5339 methods, two slots may be created. */
5340 if (GOT_TLS_GD_ANY_P (old_got_type
) && GOT_TLS_GD_ANY_P (got_type
))
5341 got_type
|= old_got_type
;
5343 /* We will already have issued an error message if there
5344 is a TLS/non-TLS mismatch, based on the symbol type.
5345 So just combine any TLS types needed. */
5346 if (old_got_type
!= GOT_UNKNOWN
&& old_got_type
!= GOT_NORMAL
5347 && got_type
!= GOT_NORMAL
)
5348 got_type
|= old_got_type
;
5350 /* If the symbol is accessed by both IE and GD methods, we
5351 are able to relax. Turn off the GD flag, without
5352 messing up with any other kind of TLS types that may be
5354 if ((got_type
& GOT_TLS_IE
) && GOT_TLS_GD_ANY_P (got_type
))
5355 got_type
&= ~ (GOT_TLSDESC_GD
| GOT_TLS_GD
);
5357 if (old_got_type
!= got_type
)
5360 elf64_aarch64_hash_entry (h
)->got_type
= got_type
;
5363 struct elf_aarch64_local_symbol
*locals
;
5364 locals
= elf64_aarch64_locals (abfd
);
5365 BFD_ASSERT (r_symndx
< symtab_hdr
->sh_info
);
5366 locals
[r_symndx
].got_type
= got_type
;
5370 if (htab
->root
.sgot
== NULL
)
5372 if (htab
->root
.dynobj
== NULL
)
5373 htab
->root
.dynobj
= abfd
;
5374 if (!_bfd_elf_create_got_section (htab
->root
.dynobj
, info
))
5380 case R_AARCH64_ADR_PREL_PG_HI21_NC
:
5381 case R_AARCH64_ADR_PREL_PG_HI21
:
5382 case R_AARCH64_ADR_PREL_LO21
:
5383 if (h
!= NULL
&& info
->executable
)
5385 /* If this reloc is in a read-only section, we might
5386 need a copy reloc. We can't check reliably at this
5387 stage whether the section is read-only, as input
5388 sections have not yet been mapped to output sections.
5389 Tentatively set the flag for now, and correct in
5390 adjust_dynamic_symbol. */
5392 h
->plt
.refcount
+= 1;
5393 h
->pointer_equality_needed
= 1;
5395 /* FIXME:: RR need to handle these in shared libraries
5396 and essentially bomb out as these being non-PIC
5397 relocations in shared libraries. */
5400 case R_AARCH64_CALL26
:
5401 case R_AARCH64_JUMP26
:
5402 /* If this is a local symbol then we resolve it
5403 directly without creating a PLT entry. */
5408 h
->plt
.refcount
+= 1;
5415 /* Treat mapping symbols as special target symbols. */
5418 elf64_aarch64_is_target_special_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
5421 return bfd_is_aarch64_special_symbol_name (sym
->name
,
5422 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY
);
5425 /* This is a copy of elf_find_function () from elf.c except that
5426 AArch64 mapping symbols are ignored when looking for function names. */
5429 aarch64_elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
5433 const char **filename_ptr
,
5434 const char **functionname_ptr
)
5436 const char *filename
= NULL
;
5437 asymbol
*func
= NULL
;
5438 bfd_vma low_func
= 0;
5441 for (p
= symbols
; *p
!= NULL
; p
++)
5445 q
= (elf_symbol_type
*) * p
;
5447 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
5452 filename
= bfd_asymbol_name (&q
->symbol
);
5456 /* Skip mapping symbols. */
5457 if ((q
->symbol
.flags
& BSF_LOCAL
)
5458 && (bfd_is_aarch64_special_symbol_name
5459 (q
->symbol
.name
, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY
)))
5462 if (bfd_get_section (&q
->symbol
) == section
5463 && q
->symbol
.value
>= low_func
&& q
->symbol
.value
<= offset
)
5465 func
= (asymbol
*) q
;
5466 low_func
= q
->symbol
.value
;
5476 *filename_ptr
= filename
;
5477 if (functionname_ptr
)
5478 *functionname_ptr
= bfd_asymbol_name (func
);
5484 /* Find the nearest line to a particular section and offset, for error
5485 reporting. This code is a duplicate of the code in elf.c, except
5486 that it uses aarch64_elf_find_function. */
5489 elf64_aarch64_find_nearest_line (bfd
*abfd
,
5493 const char **filename_ptr
,
5494 const char **functionname_ptr
,
5495 unsigned int *line_ptr
)
5497 bfd_boolean found
= FALSE
;
5499 /* We skip _bfd_dwarf1_find_nearest_line since no known AArch64
5500 toolchain uses it. */
5502 if (_bfd_dwarf2_find_nearest_line (abfd
, dwarf_debug_sections
,
5503 section
, symbols
, offset
,
5504 filename_ptr
, functionname_ptr
,
5506 &elf_tdata (abfd
)->dwarf2_find_line_info
))
5508 if (!*functionname_ptr
)
5509 aarch64_elf_find_function (abfd
, section
, symbols
, offset
,
5510 *filename_ptr
? NULL
: filename_ptr
,
5516 if (!_bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
5517 &found
, filename_ptr
,
5518 functionname_ptr
, line_ptr
,
5519 &elf_tdata (abfd
)->line_info
))
5522 if (found
&& (*functionname_ptr
|| *line_ptr
))
5525 if (symbols
== NULL
)
5528 if (!aarch64_elf_find_function (abfd
, section
, symbols
, offset
,
5529 filename_ptr
, functionname_ptr
))
5537 elf64_aarch64_find_inliner_info (bfd
*abfd
,
5538 const char **filename_ptr
,
5539 const char **functionname_ptr
,
5540 unsigned int *line_ptr
)
5543 found
= _bfd_dwarf2_find_inliner_info
5544 (abfd
, filename_ptr
,
5545 functionname_ptr
, line_ptr
, &elf_tdata (abfd
)->dwarf2_find_line_info
);
5551 elf64_aarch64_post_process_headers (bfd
*abfd
,
5552 struct bfd_link_info
*link_info
5555 Elf_Internal_Ehdr
*i_ehdrp
; /* ELF file header, internal form. */
5557 i_ehdrp
= elf_elfheader (abfd
);
5558 i_ehdrp
->e_ident
[EI_OSABI
] = 0;
5559 i_ehdrp
->e_ident
[EI_ABIVERSION
] = AARCH64_ELF_ABI_VERSION
;
5562 static enum elf_reloc_type_class
5563 elf64_aarch64_reloc_type_class (const Elf_Internal_Rela
*rela
)
5565 switch ((int) ELF64_R_TYPE (rela
->r_info
))
5567 case R_AARCH64_RELATIVE
:
5568 return reloc_class_relative
;
5569 case R_AARCH64_JUMP_SLOT
:
5570 return reloc_class_plt
;
5571 case R_AARCH64_COPY
:
5572 return reloc_class_copy
;
5574 return reloc_class_normal
;
5578 /* Set the right machine number for an AArch64 ELF file. */
5581 elf64_aarch64_section_flags (flagword
*flags
, const Elf_Internal_Shdr
*hdr
)
5583 if (hdr
->sh_type
== SHT_NOTE
)
5584 *flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_CONTENTS
;
5589 /* Handle an AArch64 specific section when reading an object file. This is
5590 called when bfd_section_from_shdr finds a section with an unknown
5594 elf64_aarch64_section_from_shdr (bfd
*abfd
,
5595 Elf_Internal_Shdr
*hdr
,
5596 const char *name
, int shindex
)
5598 /* There ought to be a place to keep ELF backend specific flags, but
5599 at the moment there isn't one. We just keep track of the
5600 sections by their name, instead. Fortunately, the ABI gives
5601 names for all the AArch64 specific sections, so we will probably get
5603 switch (hdr
->sh_type
)
5605 case SHT_AARCH64_ATTRIBUTES
:
5612 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
5618 /* A structure used to record a list of sections, independently
5619 of the next and prev fields in the asection structure. */
5620 typedef struct section_list
5623 struct section_list
*next
;
5624 struct section_list
*prev
;
5628 /* Unfortunately we need to keep a list of sections for which
5629 an _aarch64_elf_section_data structure has been allocated. This
5630 is because it is possible for functions like elf64_aarch64_write_section
5631 to be called on a section which has had an elf_data_structure
5632 allocated for it (and so the used_by_bfd field is valid) but
5633 for which the AArch64 extended version of this structure - the
5634 _aarch64_elf_section_data structure - has not been allocated. */
5635 static section_list
*sections_with_aarch64_elf_section_data
= NULL
;
5638 record_section_with_aarch64_elf_section_data (asection
*sec
)
5640 struct section_list
*entry
;
5642 entry
= bfd_malloc (sizeof (*entry
));
5646 entry
->next
= sections_with_aarch64_elf_section_data
;
5648 if (entry
->next
!= NULL
)
5649 entry
->next
->prev
= entry
;
5650 sections_with_aarch64_elf_section_data
= entry
;
5653 static struct section_list
*
5654 find_aarch64_elf_section_entry (asection
*sec
)
5656 struct section_list
*entry
;
5657 static struct section_list
*last_entry
= NULL
;
5659 /* This is a short cut for the typical case where the sections are added
5660 to the sections_with_aarch64_elf_section_data list in forward order and
5661 then looked up here in backwards order. This makes a real difference
5662 to the ld-srec/sec64k.exp linker test. */
5663 entry
= sections_with_aarch64_elf_section_data
;
5664 if (last_entry
!= NULL
)
5666 if (last_entry
->sec
== sec
)
5668 else if (last_entry
->next
!= NULL
&& last_entry
->next
->sec
== sec
)
5669 entry
= last_entry
->next
;
5672 for (; entry
; entry
= entry
->next
)
5673 if (entry
->sec
== sec
)
5677 /* Record the entry prior to this one - it is the entry we are
5678 most likely to want to locate next time. Also this way if we
5679 have been called from
5680 unrecord_section_with_aarch64_elf_section_data () we will not
5681 be caching a pointer that is about to be freed. */
5682 last_entry
= entry
->prev
;
5688 unrecord_section_with_aarch64_elf_section_data (asection
*sec
)
5690 struct section_list
*entry
;
5692 entry
= find_aarch64_elf_section_entry (sec
);
5696 if (entry
->prev
!= NULL
)
5697 entry
->prev
->next
= entry
->next
;
5698 if (entry
->next
!= NULL
)
5699 entry
->next
->prev
= entry
->prev
;
5700 if (entry
== sections_with_aarch64_elf_section_data
)
5701 sections_with_aarch64_elf_section_data
= entry
->next
;
5710 struct bfd_link_info
*info
;
5713 int (*func
) (void *, const char *, Elf_Internal_Sym
*,
5714 asection
*, struct elf_link_hash_entry
*);
5715 } output_arch_syminfo
;
5717 enum map_symbol_type
5724 /* Output a single mapping symbol. */
5727 elf64_aarch64_output_map_sym (output_arch_syminfo
*osi
,
5728 enum map_symbol_type type
, bfd_vma offset
)
5730 static const char *names
[2] = { "$x", "$d" };
5731 Elf_Internal_Sym sym
;
5733 sym
.st_value
= (osi
->sec
->output_section
->vma
5734 + osi
->sec
->output_offset
+ offset
);
5737 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
5738 sym
.st_shndx
= osi
->sec_shndx
;
5739 return osi
->func (osi
->finfo
, names
[type
], &sym
, osi
->sec
, NULL
) == 1;
5744 /* Output mapping symbols for PLT entries associated with H. */
5747 elf64_aarch64_output_plt_map (struct elf_link_hash_entry
*h
, void *inf
)
5749 output_arch_syminfo
*osi
= (output_arch_syminfo
*) inf
;
5752 if (h
->root
.type
== bfd_link_hash_indirect
)
5755 if (h
->root
.type
== bfd_link_hash_warning
)
5756 /* When warning symbols are created, they **replace** the "real"
5757 entry in the hash table, thus we never get to see the real
5758 symbol in a hash traversal. So look at it now. */
5759 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5761 if (h
->plt
.offset
== (bfd_vma
) - 1)
5764 addr
= h
->plt
.offset
;
5767 if (!elf64_aarch64_output_map_sym (osi
, AARCH64_MAP_INSN
, addr
))
5774 /* Output a single local symbol for a generated stub. */
5777 elf64_aarch64_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
5778 bfd_vma offset
, bfd_vma size
)
5780 Elf_Internal_Sym sym
;
5782 sym
.st_value
= (osi
->sec
->output_section
->vma
5783 + osi
->sec
->output_offset
+ offset
);
5786 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5787 sym
.st_shndx
= osi
->sec_shndx
;
5788 return osi
->func (osi
->finfo
, name
, &sym
, osi
->sec
, NULL
) == 1;
5792 aarch64_map_one_stub (struct bfd_hash_entry
*gen_entry
, void *in_arg
)
5794 struct elf64_aarch64_stub_hash_entry
*stub_entry
;
5798 output_arch_syminfo
*osi
;
5800 /* Massage our args to the form they really have. */
5801 stub_entry
= (struct elf64_aarch64_stub_hash_entry
*) gen_entry
;
5802 osi
= (output_arch_syminfo
*) in_arg
;
5804 stub_sec
= stub_entry
->stub_sec
;
5806 /* Ensure this stub is attached to the current section being
5808 if (stub_sec
!= osi
->sec
)
5811 addr
= (bfd_vma
) stub_entry
->stub_offset
;
5813 stub_name
= stub_entry
->output_name
;
5815 switch (stub_entry
->stub_type
)
5817 case aarch64_stub_adrp_branch
:
5818 if (!elf64_aarch64_output_stub_sym (osi
, stub_name
, addr
,
5819 sizeof (aarch64_adrp_branch_stub
)))
5821 if (!elf64_aarch64_output_map_sym (osi
, AARCH64_MAP_INSN
, addr
))
5824 case aarch64_stub_long_branch
:
5825 if (!elf64_aarch64_output_stub_sym
5826 (osi
, stub_name
, addr
, sizeof (aarch64_long_branch_stub
)))
5828 if (!elf64_aarch64_output_map_sym (osi
, AARCH64_MAP_INSN
, addr
))
5830 if (!elf64_aarch64_output_map_sym (osi
, AARCH64_MAP_DATA
, addr
+ 16))
5840 /* Output mapping symbols for linker generated sections. */
5843 elf64_aarch64_output_arch_local_syms (bfd
*output_bfd
,
5844 struct bfd_link_info
*info
,
5846 int (*func
) (void *, const char *,
5849 struct elf_link_hash_entry
5852 output_arch_syminfo osi
;
5853 struct elf64_aarch64_link_hash_table
*htab
;
5855 htab
= elf64_aarch64_hash_table (info
);
5861 /* Long calls stubs. */
5862 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
5866 for (stub_sec
= htab
->stub_bfd
->sections
;
5867 stub_sec
!= NULL
; stub_sec
= stub_sec
->next
)
5869 /* Ignore non-stub sections. */
5870 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
5875 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
5876 (output_bfd
, osi
.sec
->output_section
);
5878 bfd_hash_traverse (&htab
->stub_hash_table
, aarch64_map_one_stub
,
5883 /* Finally, output mapping symbols for the PLT. */
5884 if (!htab
->root
.splt
|| htab
->root
.splt
->size
== 0)
5887 /* For now live without mapping symbols for the plt. */
5888 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
5889 (output_bfd
, htab
->root
.splt
->output_section
);
5890 osi
.sec
= htab
->root
.splt
;
5892 elf_link_hash_traverse (&htab
->root
, elf64_aarch64_output_plt_map
,
5899 /* Allocate target specific section data. */
5902 elf64_aarch64_new_section_hook (bfd
*abfd
, asection
*sec
)
5904 if (!sec
->used_by_bfd
)
5906 _aarch64_elf_section_data
*sdata
;
5907 bfd_size_type amt
= sizeof (*sdata
);
5909 sdata
= bfd_zalloc (abfd
, amt
);
5912 sec
->used_by_bfd
= sdata
;
5915 record_section_with_aarch64_elf_section_data (sec
);
5917 return _bfd_elf_new_section_hook (abfd
, sec
);
5922 unrecord_section_via_map_over_sections (bfd
*abfd ATTRIBUTE_UNUSED
,
5924 void *ignore ATTRIBUTE_UNUSED
)
5926 unrecord_section_with_aarch64_elf_section_data (sec
);
5930 elf64_aarch64_close_and_cleanup (bfd
*abfd
)
5933 bfd_map_over_sections (abfd
,
5934 unrecord_section_via_map_over_sections
, NULL
);
5936 return _bfd_elf_close_and_cleanup (abfd
);
5940 elf64_aarch64_bfd_free_cached_info (bfd
*abfd
)
5943 bfd_map_over_sections (abfd
,
5944 unrecord_section_via_map_over_sections
, NULL
);
5946 return _bfd_free_cached_info (abfd
);
5950 elf64_aarch64_is_function_type (unsigned int type
)
5952 return type
== STT_FUNC
;
5955 /* Create dynamic sections. This is different from the ARM backend in that
5956 the got, plt, gotplt and their relocation sections are all created in the
5957 standard part of the bfd elf backend. */
5960 elf64_aarch64_create_dynamic_sections (bfd
*dynobj
,
5961 struct bfd_link_info
*info
)
5963 struct elf64_aarch64_link_hash_table
*htab
;
5964 struct elf_link_hash_entry
*h
;
5966 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
5969 htab
= elf64_aarch64_hash_table (info
);
5970 htab
->sdynbss
= bfd_get_linker_section (dynobj
, ".dynbss");
5972 htab
->srelbss
= bfd_get_linker_section (dynobj
, ".rela.bss");
5974 if (!htab
->sdynbss
|| (!info
->shared
&& !htab
->srelbss
))
5977 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the
5978 dynobj's .got section. We don't do this in the linker script
5979 because we don't want to define the symbol if we are not creating
5980 a global offset table. */
5981 h
= _bfd_elf_define_linkage_sym (dynobj
, info
,
5982 htab
->root
.sgot
, "_GLOBAL_OFFSET_TABLE_");
5983 elf_hash_table (info
)->hgot
= h
;
5991 /* Allocate space in .plt, .got and associated reloc sections for
5995 elf64_aarch64_allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
5997 struct bfd_link_info
*info
;
5998 struct elf64_aarch64_link_hash_table
*htab
;
5999 struct elf64_aarch64_link_hash_entry
*eh
;
6000 struct elf_dyn_relocs
*p
;
6002 /* An example of a bfd_link_hash_indirect symbol is versioned
6003 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
6004 -> __gxx_personality_v0(bfd_link_hash_defined)
6006 There is no need to process bfd_link_hash_indirect symbols here
6007 because we will also be presented with the concrete instance of
6008 the symbol and elf64_aarch64_copy_indirect_symbol () will have been
6009 called to copy all relevant data from the generic to the concrete
6012 if (h
->root
.type
== bfd_link_hash_indirect
)
6015 if (h
->root
.type
== bfd_link_hash_warning
)
6016 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
6018 info
= (struct bfd_link_info
*) inf
;
6019 htab
= elf64_aarch64_hash_table (info
);
6021 if (htab
->root
.dynamic_sections_created
&& h
->plt
.refcount
> 0)
6023 /* Make sure this symbol is output as a dynamic symbol.
6024 Undefined weak syms won't yet be marked as dynamic. */
6025 if (h
->dynindx
== -1 && !h
->forced_local
)
6027 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
6031 if (info
->shared
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
6033 asection
*s
= htab
->root
.splt
;
6035 /* If this is the first .plt entry, make room for the special
6038 s
->size
+= htab
->plt_header_size
;
6040 h
->plt
.offset
= s
->size
;
6042 /* If this symbol is not defined in a regular file, and we are
6043 not generating a shared library, then set the symbol to this
6044 location in the .plt. This is required to make function
6045 pointers compare as equal between the normal executable and
6046 the shared library. */
6047 if (!info
->shared
&& !h
->def_regular
)
6049 h
->root
.u
.def
.section
= s
;
6050 h
->root
.u
.def
.value
= h
->plt
.offset
;
6053 /* Make room for this entry. For now we only create the
6054 small model PLT entries. We later need to find a way
6055 of relaxing into these from the large model PLT entries. */
6056 s
->size
+= PLT_SMALL_ENTRY_SIZE
;
6058 /* We also need to make an entry in the .got.plt section, which
6059 will be placed in the .got section by the linker script. */
6060 htab
->root
.sgotplt
->size
+= GOT_ENTRY_SIZE
;
6062 /* We also need to make an entry in the .rela.plt section. */
6063 htab
->root
.srelplt
->size
+= RELOC_SIZE (htab
);
6065 /* We need to ensure that all GOT entries that serve the PLT
6066 are consecutive with the special GOT slots [0] [1] and
6067 [2]. Any addtional relocations, such as
6068 R_AARCH64_TLSDESC, must be placed after the PLT related
6069 entries. We abuse the reloc_count such that during
6070 sizing we adjust reloc_count to indicate the number of
6071 PLT related reserved entries. In subsequent phases when
6072 filling in the contents of the reloc entries, PLT related
6073 entries are placed by computing their PLT index (0
6074 .. reloc_count). While other none PLT relocs are placed
6075 at the slot indicated by reloc_count and reloc_count is
6078 htab
->root
.srelplt
->reloc_count
++;
6082 h
->plt
.offset
= (bfd_vma
) - 1;
6088 h
->plt
.offset
= (bfd_vma
) - 1;
6092 eh
= (struct elf64_aarch64_link_hash_entry
*) h
;
6093 eh
->tlsdesc_got_jump_table_offset
= (bfd_vma
) - 1;
6095 if (h
->got
.refcount
> 0)
6098 unsigned got_type
= elf64_aarch64_hash_entry (h
)->got_type
;
6100 h
->got
.offset
= (bfd_vma
) - 1;
6102 dyn
= htab
->root
.dynamic_sections_created
;
6104 /* Make sure this symbol is output as a dynamic symbol.
6105 Undefined weak syms won't yet be marked as dynamic. */
6106 if (dyn
&& h
->dynindx
== -1 && !h
->forced_local
)
6108 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
6112 if (got_type
== GOT_UNKNOWN
)
6115 else if (got_type
== GOT_NORMAL
)
6117 h
->got
.offset
= htab
->root
.sgot
->size
;
6118 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
;
6119 if ((ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
6120 || h
->root
.type
!= bfd_link_hash_undefweak
)
6122 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
6124 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
);
6130 if (got_type
& GOT_TLSDESC_GD
)
6132 eh
->tlsdesc_got_jump_table_offset
=
6133 (htab
->root
.sgotplt
->size
6134 - aarch64_compute_jump_table_size (htab
));
6135 htab
->root
.sgotplt
->size
+= GOT_ENTRY_SIZE
* 2;
6136 h
->got
.offset
= (bfd_vma
) - 2;
6139 if (got_type
& GOT_TLS_GD
)
6141 h
->got
.offset
= htab
->root
.sgot
->size
;
6142 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
* 2;
6145 if (got_type
& GOT_TLS_IE
)
6147 h
->got
.offset
= htab
->root
.sgot
->size
;
6148 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
;
6151 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
6152 if ((ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
6153 || h
->root
.type
!= bfd_link_hash_undefweak
)
6156 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
6158 if (got_type
& GOT_TLSDESC_GD
)
6160 htab
->root
.srelplt
->size
+= RELOC_SIZE (htab
);
6161 /* Note reloc_count not incremented here! We have
6162 already adjusted reloc_count for this relocation
6165 /* TLSDESC PLT is now needed, but not yet determined. */
6166 htab
->tlsdesc_plt
= (bfd_vma
) - 1;
6169 if (got_type
& GOT_TLS_GD
)
6170 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
) * 2;
6172 if (got_type
& GOT_TLS_IE
)
6173 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
);
6179 h
->got
.offset
= (bfd_vma
) - 1;
6182 if (eh
->dyn_relocs
== NULL
)
6185 /* In the shared -Bsymbolic case, discard space allocated for
6186 dynamic pc-relative relocs against symbols which turn out to be
6187 defined in regular objects. For the normal shared case, discard
6188 space for pc-relative relocs that have become local due to symbol
6189 visibility changes. */
6193 /* Relocs that use pc_count are those that appear on a call
6194 insn, or certain REL relocs that can generated via assembly.
6195 We want calls to protected symbols to resolve directly to the
6196 function rather than going via the plt. If people want
6197 function pointer comparisons to work as expected then they
6198 should avoid writing weird assembly. */
6199 if (SYMBOL_CALLS_LOCAL (info
, h
))
6201 struct elf_dyn_relocs
**pp
;
6203 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
;)
6205 p
->count
-= p
->pc_count
;
6214 /* Also discard relocs on undefined weak syms with non-default
6216 if (eh
->dyn_relocs
!= NULL
&& h
->root
.type
== bfd_link_hash_undefweak
)
6218 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
6219 eh
->dyn_relocs
= NULL
;
6221 /* Make sure undefined weak symbols are output as a dynamic
6223 else if (h
->dynindx
== -1
6225 && !bfd_elf_link_record_dynamic_symbol (info
, h
))
6230 else if (ELIMINATE_COPY_RELOCS
)
6232 /* For the non-shared case, discard space for relocs against
6233 symbols which turn out to need copy relocs or are not
6239 || (htab
->root
.dynamic_sections_created
6240 && (h
->root
.type
== bfd_link_hash_undefweak
6241 || h
->root
.type
== bfd_link_hash_undefined
))))
6243 /* Make sure this symbol is output as a dynamic symbol.
6244 Undefined weak syms won't yet be marked as dynamic. */
6245 if (h
->dynindx
== -1
6247 && !bfd_elf_link_record_dynamic_symbol (info
, h
))
6250 /* If that succeeded, we know we'll be keeping all the
6252 if (h
->dynindx
!= -1)
6256 eh
->dyn_relocs
= NULL
;
6261 /* Finally, allocate space. */
6262 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
6266 sreloc
= elf_section_data (p
->sec
)->sreloc
;
6268 BFD_ASSERT (sreloc
!= NULL
);
6270 sreloc
->size
+= p
->count
* RELOC_SIZE (htab
);
6279 /* This is the most important function of all . Innocuosly named
6282 elf64_aarch64_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
6283 struct bfd_link_info
*info
)
6285 struct elf64_aarch64_link_hash_table
*htab
;
6291 htab
= elf64_aarch64_hash_table ((info
));
6292 dynobj
= htab
->root
.dynobj
;
6294 BFD_ASSERT (dynobj
!= NULL
);
6296 if (htab
->root
.dynamic_sections_created
)
6298 if (info
->executable
)
6300 s
= bfd_get_linker_section (dynobj
, ".interp");
6303 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
6304 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
6308 /* Set up .got offsets for local syms, and space for local dynamic
6310 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
6312 struct elf_aarch64_local_symbol
*locals
= NULL
;
6313 Elf_Internal_Shdr
*symtab_hdr
;
6317 if (!is_aarch64_elf (ibfd
))
6320 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
6322 struct elf_dyn_relocs
*p
;
6324 for (p
= (struct elf_dyn_relocs
*)
6325 (elf_section_data (s
)->local_dynrel
); p
!= NULL
; p
= p
->next
)
6327 if (!bfd_is_abs_section (p
->sec
)
6328 && bfd_is_abs_section (p
->sec
->output_section
))
6330 /* Input section has been discarded, either because
6331 it is a copy of a linkonce section or due to
6332 linker script /DISCARD/, so we'll be discarding
6335 else if (p
->count
!= 0)
6337 srel
= elf_section_data (p
->sec
)->sreloc
;
6338 srel
->size
+= p
->count
* RELOC_SIZE (htab
);
6339 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
6340 info
->flags
|= DF_TEXTREL
;
6345 locals
= elf64_aarch64_locals (ibfd
);
6349 symtab_hdr
= &elf_symtab_hdr (ibfd
);
6350 srel
= htab
->root
.srelgot
;
6351 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
6353 locals
[i
].got_offset
= (bfd_vma
) - 1;
6354 locals
[i
].tlsdesc_got_jump_table_offset
= (bfd_vma
) - 1;
6355 if (locals
[i
].got_refcount
> 0)
6357 unsigned got_type
= locals
[i
].got_type
;
6358 if (got_type
& GOT_TLSDESC_GD
)
6360 locals
[i
].tlsdesc_got_jump_table_offset
=
6361 (htab
->root
.sgotplt
->size
6362 - aarch64_compute_jump_table_size (htab
));
6363 htab
->root
.sgotplt
->size
+= GOT_ENTRY_SIZE
* 2;
6364 locals
[i
].got_offset
= (bfd_vma
) - 2;
6367 if (got_type
& GOT_TLS_GD
)
6369 locals
[i
].got_offset
= htab
->root
.sgot
->size
;
6370 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
* 2;
6373 if (got_type
& GOT_TLS_IE
)
6375 locals
[i
].got_offset
= htab
->root
.sgot
->size
;
6376 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
;
6379 if (got_type
== GOT_UNKNOWN
)
6383 if (got_type
== GOT_NORMAL
)
6389 if (got_type
& GOT_TLSDESC_GD
)
6391 htab
->root
.srelplt
->size
+= RELOC_SIZE (htab
);
6392 /* Note RELOC_COUNT not incremented here! */
6393 htab
->tlsdesc_plt
= (bfd_vma
) - 1;
6396 if (got_type
& GOT_TLS_GD
)
6397 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
) * 2;
6399 if (got_type
& GOT_TLS_IE
)
6400 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
);
6405 locals
[i
].got_refcount
= (bfd_vma
) - 1;
6411 /* Allocate global sym .plt and .got entries, and space for global
6412 sym dynamic relocs. */
6413 elf_link_hash_traverse (&htab
->root
, elf64_aarch64_allocate_dynrelocs
,
6417 /* For every jump slot reserved in the sgotplt, reloc_count is
6418 incremented. However, when we reserve space for TLS descriptors,
6419 it's not incremented, so in order to compute the space reserved
6420 for them, it suffices to multiply the reloc count by the jump
6423 if (htab
->root
.srelplt
)
6424 htab
->sgotplt_jump_table_size
= aarch64_compute_jump_table_size (htab
);
6426 if (htab
->tlsdesc_plt
)
6428 if (htab
->root
.splt
->size
== 0)
6429 htab
->root
.splt
->size
+= PLT_ENTRY_SIZE
;
6431 htab
->tlsdesc_plt
= htab
->root
.splt
->size
;
6432 htab
->root
.splt
->size
+= PLT_TLSDESC_ENTRY_SIZE
;
6434 /* If we're not using lazy TLS relocations, don't generate the
6435 GOT entry required. */
6436 if (!(info
->flags
& DF_BIND_NOW
))
6438 htab
->dt_tlsdesc_got
= htab
->root
.sgot
->size
;
6439 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
;
6443 /* We now have determined the sizes of the various dynamic sections.
6444 Allocate memory for them. */
6446 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
6448 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
6451 if (s
== htab
->root
.splt
6452 || s
== htab
->root
.sgot
6453 || s
== htab
->root
.sgotplt
6454 || s
== htab
->root
.iplt
6455 || s
== htab
->root
.igotplt
|| s
== htab
->sdynbss
)
6457 /* Strip this section if we don't need it; see the
6460 else if (CONST_STRNEQ (bfd_get_section_name (dynobj
, s
), ".rela"))
6462 if (s
->size
!= 0 && s
!= htab
->root
.srelplt
)
6465 /* We use the reloc_count field as a counter if we need
6466 to copy relocs into the output file. */
6467 if (s
!= htab
->root
.srelplt
)
6472 /* It's not one of our sections, so don't allocate space. */
6478 /* If we don't need this section, strip it from the
6479 output file. This is mostly to handle .rela.bss and
6480 .rela.plt. We must create both sections in
6481 create_dynamic_sections, because they must be created
6482 before the linker maps input sections to output
6483 sections. The linker does that before
6484 adjust_dynamic_symbol is called, and it is that
6485 function which decides whether anything needs to go
6486 into these sections. */
6488 s
->flags
|= SEC_EXCLUDE
;
6492 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
6495 /* Allocate memory for the section contents. We use bfd_zalloc
6496 here in case unused entries are not reclaimed before the
6497 section's contents are written out. This should not happen,
6498 but this way if it does, we get a R_AARCH64_NONE reloc instead
6500 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
6501 if (s
->contents
== NULL
)
6505 if (htab
->root
.dynamic_sections_created
)
6507 /* Add some entries to the .dynamic section. We fill in the
6508 values later, in elf64_aarch64_finish_dynamic_sections, but we
6509 must add the entries now so that we get the correct size for
6510 the .dynamic section. The DT_DEBUG entry is filled in by the
6511 dynamic linker and used by the debugger. */
6512 #define add_dynamic_entry(TAG, VAL) \
6513 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
6515 if (info
->executable
)
6517 if (!add_dynamic_entry (DT_DEBUG
, 0))
6521 if (htab
->root
.splt
->size
!= 0)
6523 if (!add_dynamic_entry (DT_PLTGOT
, 0)
6524 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
6525 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
6526 || !add_dynamic_entry (DT_JMPREL
, 0))
6529 if (htab
->tlsdesc_plt
6530 && (!add_dynamic_entry (DT_TLSDESC_PLT
, 0)
6531 || !add_dynamic_entry (DT_TLSDESC_GOT
, 0)))
6537 if (!add_dynamic_entry (DT_RELA
, 0)
6538 || !add_dynamic_entry (DT_RELASZ
, 0)
6539 || !add_dynamic_entry (DT_RELAENT
, RELOC_SIZE (htab
)))
6542 /* If any dynamic relocs apply to a read-only section,
6543 then we need a DT_TEXTREL entry. */
6544 if ((info
->flags
& DF_TEXTREL
) != 0)
6546 if (!add_dynamic_entry (DT_TEXTREL
, 0))
6551 #undef add_dynamic_entry
6559 elf64_aarch64_update_plt_entry (bfd
*output_bfd
,
6560 unsigned int r_type
,
6561 bfd_byte
*plt_entry
, bfd_vma value
)
6563 reloc_howto_type
*howto
;
6564 howto
= elf64_aarch64_howto_from_type (r_type
);
6565 bfd_elf_aarch64_put_addend (output_bfd
, plt_entry
, howto
, value
);
6569 elf64_aarch64_create_small_pltn_entry (struct elf_link_hash_entry
*h
,
6570 struct elf64_aarch64_link_hash_table
6571 *htab
, bfd
*output_bfd
)
6573 bfd_byte
*plt_entry
;
6576 bfd_vma gotplt_entry_address
;
6577 bfd_vma plt_entry_address
;
6578 Elf_Internal_Rela rela
;
6581 plt_index
= (h
->plt
.offset
- htab
->plt_header_size
) / htab
->plt_entry_size
;
6583 /* Offset in the GOT is PLT index plus got GOT headers(3)
6585 got_offset
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
6586 plt_entry
= htab
->root
.splt
->contents
+ h
->plt
.offset
;
6587 plt_entry_address
= htab
->root
.splt
->output_section
->vma
6588 + htab
->root
.splt
->output_section
->output_offset
+ h
->plt
.offset
;
6589 gotplt_entry_address
= htab
->root
.sgotplt
->output_section
->vma
+
6590 htab
->root
.sgotplt
->output_offset
+ got_offset
;
6592 /* Copy in the boiler-plate for the PLTn entry. */
6593 memcpy (plt_entry
, elf64_aarch64_small_plt_entry
, PLT_SMALL_ENTRY_SIZE
);
6595 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6596 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
6597 elf64_aarch64_update_plt_entry (output_bfd
, R_AARCH64_ADR_PREL_PG_HI21
,
6599 PG (gotplt_entry_address
) -
6600 PG (plt_entry_address
));
6602 /* Fill in the lo12 bits for the load from the pltgot. */
6603 elf64_aarch64_update_plt_entry (output_bfd
, R_AARCH64_LDST64_ABS_LO12_NC
,
6605 PG_OFFSET (gotplt_entry_address
));
6607 /* Fill in the the lo12 bits for the add from the pltgot entry. */
6608 elf64_aarch64_update_plt_entry (output_bfd
, R_AARCH64_ADD_ABS_LO12_NC
,
6610 PG_OFFSET (gotplt_entry_address
));
6612 /* All the GOTPLT Entries are essentially initialized to PLT0. */
6613 bfd_put_64 (output_bfd
,
6614 (htab
->root
.splt
->output_section
->vma
6615 + htab
->root
.splt
->output_offset
),
6616 htab
->root
.sgotplt
->contents
+ got_offset
);
6618 /* Fill in the entry in the .rela.plt section. */
6619 rela
.r_offset
= gotplt_entry_address
;
6620 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_AARCH64_JUMP_SLOT
);
6623 /* Compute the relocation entry to used based on PLT index and do
6624 not adjust reloc_count. The reloc_count has already been adjusted
6625 to account for this entry. */
6626 loc
= htab
->root
.srelplt
->contents
+ plt_index
* RELOC_SIZE (htab
);
6627 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
6630 /* Size sections even though they're not dynamic. We use it to setup
6631 _TLS_MODULE_BASE_, if needed. */
6634 elf64_aarch64_always_size_sections (bfd
*output_bfd
,
6635 struct bfd_link_info
*info
)
6639 if (info
->relocatable
)
6642 tls_sec
= elf_hash_table (info
)->tls_sec
;
6646 struct elf_link_hash_entry
*tlsbase
;
6648 tlsbase
= elf_link_hash_lookup (elf_hash_table (info
),
6649 "_TLS_MODULE_BASE_", TRUE
, TRUE
, FALSE
);
6653 struct bfd_link_hash_entry
*h
= NULL
;
6654 const struct elf_backend_data
*bed
=
6655 get_elf_backend_data (output_bfd
);
6657 if (!(_bfd_generic_link_add_one_symbol
6658 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
6659 tls_sec
, 0, NULL
, FALSE
, bed
->collect
, &h
)))
6662 tlsbase
->type
= STT_TLS
;
6663 tlsbase
= (struct elf_link_hash_entry
*) h
;
6664 tlsbase
->def_regular
= 1;
6665 tlsbase
->other
= STV_HIDDEN
;
6666 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
6673 /* Finish up dynamic symbol handling. We set the contents of various
6674 dynamic sections here. */
6676 elf64_aarch64_finish_dynamic_symbol (bfd
*output_bfd
,
6677 struct bfd_link_info
*info
,
6678 struct elf_link_hash_entry
*h
,
6679 Elf_Internal_Sym
*sym
)
6681 struct elf64_aarch64_link_hash_table
*htab
;
6682 htab
= elf64_aarch64_hash_table (info
);
6684 if (h
->plt
.offset
!= (bfd_vma
) - 1)
6686 /* This symbol has an entry in the procedure linkage table. Set
6689 if (h
->dynindx
== -1
6690 || htab
->root
.splt
== NULL
6691 || htab
->root
.sgotplt
== NULL
|| htab
->root
.srelplt
== NULL
)
6694 elf64_aarch64_create_small_pltn_entry (h
, htab
, output_bfd
);
6695 if (!h
->def_regular
)
6697 /* Mark the symbol as undefined, rather than as defined in
6698 the .plt section. Leave the value alone. This is a clue
6699 for the dynamic linker, to make function pointer
6700 comparisons work between an application and shared
6702 sym
->st_shndx
= SHN_UNDEF
;
6706 if (h
->got
.offset
!= (bfd_vma
) - 1
6707 && elf64_aarch64_hash_entry (h
)->got_type
== GOT_NORMAL
)
6709 Elf_Internal_Rela rela
;
6712 /* This symbol has an entry in the global offset table. Set it
6714 if (htab
->root
.sgot
== NULL
|| htab
->root
.srelgot
== NULL
)
6717 rela
.r_offset
= (htab
->root
.sgot
->output_section
->vma
6718 + htab
->root
.sgot
->output_offset
6719 + (h
->got
.offset
& ~(bfd_vma
) 1));
6721 if (info
->shared
&& SYMBOL_REFERENCES_LOCAL (info
, h
))
6723 if (!h
->def_regular
)
6726 BFD_ASSERT ((h
->got
.offset
& 1) != 0);
6727 rela
.r_info
= ELF64_R_INFO (0, R_AARCH64_RELATIVE
);
6728 rela
.r_addend
= (h
->root
.u
.def
.value
6729 + h
->root
.u
.def
.section
->output_section
->vma
6730 + h
->root
.u
.def
.section
->output_offset
);
6734 BFD_ASSERT ((h
->got
.offset
& 1) == 0);
6735 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
6736 htab
->root
.sgot
->contents
+ h
->got
.offset
);
6737 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_AARCH64_GLOB_DAT
);
6741 loc
= htab
->root
.srelgot
->contents
;
6742 loc
+= htab
->root
.srelgot
->reloc_count
++ * RELOC_SIZE (htab
);
6743 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
6748 Elf_Internal_Rela rela
;
6751 /* This symbol needs a copy reloc. Set it up. */
6753 if (h
->dynindx
== -1
6754 || (h
->root
.type
!= bfd_link_hash_defined
6755 && h
->root
.type
!= bfd_link_hash_defweak
)
6756 || htab
->srelbss
== NULL
)
6759 rela
.r_offset
= (h
->root
.u
.def
.value
6760 + h
->root
.u
.def
.section
->output_section
->vma
6761 + h
->root
.u
.def
.section
->output_offset
);
6762 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_AARCH64_COPY
);
6764 loc
= htab
->srelbss
->contents
;
6765 loc
+= htab
->srelbss
->reloc_count
++ * RELOC_SIZE (htab
);
6766 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
6769 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
6770 be NULL for local symbols. */
6772 && (h
== elf_hash_table (info
)->hdynamic
6773 || h
== elf_hash_table (info
)->hgot
))
6774 sym
->st_shndx
= SHN_ABS
;
6780 elf64_aarch64_init_small_plt0_entry (bfd
*output_bfd ATTRIBUTE_UNUSED
,
6781 struct elf64_aarch64_link_hash_table
6784 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
6785 small and large plts and at the minute just generates
6788 /* PLT0 of the small PLT looks like this -
6789 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
6790 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
6791 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
6793 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
6794 // GOTPLT entry for this.
6797 bfd_vma plt_got_base
;
6801 memcpy (htab
->root
.splt
->contents
, elf64_aarch64_small_plt0_entry
,
6803 elf_section_data (htab
->root
.splt
->output_section
)->this_hdr
.sh_entsize
=
6806 plt_got_base
= (htab
->root
.sgotplt
->output_section
->vma
6807 + htab
->root
.sgotplt
->output_offset
);
6809 plt_base
= htab
->root
.splt
->output_section
->vma
+
6810 htab
->root
.splt
->output_section
->output_offset
;
6812 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6813 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
6814 elf64_aarch64_update_plt_entry (output_bfd
, R_AARCH64_ADR_PREL_PG_HI21
,
6815 htab
->root
.splt
->contents
+ 4,
6816 PG (plt_got_base
+ 16) - PG (plt_base
+ 4));
6818 elf64_aarch64_update_plt_entry (output_bfd
, R_AARCH64_LDST64_ABS_LO12_NC
,
6819 htab
->root
.splt
->contents
+ 8,
6820 PG_OFFSET (plt_got_base
+ 16));
6822 elf64_aarch64_update_plt_entry (output_bfd
, R_AARCH64_ADD_ABS_LO12_NC
,
6823 htab
->root
.splt
->contents
+ 12,
6824 PG_OFFSET (plt_got_base
+ 16));
6828 elf64_aarch64_finish_dynamic_sections (bfd
*output_bfd
,
6829 struct bfd_link_info
*info
)
6831 struct elf64_aarch64_link_hash_table
*htab
;
6835 htab
= elf64_aarch64_hash_table (info
);
6836 dynobj
= htab
->root
.dynobj
;
6837 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
6839 if (htab
->root
.dynamic_sections_created
)
6841 Elf64_External_Dyn
*dyncon
, *dynconend
;
6843 if (sdyn
== NULL
|| htab
->root
.sgot
== NULL
)
6846 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
6847 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
6848 for (; dyncon
< dynconend
; dyncon
++)
6850 Elf_Internal_Dyn dyn
;
6853 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
6861 s
= htab
->root
.sgotplt
;
6862 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
6866 dyn
.d_un
.d_ptr
= htab
->root
.srelplt
->output_section
->vma
;
6870 s
= htab
->root
.srelplt
->output_section
;
6871 dyn
.d_un
.d_val
= s
->size
;
6875 /* The procedure linkage table relocs (DT_JMPREL) should
6876 not be included in the overall relocs (DT_RELA).
6877 Therefore, we override the DT_RELASZ entry here to
6878 make it not include the JMPREL relocs. Since the
6879 linker script arranges for .rela.plt to follow all
6880 other relocation sections, we don't have to worry
6881 about changing the DT_RELA entry. */
6882 if (htab
->root
.srelplt
!= NULL
)
6884 s
= htab
->root
.srelplt
->output_section
;
6885 dyn
.d_un
.d_val
-= s
->size
;
6889 case DT_TLSDESC_PLT
:
6890 s
= htab
->root
.splt
;
6891 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
6892 + htab
->tlsdesc_plt
;
6895 case DT_TLSDESC_GOT
:
6896 s
= htab
->root
.sgot
;
6897 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
6898 + htab
->dt_tlsdesc_got
;
6902 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
6907 /* Fill in the special first entry in the procedure linkage table. */
6908 if (htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
6910 elf64_aarch64_init_small_plt0_entry (output_bfd
, htab
);
6912 elf_section_data (htab
->root
.splt
->output_section
)->
6913 this_hdr
.sh_entsize
= htab
->plt_entry_size
;
6916 if (htab
->tlsdesc_plt
)
6918 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
6919 htab
->root
.sgot
->contents
+ htab
->dt_tlsdesc_got
);
6921 memcpy (htab
->root
.splt
->contents
+ htab
->tlsdesc_plt
,
6922 elf64_aarch64_tlsdesc_small_plt_entry
,
6923 sizeof (elf64_aarch64_tlsdesc_small_plt_entry
));
6926 bfd_vma adrp1_addr
=
6927 htab
->root
.splt
->output_section
->vma
6928 + htab
->root
.splt
->output_offset
+ htab
->tlsdesc_plt
+ 4;
6930 bfd_vma adrp2_addr
=
6931 htab
->root
.splt
->output_section
->vma
6932 + htab
->root
.splt
->output_offset
+ htab
->tlsdesc_plt
+ 8;
6935 htab
->root
.sgot
->output_section
->vma
6936 + htab
->root
.sgot
->output_offset
;
6938 bfd_vma pltgot_addr
=
6939 htab
->root
.sgotplt
->output_section
->vma
6940 + htab
->root
.sgotplt
->output_offset
;
6942 bfd_vma dt_tlsdesc_got
= got_addr
+ htab
->dt_tlsdesc_got
;
6945 /* adrp x2, DT_TLSDESC_GOT */
6946 opcode
= bfd_get_32 (output_bfd
,
6947 htab
->root
.splt
->contents
6948 + htab
->tlsdesc_plt
+ 4);
6949 opcode
= reencode_adr_imm
6950 (opcode
, (PG (dt_tlsdesc_got
) - PG (adrp1_addr
)) >> 12);
6951 bfd_put_32 (output_bfd
, opcode
,
6952 htab
->root
.splt
->contents
+ htab
->tlsdesc_plt
+ 4);
6955 opcode
= bfd_get_32 (output_bfd
,
6956 htab
->root
.splt
->contents
6957 + htab
->tlsdesc_plt
+ 8);
6958 opcode
= reencode_adr_imm
6959 (opcode
, (PG (pltgot_addr
) - PG (adrp2_addr
)) >> 12);
6960 bfd_put_32 (output_bfd
, opcode
,
6961 htab
->root
.splt
->contents
+ htab
->tlsdesc_plt
+ 8);
6963 /* ldr x2, [x2, #0] */
6964 opcode
= bfd_get_32 (output_bfd
,
6965 htab
->root
.splt
->contents
6966 + htab
->tlsdesc_plt
+ 12);
6967 opcode
= reencode_ldst_pos_imm (opcode
,
6968 PG_OFFSET (dt_tlsdesc_got
) >> 3);
6969 bfd_put_32 (output_bfd
, opcode
,
6970 htab
->root
.splt
->contents
+ htab
->tlsdesc_plt
+ 12);
6973 opcode
= bfd_get_32 (output_bfd
,
6974 htab
->root
.splt
->contents
6975 + htab
->tlsdesc_plt
+ 16);
6976 opcode
= reencode_add_imm (opcode
, PG_OFFSET (pltgot_addr
));
6977 bfd_put_32 (output_bfd
, opcode
,
6978 htab
->root
.splt
->contents
+ htab
->tlsdesc_plt
+ 16);
6983 if (htab
->root
.sgotplt
)
6985 if (bfd_is_abs_section (htab
->root
.sgotplt
->output_section
))
6987 (*_bfd_error_handler
)
6988 (_("discarded output section: `%A'"), htab
->root
.sgotplt
);
6992 /* Fill in the first three entries in the global offset table. */
6993 if (htab
->root
.sgotplt
->size
> 0)
6995 /* Set the first entry in the global offset table to the address of
6996 the dynamic section. */
6998 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
6999 htab
->root
.sgotplt
->contents
);
7001 bfd_put_64 (output_bfd
,
7002 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
7003 htab
->root
.sgotplt
->contents
);
7004 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
7005 bfd_put_64 (output_bfd
,
7007 htab
->root
.sgotplt
->contents
+ GOT_ENTRY_SIZE
);
7008 bfd_put_64 (output_bfd
,
7010 htab
->root
.sgotplt
->contents
+ GOT_ENTRY_SIZE
* 2);
7013 elf_section_data (htab
->root
.sgotplt
->output_section
)->
7014 this_hdr
.sh_entsize
= GOT_ENTRY_SIZE
;
7017 if (htab
->root
.sgot
&& htab
->root
.sgot
->size
> 0)
7018 elf_section_data (htab
->root
.sgot
->output_section
)->this_hdr
.sh_entsize
7024 /* Return address for Ith PLT stub in section PLT, for relocation REL
7025 or (bfd_vma) -1 if it should not be included. */
7028 elf64_aarch64_plt_sym_val (bfd_vma i
, const asection
*plt
,
7029 const arelent
*rel ATTRIBUTE_UNUSED
)
7031 return plt
->vma
+ PLT_ENTRY_SIZE
+ i
* PLT_SMALL_ENTRY_SIZE
;
7035 /* We use this so we can override certain functions
7036 (though currently we don't). */
7038 const struct elf_size_info elf64_aarch64_size_info
=
7040 sizeof (Elf64_External_Ehdr
),
7041 sizeof (Elf64_External_Phdr
),
7042 sizeof (Elf64_External_Shdr
),
7043 sizeof (Elf64_External_Rel
),
7044 sizeof (Elf64_External_Rela
),
7045 sizeof (Elf64_External_Sym
),
7046 sizeof (Elf64_External_Dyn
),
7047 sizeof (Elf_External_Note
),
7048 4, /* Hash table entry size. */
7049 1, /* Internal relocs per external relocs. */
7050 64, /* Arch size. */
7051 3, /* Log_file_align. */
7052 ELFCLASS64
, EV_CURRENT
,
7053 bfd_elf64_write_out_phdrs
,
7054 bfd_elf64_write_shdrs_and_ehdr
,
7055 bfd_elf64_checksum_contents
,
7056 bfd_elf64_write_relocs
,
7057 bfd_elf64_swap_symbol_in
,
7058 bfd_elf64_swap_symbol_out
,
7059 bfd_elf64_slurp_reloc_table
,
7060 bfd_elf64_slurp_symbol_table
,
7061 bfd_elf64_swap_dyn_in
,
7062 bfd_elf64_swap_dyn_out
,
7063 bfd_elf64_swap_reloc_in
,
7064 bfd_elf64_swap_reloc_out
,
7065 bfd_elf64_swap_reloca_in
,
7066 bfd_elf64_swap_reloca_out
7069 #define ELF_ARCH bfd_arch_aarch64
7070 #define ELF_MACHINE_CODE EM_AARCH64
7071 #define ELF_MAXPAGESIZE 0x10000
7072 #define ELF_MINPAGESIZE 0x1000
7073 #define ELF_COMMONPAGESIZE 0x1000
7075 #define bfd_elf64_close_and_cleanup \
7076 elf64_aarch64_close_and_cleanup
7078 #define bfd_elf64_bfd_copy_private_bfd_data \
7079 elf64_aarch64_copy_private_bfd_data
7081 #define bfd_elf64_bfd_free_cached_info \
7082 elf64_aarch64_bfd_free_cached_info
7084 #define bfd_elf64_bfd_is_target_special_symbol \
7085 elf64_aarch64_is_target_special_symbol
7087 #define bfd_elf64_bfd_link_hash_table_create \
7088 elf64_aarch64_link_hash_table_create
7090 #define bfd_elf64_bfd_link_hash_table_free \
7091 elf64_aarch64_hash_table_free
7093 #define bfd_elf64_bfd_merge_private_bfd_data \
7094 elf64_aarch64_merge_private_bfd_data
7096 #define bfd_elf64_bfd_print_private_bfd_data \
7097 elf64_aarch64_print_private_bfd_data
7099 #define bfd_elf64_bfd_reloc_type_lookup \
7100 elf64_aarch64_reloc_type_lookup
7102 #define bfd_elf64_bfd_reloc_name_lookup \
7103 elf64_aarch64_reloc_name_lookup
7105 #define bfd_elf64_bfd_set_private_flags \
7106 elf64_aarch64_set_private_flags
7108 #define bfd_elf64_find_inliner_info \
7109 elf64_aarch64_find_inliner_info
7111 #define bfd_elf64_find_nearest_line \
7112 elf64_aarch64_find_nearest_line
7114 #define bfd_elf64_mkobject \
7115 elf64_aarch64_mkobject
7117 #define bfd_elf64_new_section_hook \
7118 elf64_aarch64_new_section_hook
7120 #define elf_backend_adjust_dynamic_symbol \
7121 elf64_aarch64_adjust_dynamic_symbol
7123 #define elf_backend_always_size_sections \
7124 elf64_aarch64_always_size_sections
7126 #define elf_backend_check_relocs \
7127 elf64_aarch64_check_relocs
7129 #define elf_backend_copy_indirect_symbol \
7130 elf64_aarch64_copy_indirect_symbol
7132 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
7133 to them in our hash. */
7134 #define elf_backend_create_dynamic_sections \
7135 elf64_aarch64_create_dynamic_sections
7137 #define elf_backend_init_index_section \
7138 _bfd_elf_init_2_index_sections
7140 #define elf_backend_is_function_type \
7141 elf64_aarch64_is_function_type
7143 #define elf_backend_finish_dynamic_sections \
7144 elf64_aarch64_finish_dynamic_sections
7146 #define elf_backend_finish_dynamic_symbol \
7147 elf64_aarch64_finish_dynamic_symbol
7149 #define elf_backend_gc_sweep_hook \
7150 elf64_aarch64_gc_sweep_hook
7152 #define elf_backend_object_p \
7153 elf64_aarch64_object_p
7155 #define elf_backend_output_arch_local_syms \
7156 elf64_aarch64_output_arch_local_syms
7158 #define elf_backend_plt_sym_val \
7159 elf64_aarch64_plt_sym_val
7161 #define elf_backend_post_process_headers \
7162 elf64_aarch64_post_process_headers
7164 #define elf_backend_relocate_section \
7165 elf64_aarch64_relocate_section
7167 #define elf_backend_reloc_type_class \
7168 elf64_aarch64_reloc_type_class
7170 #define elf_backend_section_flags \
7171 elf64_aarch64_section_flags
7173 #define elf_backend_section_from_shdr \
7174 elf64_aarch64_section_from_shdr
7176 #define elf_backend_size_dynamic_sections \
7177 elf64_aarch64_size_dynamic_sections
7179 #define elf_backend_size_info \
7180 elf64_aarch64_size_info
7182 #define elf_backend_can_refcount 1
7183 #define elf_backend_can_gc_sections 1
7184 #define elf_backend_plt_readonly 1
7185 #define elf_backend_want_got_plt 1
7186 #define elf_backend_want_plt_sym 0
7187 #define elf_backend_may_use_rel_p 0
7188 #define elf_backend_may_use_rela_p 1
7189 #define elf_backend_default_use_rela_p 1
7190 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
7192 #undef elf_backend_obj_attrs_section
7193 #define elf_backend_obj_attrs_section ".ARM.attributes"
7195 #include "elf64-target.h"