1 /* Target-dependent code for Renesas M32R, for GDB.
3 Copyright (C) 1996-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "frame-unwind.h"
23 #include "frame-base.h"
28 #include "gdb_string.h"
35 #include "arch-utils.h"
37 #include "trad-frame.h"
40 #include "gdb_assert.h"
42 #include "m32r-tdep.h"
46 extern void _initialize_m32r_tdep (void);
49 m32r_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
51 /* Align to the size of an instruction (so that they can safely be
52 pushed onto the stack. */
59 The little endian mode of M32R is unique. In most of architectures,
60 two 16-bit instructions, A and B, are placed as the following:
68 In M32R, they are placed like this:
76 This is because M32R always fetches instructions in 32-bit.
78 The following functions take care of this behavior. */
81 m32r_memory_insert_breakpoint (struct gdbarch
*gdbarch
,
82 struct bp_target_info
*bp_tgt
)
84 CORE_ADDR addr
= bp_tgt
->placed_address
;
87 gdb_byte contents_cache
[4];
88 gdb_byte bp_entry
[] = { 0x10, 0xf1 }; /* dpt */
90 /* Save the memory contents. */
91 val
= target_read_memory (addr
& 0xfffffffc, contents_cache
, 4);
93 return val
; /* return error */
95 memcpy (bp_tgt
->shadow_contents
, contents_cache
, 4);
96 bp_tgt
->placed_size
= bp_tgt
->shadow_len
= 4;
98 /* Determine appropriate breakpoint contents and size for this address. */
99 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
103 buf
[0] = bp_entry
[0];
104 buf
[1] = bp_entry
[1];
105 buf
[2] = contents_cache
[2] & 0x7f;
106 buf
[3] = contents_cache
[3];
110 buf
[0] = contents_cache
[0];
111 buf
[1] = contents_cache
[1];
112 buf
[2] = bp_entry
[0];
113 buf
[3] = bp_entry
[1];
116 else /* little-endian */
120 buf
[0] = contents_cache
[0];
121 buf
[1] = contents_cache
[1] & 0x7f;
122 buf
[2] = bp_entry
[1];
123 buf
[3] = bp_entry
[0];
127 buf
[0] = bp_entry
[1];
128 buf
[1] = bp_entry
[0];
129 buf
[2] = contents_cache
[2];
130 buf
[3] = contents_cache
[3];
134 /* Write the breakpoint. */
135 val
= target_write_memory (addr
& 0xfffffffc, buf
, 4);
140 m32r_memory_remove_breakpoint (struct gdbarch
*gdbarch
,
141 struct bp_target_info
*bp_tgt
)
143 CORE_ADDR addr
= bp_tgt
->placed_address
;
146 gdb_byte
*contents_cache
= bp_tgt
->shadow_contents
;
148 buf
[0] = contents_cache
[0];
149 buf
[1] = contents_cache
[1];
150 buf
[2] = contents_cache
[2];
151 buf
[3] = contents_cache
[3];
153 /* Remove parallel bit. */
154 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
156 if ((buf
[0] & 0x80) == 0 && (buf
[2] & 0x80) != 0)
159 else /* little-endian */
161 if ((buf
[3] & 0x80) == 0 && (buf
[1] & 0x80) != 0)
165 /* Write contents. */
166 val
= target_write_raw_memory (addr
& 0xfffffffc, buf
, 4);
170 static const gdb_byte
*
171 m32r_breakpoint_from_pc (struct gdbarch
*gdbarch
,
172 CORE_ADDR
*pcptr
, int *lenptr
)
174 static gdb_byte be_bp_entry
[] = {
175 0x10, 0xf1, 0x70, 0x00
177 static gdb_byte le_bp_entry
[] = {
178 0x00, 0x70, 0xf1, 0x10
182 /* Determine appropriate breakpoint. */
183 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
185 if ((*pcptr
& 3) == 0)
198 if ((*pcptr
& 3) == 0)
205 bp
= le_bp_entry
+ 2;
214 char *m32r_register_names
[] = {
215 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
216 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
217 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
222 m32r_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
226 if (reg_nr
>= M32R_NUM_REGS
)
228 return m32r_register_names
[reg_nr
];
232 /* Return the GDB type object for the "standard" data type
233 of data in register N. */
236 m32r_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
238 if (reg_nr
== M32R_PC_REGNUM
)
239 return builtin_type (gdbarch
)->builtin_func_ptr
;
240 else if (reg_nr
== M32R_SP_REGNUM
|| reg_nr
== M32R_FP_REGNUM
)
241 return builtin_type (gdbarch
)->builtin_data_ptr
;
243 return builtin_type (gdbarch
)->builtin_int32
;
247 /* Write into appropriate registers a function return value
248 of type TYPE, given in virtual format.
250 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
253 m32r_store_return_value (struct type
*type
, struct regcache
*regcache
,
256 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
257 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
259 int len
= TYPE_LENGTH (type
);
261 regval
= extract_unsigned_integer (valbuf
, len
> 4 ? 4 : len
, byte_order
);
262 regcache_cooked_write_unsigned (regcache
, RET1_REGNUM
, regval
);
266 regval
= extract_unsigned_integer ((gdb_byte
*) valbuf
+ 4,
267 len
- 4, byte_order
);
268 regcache_cooked_write_unsigned (regcache
, RET1_REGNUM
+ 1, regval
);
272 /* This is required by skip_prologue. The results of decoding a prologue
273 should be cached because this thrashing is getting nuts. */
276 decode_prologue (struct gdbarch
*gdbarch
,
277 CORE_ADDR start_pc
, CORE_ADDR scan_limit
,
278 CORE_ADDR
*pl_endptr
, unsigned long *framelength
)
280 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
281 unsigned long framesize
;
284 CORE_ADDR after_prologue
= 0;
285 CORE_ADDR after_push
= 0;
286 CORE_ADDR after_stack_adjust
= 0;
287 CORE_ADDR current_pc
;
288 LONGEST return_value
;
293 for (current_pc
= start_pc
; current_pc
< scan_limit
; current_pc
+= 2)
295 /* Check if current pc's location is readable. */
296 if (!safe_read_memory_integer (current_pc
, 2, byte_order
, &return_value
))
299 insn
= read_memory_unsigned_integer (current_pc
, 2, byte_order
);
304 /* If this is a 32 bit instruction, we dont want to examine its
305 immediate data as though it were an instruction. */
306 if (current_pc
& 0x02)
308 /* Decode this instruction further. */
315 if (current_pc
== scan_limit
)
316 scan_limit
+= 2; /* extend the search */
318 current_pc
+= 2; /* skip the immediate data */
320 /* Check if current pc's location is readable. */
321 if (!safe_read_memory_integer (current_pc
, 2, byte_order
,
325 if (insn
== 0x8faf) /* add3 sp, sp, xxxx */
326 /* add 16 bit sign-extended offset */
329 -((short) read_memory_unsigned_integer (current_pc
,
334 if (((insn
>> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
335 && safe_read_memory_integer (current_pc
+ 2,
338 && read_memory_unsigned_integer (current_pc
+ 2,
342 /* Subtract 24 bit sign-extended negative-offset. */
343 insn
= read_memory_unsigned_integer (current_pc
- 2,
345 if (insn
& 0x00800000) /* sign extend */
346 insn
|= 0xff000000; /* negative */
348 insn
&= 0x00ffffff; /* positive */
352 after_push
= current_pc
+ 2;
356 op1
= insn
& 0xf000; /* Isolate just the first nibble. */
358 if ((insn
& 0xf0ff) == 0x207f)
362 regno
= ((insn
>> 8) & 0xf);
366 if ((insn
>> 8) == 0x4f) /* addi sp, xx */
367 /* Add 8 bit sign-extended offset. */
369 int stack_adjust
= (signed char) (insn
& 0xff);
371 /* there are probably two of these stack adjustments:
372 1) A negative one in the prologue, and
373 2) A positive one in the epilogue.
374 We are only interested in the first one. */
376 if (stack_adjust
< 0)
378 framesize
-= stack_adjust
;
380 /* A frameless function may have no "mv fp, sp".
381 In that case, this is the end of the prologue. */
382 after_stack_adjust
= current_pc
+ 2;
388 after_prologue
= current_pc
+ 2;
389 break; /* end of stack adjustments */
392 /* Nop looks like a branch, continue explicitly. */
395 after_prologue
= current_pc
+ 2;
396 continue; /* nop occurs between pushes. */
398 /* End of prolog if any of these are trap instructions. */
399 if ((insn
& 0xfff0) == 0x10f0)
401 after_prologue
= current_pc
;
404 /* End of prolog if any of these are branch instructions. */
405 if ((op1
== 0x7000) || (op1
== 0xb000) || (op1
== 0xf000))
407 after_prologue
= current_pc
;
410 /* Some of the branch instructions are mixed with other types. */
413 int subop
= insn
& 0x0ff0;
414 if ((subop
== 0x0ec0) || (subop
== 0x0fc0))
416 after_prologue
= current_pc
;
417 continue; /* jmp , jl */
423 *framelength
= framesize
;
425 if (current_pc
>= scan_limit
)
429 if (after_stack_adjust
!= 0)
430 /* We did not find a "mv fp,sp", but we DID find
431 a stack_adjust. Is it safe to use that as the
432 end of the prologue? I just don't know. */
434 *pl_endptr
= after_stack_adjust
;
436 else if (after_push
!= 0)
437 /* We did not find a "mv fp,sp", but we DID find
438 a push. Is it safe to use that as the
439 end of the prologue? I just don't know. */
441 *pl_endptr
= after_push
;
444 /* We reached the end of the loop without finding the end
445 of the prologue. No way to win -- we should report
446 failure. The way we do that is to return the original
447 start_pc. GDB will set a breakpoint at the start of
448 the function (etc.) */
449 *pl_endptr
= start_pc
;
454 if (after_prologue
== 0)
455 after_prologue
= current_pc
;
458 *pl_endptr
= after_prologue
;
461 } /* decode_prologue */
463 /* Function: skip_prologue
464 Find end of function prologue. */
466 #define DEFAULT_SEARCH_LIMIT 128
469 m32r_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
471 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
472 CORE_ADDR func_addr
, func_end
;
473 struct symtab_and_line sal
;
474 LONGEST return_value
;
476 /* See what the symbol table says. */
478 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
480 sal
= find_pc_line (func_addr
, 0);
482 if (sal
.line
!= 0 && sal
.end
<= func_end
)
487 /* Either there's no line info, or the line after the prologue is after
488 the end of the function. In this case, there probably isn't a
491 func_end
= min (func_end
, func_addr
+ DEFAULT_SEARCH_LIMIT
);
495 func_end
= pc
+ DEFAULT_SEARCH_LIMIT
;
497 /* If pc's location is not readable, just quit. */
498 if (!safe_read_memory_integer (pc
, 4, byte_order
, &return_value
))
501 /* Find the end of prologue. */
502 if (decode_prologue (gdbarch
, pc
, func_end
, &sal
.end
, NULL
) < 0)
508 struct m32r_unwind_cache
510 /* The previous frame's inner most stack address. Used as this
511 frame ID's stack_addr. */
513 /* The frame's base, optionally used by the high-level debug info. */
516 /* How far the SP and r13 (FP) have been offset from the start of
517 the stack frame (as defined by the previous frame's stack
522 /* Table indicating the location of each and every register. */
523 struct trad_frame_saved_reg
*saved_regs
;
526 /* Put here the code to store, into fi->saved_regs, the addresses of
527 the saved registers of frame described by FRAME_INFO. This
528 includes special registers such as pc and fp saved in special ways
529 in the stack frame. sp is even more special: the address we return
530 for it IS the sp for the next frame. */
532 static struct m32r_unwind_cache
*
533 m32r_frame_unwind_cache (struct frame_info
*this_frame
,
534 void **this_prologue_cache
)
536 CORE_ADDR pc
, scan_limit
;
541 struct m32r_unwind_cache
*info
;
544 if ((*this_prologue_cache
))
545 return (*this_prologue_cache
);
547 info
= FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache
);
548 (*this_prologue_cache
) = info
;
549 info
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
553 info
->uses_frame
= 0;
555 scan_limit
= get_frame_pc (this_frame
);
556 for (pc
= get_frame_func (this_frame
);
557 pc
> 0 && pc
< scan_limit
; pc
+= 2)
561 op
= get_frame_memory_unsigned (this_frame
, pc
, 4);
562 if ((op
& 0x80000000) == 0x80000000)
564 /* 32-bit instruction */
565 if ((op
& 0xffff0000) == 0x8faf0000)
567 /* add3 sp,sp,xxxx */
568 short n
= op
& 0xffff;
569 info
->sp_offset
+= n
;
571 else if (((op
>> 8) == 0xe4)
572 && get_frame_memory_unsigned (this_frame
, pc
+ 2,
575 /* ld24 r4, xxxxxx; sub sp, r4 */
576 unsigned long n
= op
& 0xffffff;
577 info
->sp_offset
+= n
;
578 pc
+= 2; /* skip sub instruction */
581 if (pc
== scan_limit
)
582 scan_limit
+= 2; /* extend the search */
583 pc
+= 2; /* skip the immediate data */
588 /* 16-bit instructions */
589 op
= get_frame_memory_unsigned (this_frame
, pc
, 2) & 0x7fff;
590 if ((op
& 0xf0ff) == 0x207f)
593 int regno
= ((op
>> 8) & 0xf);
594 info
->sp_offset
-= 4;
595 info
->saved_regs
[regno
].addr
= info
->sp_offset
;
597 else if ((op
& 0xff00) == 0x4f00)
600 int n
= (signed char) (op
& 0xff);
601 info
->sp_offset
+= n
;
603 else if (op
== 0x1d8f)
606 info
->uses_frame
= 1;
607 info
->r13_offset
= info
->sp_offset
;
608 break; /* end of stack adjustments */
610 else if ((op
& 0xfff0) == 0x10f0)
612 /* End of prologue if this is a trap instruction. */
613 break; /* End of stack adjustments. */
617 info
->size
= -info
->sp_offset
;
619 /* Compute the previous frame's stack pointer (which is also the
620 frame's ID's stack address), and this frame's base pointer. */
621 if (info
->uses_frame
)
623 /* The SP was moved to the FP. This indicates that a new frame
624 was created. Get THIS frame's FP value by unwinding it from
626 this_base
= get_frame_register_unsigned (this_frame
, M32R_FP_REGNUM
);
627 /* The FP points at the last saved register. Adjust the FP back
628 to before the first saved register giving the SP. */
629 prev_sp
= this_base
+ info
->size
;
633 /* Assume that the FP is this frame's SP but with that pushed
634 stack space added back. */
635 this_base
= get_frame_register_unsigned (this_frame
, M32R_SP_REGNUM
);
636 prev_sp
= this_base
+ info
->size
;
639 /* Convert that SP/BASE into real addresses. */
640 info
->prev_sp
= prev_sp
;
641 info
->base
= this_base
;
643 /* Adjust all the saved registers so that they contain addresses and
645 for (i
= 0; i
< gdbarch_num_regs (get_frame_arch (this_frame
)) - 1; i
++)
646 if (trad_frame_addr_p (info
->saved_regs
, i
))
647 info
->saved_regs
[i
].addr
= (info
->prev_sp
+ info
->saved_regs
[i
].addr
);
649 /* The call instruction moves the caller's PC in the callee's LR.
650 Since this is an unwind, do the reverse. Copy the location of LR
651 into PC (the address / regnum) so that a request for PC will be
652 converted into a request for the LR. */
653 info
->saved_regs
[M32R_PC_REGNUM
] = info
->saved_regs
[LR_REGNUM
];
655 /* The previous frame's SP needed to be computed. Save the computed
657 trad_frame_set_value (info
->saved_regs
, M32R_SP_REGNUM
, prev_sp
);
663 m32r_read_pc (struct regcache
*regcache
)
666 regcache_cooked_read_unsigned (regcache
, M32R_PC_REGNUM
, &pc
);
671 m32r_write_pc (struct regcache
*regcache
, CORE_ADDR val
)
673 regcache_cooked_write_unsigned (regcache
, M32R_PC_REGNUM
, val
);
677 m32r_unwind_sp (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
679 return frame_unwind_register_unsigned (next_frame
, M32R_SP_REGNUM
);
684 m32r_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
685 struct regcache
*regcache
, CORE_ADDR bp_addr
, int nargs
,
686 struct value
**args
, CORE_ADDR sp
, int struct_return
,
687 CORE_ADDR struct_addr
)
689 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
690 int stack_offset
, stack_alloc
;
691 int argreg
= ARG1_REGNUM
;
694 enum type_code typecode
;
697 gdb_byte valbuf
[MAX_REGISTER_SIZE
];
700 /* First force sp to a 4-byte alignment. */
703 /* Set the return address. For the m32r, the return breakpoint is
704 always at BP_ADDR. */
705 regcache_cooked_write_unsigned (regcache
, LR_REGNUM
, bp_addr
);
707 /* If STRUCT_RETURN is true, then the struct return address (in
708 STRUCT_ADDR) will consume the first argument-passing register.
709 Both adjust the register count and store that value. */
712 regcache_cooked_write_unsigned (regcache
, argreg
, struct_addr
);
716 /* Now make sure there's space on the stack. */
717 for (argnum
= 0, stack_alloc
= 0; argnum
< nargs
; argnum
++)
718 stack_alloc
+= ((TYPE_LENGTH (value_type (args
[argnum
])) + 3) & ~3);
719 sp
-= stack_alloc
; /* Make room on stack for args. */
721 for (argnum
= 0, stack_offset
= 0; argnum
< nargs
; argnum
++)
723 type
= value_type (args
[argnum
]);
724 typecode
= TYPE_CODE (type
);
725 len
= TYPE_LENGTH (type
);
727 memset (valbuf
, 0, sizeof (valbuf
));
729 /* Passes structures that do not fit in 2 registers by reference. */
731 && (typecode
== TYPE_CODE_STRUCT
|| typecode
== TYPE_CODE_UNION
))
733 store_unsigned_integer (valbuf
, 4, byte_order
,
734 value_address (args
[argnum
]));
735 typecode
= TYPE_CODE_PTR
;
741 /* Value gets right-justified in the register or stack word. */
742 memcpy (valbuf
+ (register_size (gdbarch
, argreg
) - len
),
743 (gdb_byte
*) value_contents (args
[argnum
]), len
);
747 val
= (gdb_byte
*) value_contents (args
[argnum
]);
751 if (argreg
> ARGN_REGNUM
)
753 /* Must go on the stack. */
754 write_memory (sp
+ stack_offset
, val
, 4);
757 else if (argreg
<= ARGN_REGNUM
)
759 /* There's room in a register. */
761 extract_unsigned_integer (val
,
762 register_size (gdbarch
, argreg
),
764 regcache_cooked_write_unsigned (regcache
, argreg
++, regval
);
767 /* Store the value 4 bytes at a time. This means that things
768 larger than 4 bytes may go partly in registers and partly
770 len
-= register_size (gdbarch
, argreg
);
771 val
+= register_size (gdbarch
, argreg
);
775 /* Finally, update the SP register. */
776 regcache_cooked_write_unsigned (regcache
, M32R_SP_REGNUM
, sp
);
782 /* Given a return value in `regbuf' with a type `valtype',
783 extract and copy its value into `valbuf'. */
786 m32r_extract_return_value (struct type
*type
, struct regcache
*regcache
,
789 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
790 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
791 bfd_byte
*valbuf
= dst
;
792 int len
= TYPE_LENGTH (type
);
795 /* By using store_unsigned_integer we avoid having to do
796 anything special for small big-endian values. */
797 regcache_cooked_read_unsigned (regcache
, RET1_REGNUM
, &tmp
);
798 store_unsigned_integer (valbuf
, (len
> 4 ? len
- 4 : len
), byte_order
, tmp
);
800 /* Ignore return values more than 8 bytes in size because the m32r
801 returns anything more than 8 bytes in the stack. */
804 regcache_cooked_read_unsigned (regcache
, RET1_REGNUM
+ 1, &tmp
);
805 store_unsigned_integer (valbuf
+ len
- 4, 4, byte_order
, tmp
);
809 static enum return_value_convention
810 m32r_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
811 struct type
*valtype
, struct regcache
*regcache
,
812 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
814 if (TYPE_LENGTH (valtype
) > 8)
815 return RETURN_VALUE_STRUCT_CONVENTION
;
819 m32r_extract_return_value (valtype
, regcache
, readbuf
);
820 if (writebuf
!= NULL
)
821 m32r_store_return_value (valtype
, regcache
, writebuf
);
822 return RETURN_VALUE_REGISTER_CONVENTION
;
829 m32r_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
831 return frame_unwind_register_unsigned (next_frame
, M32R_PC_REGNUM
);
834 /* Given a GDB frame, determine the address of the calling function's
835 frame. This will be used to create a new GDB frame struct. */
838 m32r_frame_this_id (struct frame_info
*this_frame
,
839 void **this_prologue_cache
, struct frame_id
*this_id
)
841 struct m32r_unwind_cache
*info
842 = m32r_frame_unwind_cache (this_frame
, this_prologue_cache
);
845 struct minimal_symbol
*msym_stack
;
848 /* The FUNC is easy. */
849 func
= get_frame_func (this_frame
);
851 /* Check if the stack is empty. */
852 msym_stack
= lookup_minimal_symbol ("_stack", NULL
, NULL
);
853 if (msym_stack
&& info
->base
== SYMBOL_VALUE_ADDRESS (msym_stack
))
856 /* Hopefully the prologue analysis either correctly determined the
857 frame's base (which is the SP from the previous frame), or set
858 that base to "NULL". */
859 base
= info
->prev_sp
;
863 id
= frame_id_build (base
, func
);
867 static struct value
*
868 m32r_frame_prev_register (struct frame_info
*this_frame
,
869 void **this_prologue_cache
, int regnum
)
871 struct m32r_unwind_cache
*info
872 = m32r_frame_unwind_cache (this_frame
, this_prologue_cache
);
873 return trad_frame_get_prev_register (this_frame
, info
->saved_regs
, regnum
);
876 static const struct frame_unwind m32r_frame_unwind
= {
878 default_frame_unwind_stop_reason
,
880 m32r_frame_prev_register
,
882 default_frame_sniffer
886 m32r_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
888 struct m32r_unwind_cache
*info
889 = m32r_frame_unwind_cache (this_frame
, this_cache
);
893 static const struct frame_base m32r_frame_base
= {
895 m32r_frame_base_address
,
896 m32r_frame_base_address
,
897 m32r_frame_base_address
900 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
901 frame. The frame ID's base needs to match the TOS value saved by
902 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
904 static struct frame_id
905 m32r_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
907 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
, M32R_SP_REGNUM
);
908 return frame_id_build (sp
, get_frame_pc (this_frame
));
912 static gdbarch_init_ftype m32r_gdbarch_init
;
914 static struct gdbarch
*
915 m32r_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
917 struct gdbarch
*gdbarch
;
918 struct gdbarch_tdep
*tdep
;
920 /* If there is already a candidate, use it. */
921 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
923 return arches
->gdbarch
;
925 /* Allocate space for the new architecture. */
926 tdep
= XMALLOC (struct gdbarch_tdep
);
927 gdbarch
= gdbarch_alloc (&info
, tdep
);
929 set_gdbarch_read_pc (gdbarch
, m32r_read_pc
);
930 set_gdbarch_write_pc (gdbarch
, m32r_write_pc
);
931 set_gdbarch_unwind_sp (gdbarch
, m32r_unwind_sp
);
933 set_gdbarch_num_regs (gdbarch
, M32R_NUM_REGS
);
934 set_gdbarch_sp_regnum (gdbarch
, M32R_SP_REGNUM
);
935 set_gdbarch_register_name (gdbarch
, m32r_register_name
);
936 set_gdbarch_register_type (gdbarch
, m32r_register_type
);
938 set_gdbarch_push_dummy_call (gdbarch
, m32r_push_dummy_call
);
939 set_gdbarch_return_value (gdbarch
, m32r_return_value
);
941 set_gdbarch_skip_prologue (gdbarch
, m32r_skip_prologue
);
942 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
943 set_gdbarch_breakpoint_from_pc (gdbarch
, m32r_breakpoint_from_pc
);
944 set_gdbarch_memory_insert_breakpoint (gdbarch
,
945 m32r_memory_insert_breakpoint
);
946 set_gdbarch_memory_remove_breakpoint (gdbarch
,
947 m32r_memory_remove_breakpoint
);
949 set_gdbarch_frame_align (gdbarch
, m32r_frame_align
);
951 frame_base_set_default (gdbarch
, &m32r_frame_base
);
953 /* Methods for saving / extracting a dummy frame's ID. The ID's
954 stack address must match the SP value returned by
955 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
956 set_gdbarch_dummy_id (gdbarch
, m32r_dummy_id
);
958 /* Return the unwound PC value. */
959 set_gdbarch_unwind_pc (gdbarch
, m32r_unwind_pc
);
961 set_gdbarch_print_insn (gdbarch
, print_insn_m32r
);
963 /* Hook in ABI-specific overrides, if they have been registered. */
964 gdbarch_init_osabi (info
, gdbarch
);
966 /* Hook in the default unwinders. */
967 frame_unwind_append_unwinder (gdbarch
, &m32r_frame_unwind
);
969 /* Support simple overlay manager. */
970 set_gdbarch_overlay_update (gdbarch
, simple_overlay_update
);
976 _initialize_m32r_tdep (void)
978 register_gdbarch_init (bfd_arch_m32r
, m32r_gdbarch_init
);